Changes for page Water Quality Sensors

Last modified by Karry Zhuang on 2025/07/25 09:38

From version 45.51
edited by Xiaoling
on 2024/08/06 14:05
Change comment: There is no comment for this version
To version 16.2
edited by Karry Zhuang
on 2024/07/18 18:57
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.karry
Content
... ... @@ -3,13 +3,10 @@
3 3  {{toc/}}
4 4  
5 5  
6 -
7 -
8 8  = 1. DR-ECK Water EC Probe =
9 9  
10 10  == 1.1 Specification: ==
11 11  
12 -
13 13  * **Power Input**: DC7~~30
14 14  * **Power Consumption** : < 0.5W
15 15  * **Interface**: RS485. 9600 Baud Rate
... ... @@ -26,7 +26,6 @@
26 26  
27 27  == 1.2 Application for Different Range ==
28 28  
29 -
30 30  [[image:image-20240714173018-1.png]]
31 31  
32 32  
... ... @@ -33,12 +33,8 @@
33 33  == 1.3 Wiring ==
34 34  
35 35  
36 -[[image:image-20240720172533-1.png||height="347" width="569"]]
37 -
38 -
39 39  == 1.4 Mechinical Drawing ==
40 40  
41 -
42 42  [[image:image-20240714174241-2.png]]
43 43  
44 44  
... ... @@ -45,256 +45,32 @@
45 45  == 1.5 Installation ==
46 46  
47 47  
48 -**Electrode installation form:**
40 + Do not power on while connect the cables. Double check the wiring before power on.
49 49  
50 -A: Side wall installation
51 -
52 -B: Top flange installation
53 -
54 -C: Pipeline bend installation
55 -
56 -D: Pipeline bend installation
57 -
58 -E: Flow-through installation
59 -
60 -F: Submerged installation
61 -
62 -[[image:image-20240718190121-1.png||height="350" width="520"]]
63 -
64 -**Several common installation methods of electrodes**
65 -
66 -When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation.
67 -
68 -A. Several common incorrect installation methods
69 -
70 -[[image:image-20240718190204-2.png||height="262" width="487"]]
71 -
72 -**Error cause:** The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error.
73 -
74 -[[image:image-20240718190221-3.png||height="292" width="500"]]
75 -
76 -**Error cause: **Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes.
77 -
78 -B. Correct installation method
79 -
80 -[[image:image-20240718190249-4.png||height="287" width="515"]]
81 -
82 -
83 -== 1.6 Maintenance ==
84 -
85 -
86 -* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
87 -* If the electrode is not used for a long time, it can generally be stored in a dry place, but it must be placed (stored) in distilled water for several hours before use to activate the electrode. Electrodes that are frequently used can be placed (stored) in distilled water.
88 -* Cleaning of conductivity electrodes: Organic stains on the electrode can be cleaned with warm water containing detergent, or with alcohol. Calcium and magnesium precipitates are best cleaned with 10% citric acid. The electrode plate or pole can only be cleaned by chemical methods or by shaking in water. Wiping the electrode plate will damage the coating (platinum black) on the electrode surface.
89 -* The equipment should be calibrated before each use. It is recommended to calibrate it every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.).
90 -
91 -== 1.7 RS485 Commands ==
92 -
93 -
94 -RS485 signal (K1 default address 0x12; K10 default address 0x11):
95 -Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
96 -
97 -
98 -=== 1.7.1 Query address ===
99 -
100 -
101 -**send:**
102 -
103 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
104 -|=(% style="width: 74.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 high
105 -|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:50px" %)0X00|(% style="width:42px" %)0X50|(% style="width:42px" %)0X00|(% style="width:42px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
106 -
107 -If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
108 -
109 -
110 -**response:**
111 -
112 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
113 -|=(% style="width: 100px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 110px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
114 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
115 -
116 -=== 1.7.2 Change address ===
117 -
118 -
119 -For example: Change the address of the sensor with address 1 to 2, master → slave
120 -
121 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
122 -|=(% style="width: 74.75px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
123 -|(% style="width:67px" %)0X01|(% style="width:76px" %)0X06|(% style="width:60px" %)0X00|(% style="width:50px" %)0X50|(% style="width:50px" %)0X00|(% style="width:50px" %)0X02|(% style="width:57px" %)0X08|(% style="width:56px" %)0X1A
124 -
125 -If the sensor receives correctly, the data is returned along the original path.
