Changes for page Water Quality Sensors
Last modified by Karry Zhuang on 2025/07/25 09:38
From version 45.51
edited by Xiaoling
on 2024/08/06 14:05
on 2024/08/06 14:05
Change comment:
There is no comment for this version
To version 16.2
edited by Karry Zhuang
on 2024/07/18 18:57
on 2024/07/18 18:57
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 14 removed)
- image-20240718190121-1.png
- image-20240718190204-2.png
- image-20240718190221-3.png
- image-20240718190249-4.png
- image-20240718191336-5.png
- image-20240718191348-6.png
- image-20240718195058-7.png
- image-20240718195414-8.png
- image-20240719155308-1.png
- image-20240720172533-1.png
- image-20240720172548-2.png
- image-20240720172620-3.png
- image-20240720172632-4.png
- image-20240720172640-5.png
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.karry - Content
-
... ... @@ -3,13 +3,10 @@ 3 3 {{toc/}} 4 4 5 5 6 - 7 - 8 8 = 1. DR-ECK Water EC Probe = 9 9 10 10 == 1.1 Specification: == 11 11 12 - 13 13 * **Power Input**: DC7~~30 14 14 * **Power Consumption** : < 0.5W 15 15 * **Interface**: RS485. 9600 Baud Rate ... ... @@ -26,7 +26,6 @@ 26 26 27 27 == 1.2 Application for Different Range == 28 28 29 - 30 30 [[image:image-20240714173018-1.png]] 31 31 32 32 ... ... @@ -33,12 +33,8 @@ 33 33 == 1.3 Wiring == 34 34 35 35 36 -[[image:image-20240720172533-1.png||height="347" width="569"]] 37 - 38 - 39 39 == 1.4 Mechinical Drawing == 40 40 41 - 42 42 [[image:image-20240714174241-2.png]] 43 43 44 44 ... ... @@ -45,256 +45,32 @@ 45 45 == 1.5 Installation == 46 46 47 47 48 - **Electrode installation form:**40 + Do not power on while connect the cables. Double check the wiring before power on. 49 49 50 -A: Side wall installation 51 - 52 -B: Top flange installation 53 - 54 -C: Pipeline bend installation 55 - 56 -D: Pipeline bend installation 57 - 58 -E: Flow-through installation 59 - 60 -F: Submerged installation 61 - 62 -[[image:image-20240718190121-1.png||height="350" width="520"]] 63 - 64 -**Several common installation methods of electrodes** 65 - 66 -When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation. 67 - 68 -A. Several common incorrect installation methods 69 - 70 -[[image:image-20240718190204-2.png||height="262" width="487"]] 71 - 72 -**Error cause:** The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error. 73 - 74 -[[image:image-20240718190221-3.png||height="292" width="500"]] 75 - 76 -**Error cause: **Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes. 77 - 78 -B. Correct installation method 79 - 80 -[[image:image-20240718190249-4.png||height="287" width="515"]] 81 - 82 - 83 -== 1.6 Maintenance == 84 - 85 - 86 -* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible. 87 -* If the electrode is not used for a long time, it can generally be stored in a dry place, but it must be placed (stored) in distilled water for several hours before use to activate the electrode. Electrodes that are frequently used can be placed (stored) in distilled water. 88 -* Cleaning of conductivity electrodes: Organic stains on the electrode can be cleaned with warm water containing detergent, or with alcohol. Calcium and magnesium precipitates are best cleaned with 10% citric acid. The electrode plate or pole can only be cleaned by chemical methods or by shaking in water. Wiping the electrode plate will damage the coating (platinum black) on the electrode surface. 89 -* The equipment should be calibrated before each use. It is recommended to calibrate it every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). 90 - 91 -== 1.7 RS485 Commands == 92 - 93 - 94 -RS485 signal (K1 default address 0x12; K10 default address 0x11): 95 -Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 96 - 97 - 98 -=== 1.7.1 Query address === 99 - 100 - 101 -**send:** 102 - 103 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 104 -|=(% style="width: 74.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 high 105 -|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:50px" %)0X00|(% style="width:42px" %)0X50|(% style="width:42px" %)0X00|(% style="width:42px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4 106 - 107 -If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 108 - 109 - 110 -**response:** 111 - 112 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %) 113 -|=(% style="width: 100px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 110px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 114 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 115 - 116 -=== 1.7.2 Change address === 117 - 118 - 119 -For example: Change the address of the sensor with address 1 to 2, master → slave 120 - 121 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 122 -|=(% style="width: 74.75px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 123 -|(% style="width:67px" %)0X01|(% style="width:76px" %)0X06|(% style="width:60px" %)0X00|(% style="width:50px" %)0X50|(% style="width:50px" %)0X00|(% style="width:50px" %)0X02|(% style="width:57px" %)0X08|(% style="width:56px" %)0X1A 124 - 125 -If the sensor receives correctly, the data is returned along the original path. 126 - 127 -(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.** 128 - 129 - 130 -=== 1.7.3 Modify intercept === 131 - 132 - 133 -**send:** 134 - 135 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %) 136 -|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high 137 -|(% style="width:64px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)((( 138 -0X07 139 -))) 140 - 141 -Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command. 142 - 143 -**response:** 144 - 145 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %) 146 -|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high 147 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 148 -0X02 149 -)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X38|(% style="width:1px" %)((( 150 -0X8F 151 -))) 152 - 153 -=== 1.7.4 Query data === 154 - 155 - 156 -Query the data (EC,temperature) of the sensor (address 11), host → slave 157 - 158 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 159 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 160 -|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0X9B 161 - 162 -If the sensor receives correctly, the following data will be returned, slave → host 163 - 164 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 165 -|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 166 -|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0X8B|(% style="width:56px" %)0XD0 167 - 168 -The address of the EC K10 sensor is 11 169 - 170 -The query data command is 11 03 00 00 00 02 C6 9B 171 - 172 -**For example**, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686, K=10, EC: 6860uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10. 173 - 174 - 175 -Query the data (EC,temperature) of the sensor (address 11), host → slave 176 - 177 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 178 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 179 -|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XA8 180 - 181 -If the sensor receives correctly, the following data will be returned, slave → host 182 - 183 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 184 -|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 185 -|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0XB8|(% style="width:56px" %)0XD0 186 - 187 -The address of the EC K1 sensor is 12 188 - 189 -The query data command is 12 03 00 00 00 02 C6 A8 190 - 191 -**For example**, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686, K=1, EC: 686uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10. 192 - 193 - 194 -=== 1.7.5 Calibration Method === 195 - 196 - 197 -This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution. 198 - 199 -**The calibration steps are as follows:** 200 -(1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable. 201 - 202 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 203 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high 204 -|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 205 -0X00 206 -0X00 207 -0X37 208 -0X32 209 -)))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC 210 - 211 -1413*10 gives 0X00003732 212 - 213 -**response:** 214 - 215 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 216 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high 217 -|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0 218 - 219 -(2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command 220 - 221 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 222 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high 223 -|(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 224 -0X00 225 -0X01 226 -0XF7 227 -0X20 228 -)))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75 229 - 230 -12880*10 gives 0X01F720 231 - 232 -**response:** 233 - 234 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 235 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high 236 -|(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50 237 - 238 - 239 -= 2. DR-PH01 Water PH Sensor = 240 - 241 -== 2.1 Specification == 242 - 243 - 244 -* **Power Input**: DC7~~30 245 -* **Power Consumption** : < 0.5W 246 -* **Interface**: RS485. 9600 Baud Rate 247 -* **pH measurement range**: 0~~14.00pH; resolution: 0.01pH 248 -* **pH measurement error**:±0.15pH 249 -* **Repeatability error**:±0.02pH 250 -* **Temperature measurement range**:0~~60℃; resolution: 0.1℃ (set temperature for manual temperature compensation, default 25℃) 251 -* **Temperature measurement error**: ±0.5℃ 252 -* **Temperature Measure Range**: -20 ~~ 60 °C 253 -* **Temperature Accuracy: **±0.5 °C 254 -* **IP Rated**: IP68 255 -* **Max Pressure**: 0.6MPa 256 - 257 -== 2.2 Wiring == 258 - 259 - 260 -[[image:image-20240720172548-2.png||height="348" width="571"]] 261 - 262 - 263 -== (% style="color:inherit; font-family:inherit" %)2.3 (% style="color:inherit; font-family:inherit; font-size:26px" %)Mechinical Drawing(%%) == 264 - 265 - 266 -[[image:image-20240714174241-2.png]] 267 - 268 - 269 -== 2.4 Installation Notice == 270 - 271 - 272 -Do not power on while connect the cables. Double check the wiring before power on. 273 - 274 274 Installation Photo as reference: 275 275 276 - (% style="color:blue" %)**Submerged installation:**44 +**~ Submerged installation:** 277 277 278 278 The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded. 279 279 280 -[[image:image-2024071819 1348-6.png]]48 +[[image:image-20240715181933-4.png||height="281" width="258"]] 281 281 282 - (% style="color:blue" %)**Pipeline installation:**50 +**~ Pipeline installation:** 283 283 284 284 Connect the equipment to the pipeline through the 3/4 thread. 