126 -
127 -(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
128 -
129 -
130 -=== 1.7.3 Modify intercept ===
131 -
132 -
133 -**send:**
134 -
135 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
136 -|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
137 -|(% style="width:64px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)(((
138 -0X07
139 -)))
140 -
141 -Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
142 -
143 -**response:**
144 -
145 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
146 -|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
147 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
148 -0X02
149 -)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X38|(% style="width:1px" %)(((
150 -0X8F
151 -)))
152 -
153 -=== 1.7.4 Query data ===
154 -
155 -
156 -Query the data (EC,temperature) of the sensor (address 11), host → slave
157 -
158 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
159 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
160 -|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0X9B
161 -
162 -If the sensor receives correctly, the following data will be returned, slave → host
163 -
164 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
165 -|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
166 -|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0X8B|(% style="width:56px" %)0XD0
167 -
168 -The address of the EC K10 sensor is 11
169 -
170 -The query data command is 11 03 00 00 00 02 C6 9B
171 -
172 -**For example**, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
173 -
174 -
175 -Query the data (EC,temperature) of the sensor (address 11), host → slave
176 -
177 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
178 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
179 -|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XA8
180 -
181 -If the sensor receives correctly, the following data will be returned, slave → host
182 -
183 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
184 -|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
185 -|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0XB8|(% style="width:56px" %)0XD0
186 -
187 -The address of the EC K1 sensor is 12
188 -
189 -The query data command is 12 03 00 00 00 02 C6 A8
190 -
191 -**For example**, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
192 -
193 -
194 -=== 1.7.5 Calibration Method ===
195 -
196 -
197 -This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution.
198 -
199 -**The calibration steps are as follows:**
200 -(1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable.
201 -
202 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
203 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
204 -|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
205 -0X00
206 -0X00
207 -0X37
208 -0X32
209 -)))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC
210 -
211 -1413*10 gives 0X00003732
212 -
213 -**response:**
214 -
215 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
216 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
217 -|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0
218 -
219 -(2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command
220 -
221 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
222 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
223 -|(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
224 -0X00
225 -0X01
226 -0XF7
227 -0X20
228 -)))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75
229 -
230 -12880*10 gives 0X01F720
231 -
232 -**response:**
233 -
234 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
235 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
236 -|(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50
237 -
238 -
239 -= 2. DR-PH01 Water PH Sensor =
240 -
241 -== 2.1 Specification ==
242 -
243 -
244 -* **Power Input**: DC7~~30
245 -* **Power Consumption** : < 0.5W
246 -* **Interface**: RS485. 9600 Baud Rate
247 -* **pH measurement range**: 0~~14.00pH; resolution: 0.01pH
248 -* **pH measurement error**:±0.15pH
249 -* **Repeatability error**:±0.02pH
250 -* **Temperature measurement range**:0~~60℃; resolution: 0.1℃ (set temperature for manual temperature compensation, default 25℃)
251 -* **Temperature measurement error**: ±0.5℃
252 -* **Temperature Measure Range**: -20 ~~ 60 °C
253 -* **Temperature Accuracy: **±0.5 °C
254 -* **IP Rated**: IP68
255 -* **Max Pressure**: 0.6MPa
256 -
257 -== 2.2 Wiring ==
258 -
259 -
260 -[[image:image-20240720172548-2.png||height="348" width="571"]]
261 -
262 -
263 -== (% style="color:inherit; font-family:inherit" %)2.3 (% style="color:inherit; font-family:inherit; font-size:26px" %)Mechinical Drawing(%%) ==
264 -
265 -
266 -[[image:image-20240714174241-2.png]]
267 -
268 -
269 -== 2.4 Installation Notice ==
270 -
271 -
272 -Do not power on while connect the cables. Double check the wiring before power on.