285 285 286 -[[image:image-202407181 91336-5.png||height="239" width="326"]]54 +[[image:image-20240715182122-6.png||height="291" width="408"]] 287 287 288 - (% style="color:blue" %)**Sampling:**56 +**Sampling:** 289 289 290 290 Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it. 291 291 292 - (% style="color:blue" %)**Measure the pH of the water sample:**60 +**Measure the pH of the water sample:** 293 293 294 294 First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable. 295 295 296 296 297 -== 2.5Maintenance==65 +== 1.6 Maintain == 298 298 299 299 300 300 * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible! ... ... @@ -309,17 +309,15 @@ 309 309 The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 310 310 ))) 311 311 80 +== 1.7 RS485 Commands == 312 312 313 -== 2.6 RS485 Commands == 314 314 315 - 316 -RS485 signaldefault address 0x10 83 +RS485 signal (K1 default address 0x12; K10 default address 0x11): 317 317 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 318 318 319 319 320 -=== 2.6.187 +=== 1.7.1 Query address === 321 321 322 - 323 323 send 324 324 325 325 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) ... ... @@ -326,15 +326,17 @@ 326 326 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 327 327 |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4 328 328 95 +If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 96 + 97 + 329 329 response 330 330 331 331 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %) 332 332 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 333 -|(% style="width:99px" %)0X 01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0102 +|(% style="width:99px" %)0X1|(% style="width:112px" %)0X3|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 334 334 104 +=== 1.7.2 Change address === 335 335 336 -=== 2.6.2 Change address === 337 - 338 338 For example: Change the address of the sensor with address 1 to 2, master → slave 339 339 340 340 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) ... ... @@ -345,222 +345,121 @@ 345 345 Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query. 346 346 347 347 348 -=== 2.6.3116 +=== 1.7.3 Modify intercept === 349 349 350 350 351 351 send 352 352 353 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 570.333px" %)354 -|=(% style="width: 71px;rgb(79, 129, 189);;" %)Address|=(% style="width:74px;rgb(79, 129, 189);;" %)Function code|=(% style="width:67px;rgb(79, 129, 189);;" %)Starting register address high|=(% style="width:68px;rgb(79, 129, 189);;" %)Starting register address69px;rgb(79, 129, 189);;" %)RegisterLengthhigh|=(% style="width:66px; background-color: rgb(79, 129, 189); color: white;" %)RegisterLengthlow|=(% style="width: 57px;rgb(79, 129, 189);;" %)CRC16 low|=(% style="width: 57px;rgb(79, 129, 189);;" %)CRC16 high355 -|(% style="width: 71px" %)0X10|(% style="width:74px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X10|(% style="width:69px" %)0X00|(% style="width:66px" %)0X64|(% style="width:57px" %)0X8A|(% style="width:57px" %)(((356 -0X A5121 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 122 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 123 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XFA|(% style="width:1px" %)((( 124 +0X97 357 357 ))) 358 358 359 -Change the intercept of the sensor at address 10to 1 (defaultis0).You need to pass theintercept1*100=100 intothe command0x006.127 +Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command. 360 360 361 361 response 362 362 363 363 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 364 364 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 365 -|(% style="width:99px" %)0X 10|(% style="width:112px" %)0X06|(% style="width:135px" %)(((366 -0X0 0367 -)))|(% style="width:126px" %)0X 10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((368 -0X A5133 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 134 +0X02 135 +)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X0A|(% style="width:1px" %)((( 136 +0XE5 369 369 ))) 370 370 371 -=== 2.6.4 Query data === 372 372 140 +=== 1.7.4 Query data === 373 373 374 - Query thedata(PH)of the sensor(address10), host → slave142 +The address of the EC K10 sensor is 375 375 376 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 377 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 378 -|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X4B 144 +The query data command is 11 03 00 00 00 02 C6 9B 379 379 380 - If the sensorreceives correctly, thefollowingdatawillbereturned,slave→ host146 +For example, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686, K=10, EC: 6860uS/cm 381 381 382 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 383 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 384 -|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0XC4|(% style="width:56px" %)0X9B 385 385 386 -The query data commandis10 03 00 00 00 01 87 4B. Afterthequery,7byteswillbe returned.149 +The address of the EC K1 sensor is 12 387 387 388 - For example, thereturneddata is 1003 02(%style="color:red"%)**02AE**(%%)C49B.151 +The query data command is 12 03 00 00 00 02 C6 A8 389 389 390 - 02AE is thepH value,which is convertedintodecimaltoget686,andthen two decimalplaces areaddedtogettheactualvalue. 