273 -
274 274  Installation Photo as reference:
275 275  
276 -(% style="color:blue" %)**Submerged installation:**
44 +**~ Submerged installation:**
277 277  
278 278  The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
279 279  
280 -[[image:image-20240718191348-6.png]]
48 +[[image:image-20240715181933-4.png||height="281" width="258"]]
281 281  
282 -(% style="color:blue" %)**Pipeline installation:**
50 +**~ Pipeline installation:**
283 283  
284 284  Connect the equipment to the pipeline through the 3/4 thread.
285 285  
286 -[[image:image-20240718191336-5.png||height="239" width="326"]]
54 +[[image:image-20240715182122-6.png||height="291" width="408"]]
287 287  
288 -(% style="color:blue" %)**Sampling:**
56 +**Sampling:**
289 289  
290 290  Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it.
291 291  
292 -(% style="color:blue" %)**Measure the pH of the water sample:**
60 +**Measure the pH of the water sample:**
293 293  
294 294  First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable.
295 295  
296 296  
297 -== 2.5 Maintenance ==
65 +== 1.6 Maintain ==
298 298  
299 299  
300 300  * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible!
... ... @@ -309,17 +309,15 @@
309 309  The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
310 310  )))
311 311  
80 +== 1.7 RS485 Commands ==
312 312  
313 -== 2.6 RS485 Commands ==
314 314  
315 -
316 -RS485 signaldefault address 0x10
83 +RS485 signal (K1 default address 0x12; K10 default address 0x11):
317 317  Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
318 318  
319 319  
320 -=== 2.6.1 Query address ===
87 +=== 1.7.1 Query address ===
321 321  
322 -
323 323  send
324 324  
325 325  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
... ... @@ -326,15 +326,17 @@
326 326  |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
327 327  |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
328 328  
95 +If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
96 +
97 +
329 329  response
330 330  
331 331  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
332 332  |=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
333 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
102 +|(% style="width:99px" %)0X1|(% style="width:112px" %)0X3|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
334 334  
104 +=== 1.7.2 Change address ===
335 335  
336 -=== 2.6.2 Change address ===
337 -
338 338  For example: Change the address of the sensor with address 1 to 2, master → slave
339 339  
340 340  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
... ... @@ -345,222 +345,121 @@
345 345  Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
346 346  
347 347  
348 -=== 2.6.3 Modify intercept ===
116 +=== 1.7.3 Modify intercept ===
349 349  
350 350  
351 351  send
352 352  
353 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:570.333px" %)
354 -|=(% style="width: 71px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 74px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 69px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 57px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 57px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
355 -|(% style="width:71px" %)0X10|(% style="width:74px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X10|(% style="width:69px" %)0X00|(% style="width:66px" %)0X64|(% style="width:57px" %)0X8A|(% style="width:57px" %)(((
356 -0XA5
121 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
122 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
123 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XFA|(% style="width:1px" %)(((
124 +0X97
357 357  )))
358 358  
359 -Change the intercept of the sensor at address 10 to 1 (default is 0). You need to pass the intercept 1*100 =100 into the command 0x006.
127 +Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
360 360  
361 361  response
362 362  
363 363  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
364 364  |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
365 -|(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
366 -0X00
367 -)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
368 -0XA5
133 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
134 +0X02
135 +)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X0A|(% style="width:1px" %)(((
136 +0XE5
369 369  )))
370 370  
371 -=== 2.6.4 Query data ===
372 372  
140 +=== 1.7.4 Query data ===
373 373  
374 -Query the data (PH) of the sensor (address 10), host → slave
142 +The address of the EC K10 sensor is
375 375  
376 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
377 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
378 -|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X4B
144 +The query data command is 11 03 00 00 00 02 C6 9B
379 379  
380 -If the sensor receives correctly, the following data will be returned, slave → host
146 +For example, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm
381 381  
382 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
383 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
384 -|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0XC4|(% style="width:56px" %)0X9B
385 385  
386 -The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned.
149 +The address of the EC K1 sensor is 12
387 387  
388 -For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B.
151 +The query data command is 12 03 00 00 00 02 C6 A8
389 389  
390 -02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86.
153 +For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm
391 391  
392 392  
393 -=== 2.6.5 Calibration Method ===
156 +=== 1.7.5 Calibration Method ===
394 394  
395 395  
396 -This device uses three-point calibration, and three known pH standard solutions need to be prepared.
159 +This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution.
160 +
397 397  The calibration steps are as follows:
398 -(1) Place the electrode in distilled water to clean it, and then place it in 9.18 standard buffer solution. After the data stabilizes, enter the following calibration command, and the 9.18 calibration is completed.
162 +(1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable.
399 399  
400 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
401 -|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
402 -|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
164 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
165 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
166 +|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
403 403  0X00
404 -)))|(% style="width:68px" %)0X20|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X8A|(% style="width:55px" %)(((
405 -0XF1
406 -)))
407 407  
408 -(2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed.
409 -
410 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
411 -|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
412 -|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
413 413  0X00
414 -)))|(% style="width:68px" %)0X21|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XDB|(% style="width:55px" %)(((
415 -0X31
416 -)))
417 417  
418 -(3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed.
171 +0X37
419 419  
420 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
421 -|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
422 -|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
423 -0X00
424 -)))|(% style="width:68px" %)0X22|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X2B|(% style="width:55px" %)(((
425 -0X31
426 -)))
173 +0X32
174 +)))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC
427 427  
428 -After the above three steps are completed, the calibration is successful. The advantage of three-point calibration compared to two-point calibration is that the electrode is calibrated separately in the acid and alkali parts, thereby achieving accurate calibration of the full range and making the measurement data more accurate.
176 +1413*10 gives 0X00003732
429 429  
178 +response
430 430  
431 -= 3. DR-ORP1 Water ORP Sensor =
180 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
181 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
182 +|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0
432 432  
184 +(2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command
433 433  
434 -== 3.1 Specification ==
186 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
187 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
188 +|(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
189 +0X00
435 435  
436 -* **Power Input**: DC7~~30
437 -* **Measuring range**:** **-1999~~1999mV
438 -**Resolution**: 1mV
439 -* **Interface**: RS485. 9600 Baud Rate
440 -* **Measurement error**: ±3mV
441 -* **Stability**: ≤2mv/24 hours
442 -* **Equipment working conditions**: Ambient temperature: 0-60℃ Relative humidity: <85%RH
443 -* **IP Rated**: IP68
444 -* **Max Pressure**: 0.6MPa
191 +0X01
445 445  
446 -== 3.2 Wiring ==
193 +0XF7
447 447  
448 -[[image:image-20240720172620-3.png||height="378" width="620"]]
195 +0X20
196 +)))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75
449 449  
198 +12880*10 gives 0X01F720
450 450  
451 -== 3.3 Mechinical Drawing ==
200 +response
452 452  
453 -[[image:image-20240714174241-2.png]]
454 -
455 -== 3.4 Installation Notice ==
456 -
457 -Do not power on while connect the cables. Double check the wiring before power on.
458 -
459 -Installation Photo as reference:
460 -
461 -**~ Submerged installation:**
462 -
463 -The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
464 -
465 -[[image:image-20240718191348-6.png]]
466 -
467 -**~ Pipeline installation:**
468 -
469 -Connect the equipment to the pipeline through the 3/4 thread.