02 AEmeansthecurrentpH valueis6.86.153 +For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686, K=1, EC: 686uS/cm 391 391 392 392 393 -=== 2.6.5 Calibration Method ===156 +=== 1.7.5 Calibration Method === 394 394 395 395 396 -This device uses three-point calibration, and three known pH standard solutions need to be prepared. 159 +This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution. 160 + 397 397 The calibration steps are as follows: 398 -(1) Place the electrode in distilled water toclean it,and thenplaceitin9.18standardbuffersolution. After the data stabilizes, enter the following calibration command,andthe9.18 calibrationiscompleted.162 +(1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable. 399 399 400 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 575.333px" %)401 -|=(% style="width: 64px;rgb(79, 129, 189);;" %)Address|=(% style="width:72px;rgb(79, 129, 189);;" %)Function code|=(% style="width:66px;rgb(79, 129, 189);;" %)Address high|=(% style="width:68px;rgb(79, 129, 189);;" %)Address low|=(% style="width:72px;rgb(79, 129, 189);;" %)Quantity high|=(% style="width:70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px;rgb(79, 129, 189);;" %)CRC16 high402 -|(% style="width: 64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((164 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 165 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 166 +|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 403 403 0X00 404 -)))|(% style="width:68px" %)0X20|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X8A|(% style="width:55px" %)((( 405 -0XF1 406 -))) 407 407 408 -(2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed. 409 - 410 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %) 411 -|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 412 -|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 413 413 0X00 414 -)))|(% style="width:68px" %)0X21|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XDB|(% style="width:55px" %)((( 415 -0X31 416 -))) 417 417 418 - (3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed.171 +0X37 419 419 420 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %) 421 -|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 422 -|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 423 -0X00 424 -)))|(% style="width:68px" %)0X22|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X2B|(% style="width:55px" %)((( 425 -0X31 426 -))) 173 +0X32 174 +)))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC 427 427 428 - Afterthe above three steps are completed, the calibration is successful. The advantage of three-point calibration compared to two-point calibration is that the electrode is calibrated separately in the acid and alkali parts, thereby achieving accuratecalibration of the full range and making the measurementdata more accurate.176 +1413*10 gives 0X00003732 429 429 178 +response 430 430 431 -= 3. DR-ORP1 Water ORP Sensor = 180 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 181 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 182 +|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0 432 432 184 +(2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command 433 433 434 -== 3.1 Specification == 186 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 187 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 188 +|(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 189 +0X00 435 435 436 -* **Power Input**: DC7~~30 437 -* **Measuring range**:** **-1999~~1999mV 438 -**Resolution**: 1mV 439 -* **Interface**: RS485. 9600 Baud Rate 440 -* **Measurement error**: ±3mV 441 -* **Stability**: ≤2mv/24 hours 442 -* **Equipment working conditions**: Ambient temperature: 0-60℃ Relative humidity: <85%RH 443 -* **IP Rated**: IP68 444 -* **Max Pressure**: 0.6MPa 191 +0X01 445 445 446 - == 3.2 Wiring ==193 +0XF7 447 447 448 -[[image:image-20240720172620-3.png||height="378" width="620"]] 195 +0X20 196 +)))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75 449 449 198 +12880*10 gives 0X01F720 450 450 451 - == 3.3 Mechinical Drawing ==200 +response 452 452 453 -[[image:image-20240714174241-2.png]] 454 - 455 -== 3.4 Installation Notice == 456 - 457 -Do not power on while connect the cables. Double check the wiring before power on. 458 - 459 -Installation Photo as reference: 460 - 461 -**~ Submerged installation:** 462 - 463 -The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded. 464 - 465 -[[image:image-20240718191348-6.png]] 466 - 467 -**~ Pipeline installation:** 468 - 469 -Connect the equipment to the pipeline through the 3/4 thread. 