470 -
471 -[[image:image-20240718191336-5.png||height="239" width="326"]]
472 -
473 -
474 -== 3.5 Maintenance ==
475 -
476 -
477 -(1) The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
478 -
479 -(2) In general, ORP electrodes do not need to be calibrated and can be used directly. When there is doubt about the quality and test results of the ORP electrode, the electrode potential can be checked with an ORP standard solution to determine whether the ORP electrode meets the measurement requirements, and the electrode can be recalibrated or replaced with a new ORP electrode. The frequency of calibration or inspection of the measuring electrode depends on different application conditions (the degree of dirt in the application, the deposition of chemical substances, etc.).
480 -
481 -(3) There is an appropriate soaking solution in the protective bottle at the front end of the electrode, and the electrode head is soaked in it to ensure the activation of the platinum sheet and the liquid junction. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
482 -
483 -(4) Preparation of electrode soaking solution: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water to prepare a 3.3M potassium chloride solution.
484 -
485 -(5) Before measuring, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
486 -
487 -(6) The electrode should be cleaned with deionized water before and after the measurement to ensure the measurement accuracy.
488 -
489 -(7) After long-term use, the ORP electrode will be passivated, which is manifested as a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the platinum sheet at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
490 -
491 -(8) Electrode contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. If the platinum of the electrode is severely contaminated and an oxide film is formed, toothpaste can be applied to the platinum surface and then gently scrubbed to restore the platinum's luster.
492 -
493 -(9) The equipment should be calibrated before each use. It is recommended to calibrate once every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
494 -
495 -== 3.6 RS485 Commands ==
496 -
497 -
498 -RS485 signaldefault address 0x13
499 -Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
500 -
501 -=== 3.6.1 Query address ===
502 -
503 -send
504 -
505 505  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
506 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
507 -|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
203 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
204 +|(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50
508 508  
509 -response
510 510  
511 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
512 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
513 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
514 514  
515 -=== 3.6.2 Change address ===
516 516  
517 -For example: Change the address of the sensor with address 1 to 2, master → slave
518 518  
519 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
520 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
521 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
210 += 2. DR-PH01 Water PH Sensor =
522 522  
523 -If the sensor receives correctly, the data is returned along the original path.
524 -Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
212 +== 2.7 RS485 Commands ==
525 525  
526 526  
527 -=== 3.6.3 Modify intercept ===
215 +The address of the p sensor is 10
528 528  
529 -send
217 +The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned.
530 530  
531 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
532 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 69px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
533 -|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
534 -0X96
535 -)))
219 +For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B.
536 536  
537 -Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
221 +02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86.
538 538  
539 -response
540 540  
541 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
542 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
543 -|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
544 -0X00
545 -)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
546 -0X96
547 -)))
224 += 3. DR-ORP1 Water ORP Sensor =
548 548  
549 -=== 3.6.4 Query data ===
226 +== 3.7 RS485 Commands ==
550 550  
551 551  
552 -Query the data (ORP) of the sensor (address 13), host → slave
229 +The address of the ORP sensor is 13
553 553  
554 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
555 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
556 -|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X78
557 -
558 -If the sensor receives correctly, the following data will be returned, slave → host
559 -
560 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
561 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
562 -|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X80|(% style="width:56px" %)0X9B
563 -
564 564  The query data command is 13 03 00 00 00 01 87 78
565 565  
566 566  For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B.
... ... @@ -568,229 +568,31 @@
568 568  02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV
569 569  
570 570  
571 -=== 3.6.5 Calibration Method ===
572 -
573 -This device uses two-point calibration, and two known ORP standard solutions need to be prepared. The calibration steps are as follows:
574 -(1) Place the electrode in distilled water to clean it, and then place it in 86mV standard buffer solution. After the data stabilizes,
575 -enter the following calibration command, and the 86mV point calibration is completed;
576 -
577 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
578 -|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
579 -|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
580 -0X00
581 -)))|(% style="width:68px" %)0X24|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XCB|(% style="width:55px" %)(((
582 -0X03
583 -)))
584 -
585 -Wash the electrode in distilled water and place it in 256mV standard buffer. After the data is stable, enter the following calibration command to complete the 256mV point calibration.
586 -
587 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
588 -|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
589 -|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
590 -0X00
591 -)))|(% style="width:68px" %)0X25|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X9A|(% style="width:55px" %)(((
592 -0XC3
593 -)))
594 -
595 595  = 4. DR-DO1 Dissolved Oxygen Sensor =
596 596  
240 +== 4.7 RS485 Commands ==
597 597  
598 598  
599 -== 4.1 Specification ==
243 +The address of the dissolved oxygen sensor is 14
600 600  
245 +The query data command is 14 03 00 14 00 01 C6 CB
601 601  
602 -* **Measuring range**: 0-20mg/L, 0-50℃
603 -* **Accuracy**: 3%, ±0.5℃
604 -* **Resolution**: 0.01 mg/L, 0.01℃
605 -* **Maximum operating pressure**: 6 bar
606 -* **Output signal**: A: 4-20mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01)
607 -* **Power supply voltage**: 5-24V DC
608 -* **Working environment**: temperature 0-60℃; humidity <95%RH
609 -* **Power consumption**: ≤0.5W
610 -
611 -== 4.2 wiring ==
612 -
613 -[[image:image-20240720172632-4.png||height="390" width="640"]]
614 -
615 -
616 -== (% id="cke_bm_224234S" style="display:none" %) (%%)4.3 Impedance requirements for current signals ==
617 -
618 -[[image:image-20240718195414-8.png||height="100" width="575"]]
619 -
620 -
621 -== 4.4 Mechinical Drawing ==
622 -
623 -
624 -[[image:image-20240719155308-1.png||height="226" width="527"]]
625 -
626 -
627 -== 4.5 Instructions for use and maintenance ==
628 -
629 -* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
630 -* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
631 -
632 -== 4.6 RS485 Commands ==
633 -
634 -RS485 signaldefault address 0x14
635 -Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
636 -
637 -=== 4.6.1 Query address ===
638 -
639 -send
640 -
641 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
642 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
643 -|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XF1|(% style="width:56px" %)0XD7
644 -
645 -If you forget the original address of the sensor, you can use the broadcast address 0XFF instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
646 -
647 -
648 -response
649 -
650 -Register 0 data high and register 0 data low indicate the actual address of the sensor: 1
651 -Register 1 data high and register 1 data low indicate the sensor version
652 -
653 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
654 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
655 -|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X04|(% style="width:68px" %)0X00|(% style="width:70px" %)0X01|(% style="width:72px" %)0X00|(% style="width:56px" %)0X00|(% style="width:56px" %)0XB4|(% style="width:56px" %)0X3C
656 -
657 -=== 4.6.2 Change address ===
658 -
659 -For example: Change the address of the sensor with address 1 to 2(address range: 1-119), master → slave
660 -
661 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:907.333px" %)
662 -|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 71px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low
663 -|(% style="width:67px" %)0X01|(% style="width:71px" %)0X10|(% style="width:65px" %)0X00|(% style="width:65px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X04|(% style="width:53px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X00|(% style="width:53px" %)0X00|(% style="width:56px" %)0XD2|(% style="width:53px" %)0X10
664 -
665 -response
666 -
667 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
668 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
669 -|(% style="width:99px" %)0X01|(% style="width:72px" %)0X10|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0X61|(% style="width:56px" %)0XCA
670 -
671 -=== 4.6.3 Query data ===
672 -
673 -
674 -Query the data (dissolved oxygen) of the sensor (address 14), host → slave
675 -
676 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
677 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
678 -|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X14|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XCB
679 -
680 -If the sensor receives correctly, the following data will be returned, slave → host
681 -
682 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
683 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
684 -|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X03|(% style="width:72px" %)0X78|(% style="width:56px" %)0XB5|(% style="width:56px" %)0X55
685 -
686 686  After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen.
687 687  
688 688  Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L
689 689  
690 690  
691 -Query the data (temperature) of the sensor (address 14), host → slave
692 -
693 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
694 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
695 -|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X11|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XD6|(% style="width:56px" %)0XCA
696 -
697 -If the sensor receives correctly, the following data will be returned, slave → host
698 -
699 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
700 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
701 -|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X09|(% style="width:72px" %)0XA4|(% style="width:56px" %)0XB2|(% style="width:56px" %)0X6C
702 -
703 -After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**09 A4**(%%) B2 6C. 03 78 is the value of dissolved oxygen temperature.
704 -
705 -Converted to decimal, it is 2468. Add two decimal places to get the actual value. 09 A4 means the current dissolved oxygen temperature is 24.68℃
706 -
707 -
708 708  = 5. DR-TS1 Water Turbidity Sensor =
709 709  
254 +== 5.7 RS485 Commands ==
710 710  
711 711  
712 -== (% id="cke_bm_81470S" style="display:none" %) (%%)5.1 Specification ==
257 +The address of the dissolved oxygen sensor is 15
713 713  
714 -* **Measuring range**: 0.1~1000.0NTU
715 -* **Accuracy**: ±5%
716 -* **Resolution**: 0.1NTU
717 -* **Stability**: ≤3mV/24 hours
718 -* **Output signal**: A: 4~20 mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01)
719 -* **Power supply voltage**: 5~24V DC (when output signal is RS485)12~24V DC (when output signal is 4~20mA)
720 -* **Working environment**: temperature 0~60℃; humidity ≤95%RH
721 -* **Power consumption**: ≤0.5W
722 -
723 -== 5.2 wiring ==
724 -
725 -[[image:image-20240720172640-5.png||height="387" width="635"]]
726 -
727 -
728 -== 5.3 Impedance requirements for current signals ==
729 -
730 -[[image:image-20240718195414-8.png||height="100" width="575"]]
731 -
732 -
733 -== 5.4 Mechinical Drawing ==
734 -
735 -[[image:image-20240718195058-7.png||height="305" width="593"]]
736 -
737 -
738 -== 5.5 Instructions for use and maintenance ==
739 -
740 -* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
741 -* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
742 -
743 -== 5.6 RS485 Commands ==
744 -
745 -
746 -RS485 signaldefault address 0x15
747 -Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
748 -
749 -=== 5.6.1 Query address ===
750 -
751 -send
752 -
753 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
754 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
755 -|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X50|(% style="width:70px" %)0X00|(% style="width:72px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
756 -
757 -If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
758 -
759 -
760 -response
761 -
762 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
763 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
764 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
765 -
766 -=== 5.6.2 Change address ===
767 -
768 -For example: Change the address of the sensor with address 1 to 2, master → slave
769 -
770 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
771 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
772 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
773 -
774 -If the sensor receives correctly, the data is returned along the original path.
775 -Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
776 -
777 -=== 5.6.3 Query data ===
778 -
779 -
780 -Query the data (turbidity) of the sensor (address 15), host → slave
781 -
782 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
783 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
784 -|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X1E
785 -
786 -If the sensor receives correctly, the following data will be returned, slave → host
787 -
788 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
789 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
790 -|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0X9A|(% style="width:56px" %)0X09|(% style="width:56px" %)0X4C
791 -
792 792  The query data command is 15 03 00 00 00 01 87 1E
793 793  
794 794  For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C
795 795  
796 796  02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU
264 +
265 +
image-20240718190121-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -281.1 KB
Content
image-20240718190204-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -111.8 KB
Content
image-20240718190221-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -140.2 KB
Content
image-20240718190249-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -111.6 KB
Content
image-20240718191336-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
image-20240718191348-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -91.2 KB
Content
image-20240718195058-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -97.6 KB
Content
image-20240718195414-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -13.5 KB
Content
image-20240719155308-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -57.4 KB
Content
image-20240720172533-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20240720172548-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20240720172620-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20240720172632-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20240720172640-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content