470 - 471 -[[image:image-20240718191336-5.png||height="239" width="326"]] 472 - 473 - 474 -== 3.5 Maintenance == 475 - 476 - 477 -(1) The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible. 478 - 479 -(2) In general, ORP electrodes do not need to be calibrated and can be used directly. When there is doubt about the quality and test results of the ORP electrode, the electrode potential can be checked with an ORP standard solution to determine whether the ORP electrode meets the measurement requirements, and the electrode can be recalibrated or replaced with a new ORP electrode. The frequency of calibration or inspection of the measuring electrode depends on different application conditions (the degree of dirt in the application, the deposition of chemical substances, etc.). 480 - 481 -(3) There is an appropriate soaking solution in the protective bottle at the front end of the electrode, and the electrode head is soaked in it to ensure the activation of the platinum sheet and the liquid junction. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use. 482 - 483 -(4) Preparation of electrode soaking solution: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water to prepare a 3.3M potassium chloride solution. 484 - 485 -(5) Before measuring, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response. 486 - 487 -(6) The electrode should be cleaned with deionized water before and after the measurement to ensure the measurement accuracy. 488 - 489 -(7) After long-term use, the ORP electrode will be passivated, which is manifested as a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the platinum sheet at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance. 490 - 491 -(8) Electrode contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. If the platinum of the electrode is severely contaminated and an oxide film is formed, toothpaste can be applied to the platinum surface and then gently scrubbed to restore the platinum's luster. 492 - 493 -(9) The equipment should be calibrated before each use. It is recommended to calibrate once every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 494 - 495 -== 3.6 RS485 Commands == 496 - 497 - 498 -RS485 signaldefault address 0x13 499 -Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 500 - 501 -=== 3.6.1 Query address === 502 - 503 -send 504 - 505 505 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 506 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %) Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high507 -|(% style="width:99px" %)0X FE|(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4203 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 204 +|(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50 508 508 509 -response 510 510 511 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %) 512 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 513 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 514 514 515 -=== 3.6.2 Change address === 516 516 517 -For example: Change the address of the sensor with address 1 to 2, master → slave 518 518 519 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 520 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 521 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 210 += 2. DR-PH01 Water PH Sensor = 522 522 523 -If the sensor receives correctly, the data is returned along the original path. 524 -Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query. 212 +== 2.7 RS485 Commands == 525 525 526 526 527 - ===3.6.3Modifyintercept===215 +The address of the pH sensor is 10 528 528 529 -send 217 +The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned. 530 530 531 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 532 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 69px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 533 -|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)((( 534 -0X96 535 -))) 219 +For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B. 536 536 537 - Changethe interceptofthesensorwithaddress1to10(default0),which is0X000Ain the command.221 +02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86. 538 538 539 -response 540 540 541 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 542 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 543 -|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 544 -0X00 545 -)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)((( 546 -0X96 547 -))) 224 += 3. DR-ORP1 Water ORP Sensor = 548 548 549 -== =3.6.4Querydata===226 +== 3.7 RS485 Commands == 550 550 551 551 552 - Query thedata(ORP)of the sensor(address13), host → slave229 +The address of the ORP sensor is 13 553 553 554 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 555 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 556 -|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X78 557 - 558 -If the sensor receives correctly, the following data will be returned, slave → host 559 - 560 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 561 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 562 -|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X80|(% style="width:56px" %)0X9B 563 - 564 564 The query data command is 13 03 00 00 00 01 87 78 565 565 566 566 For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B. ... ... @@ -568,229 +568,31 @@ 568 568 02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV 569 569 570 570 571 -=== 3.6.5 Calibration Method === 572 - 573 -This device uses two-point calibration, and two known ORP standard solutions need to be prepared. The calibration steps are as follows: 574 -(1) Place the electrode in distilled water to clean it, and then place it in 86mV standard buffer solution. After the data stabilizes, 575 -enter the following calibration command, and the 86mV point calibration is completed; 576 - 577 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %) 578 -|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 579 -|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 580 -0X00 581 -)))|(% style="width:68px" %)0X24|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XCB|(% style="width:55px" %)((( 582 -0X03 583 -))) 584 - 585 -Wash the electrode in distilled water and place it in 256mV standard buffer. After the data is stable, enter the following calibration command to complete the 256mV point calibration. 586 - 587 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %) 588 -|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 589 -|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 590 -0X00 591 -)))|(% style="width:68px" %)0X25|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X9A|(% style="width:55px" %)((( 592 -0XC3 593 -))) 594 - 595 595 = 4. DR-DO1 Dissolved Oxygen Sensor = 596 596 240 +== 4.7 RS485 Commands == 597 597 598 598 599 - ==4.1 Specification==243 +The address of the dissolved oxygen sensor is 14 600 600 245 +The query data command is 14 03 00 14 00 01 C6 CB 601 601 602 -* **Measuring range**: 0-20mg/L, 0-50℃ 603 -* **Accuracy**: 3%, ±0.5℃ 604 -* **Resolution**: 0.01 mg/L, 0.01℃ 605 -* **Maximum operating pressure**: 6 bar 606 -* **Output signal**: A: 4-20mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01) 607 -* **Power supply voltage**: 5-24V DC 608 -* **Working environment**: temperature 0-60℃; humidity <95%RH 609 -* **Power consumption**: ≤0.5W 610 - 611 -== 4.2 wiring == 612 - 613 -[[image:image-20240720172632-4.png||height="390" width="640"]] 614 - 615 - 616 -== (% id="cke_bm_224234S" style="display:none" %) (%%)4.3 Impedance requirements for current signals == 617 - 618 -[[image:image-20240718195414-8.png||height="100" width="575"]] 619 - 620 - 621 -== 4.4 Mechinical Drawing == 622 - 623 - 624 -[[image:image-20240719155308-1.png||height="226" width="527"]] 625 - 626 - 627 -== 4.5 Instructions for use and maintenance == 628 - 629 -* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor. 630 -* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently. 631 - 632 -== 4.6 RS485 Commands == 633 - 634 -RS485 signaldefault address 0x14 635 -Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 636 - 637 -=== 4.6.1 Query address === 638 - 639 -send 640 - 641 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 642 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 643 -|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XF1|(% style="width:56px" %)0XD7 644 - 645 -If you forget the original address of the sensor, you can use the broadcast address 0XFF instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 646 - 647 - 648 -response 649 - 650 -Register 0 data high and register 0 data low indicate the actual address of the sensor: 1 651 -Register 1 data high and register 1 data low indicate the sensor version 652 - 653 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 654 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 655 -|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X04|(% style="width:68px" %)0X00|(% style="width:70px" %)0X01|(% style="width:72px" %)0X00|(% style="width:56px" %)0X00|(% style="width:56px" %)0XB4|(% style="width:56px" %)0X3C 656 - 657 -=== 4.6.2 Change address === 658 - 659 -For example: Change the address of the sensor with address 1 to 2(address range: 1-119), master → slave 660 - 661 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:907.333px" %) 662 -|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 71px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low 663 -|(% style="width:67px" %)0X01|(% style="width:71px" %)0X10|(% style="width:65px" %)0X00|(% style="width:65px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X04|(% style="width:53px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X00|(% style="width:53px" %)0X00|(% style="width:56px" %)0XD2|(% style="width:53px" %)0X10 664 - 665 -response 666 - 667 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 668 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 669 -|(% style="width:99px" %)0X01|(% style="width:72px" %)0X10|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0X61|(% style="width:56px" %)0XCA 670 - 671 -=== 4.6.3 Query data === 672 - 673 - 674 -Query the data (dissolved oxygen) of the sensor (address 14), host → slave 675 - 676 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 677 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 678 -|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X14|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XCB 679 - 680 -If the sensor receives correctly, the following data will be returned, slave → host 681 - 682 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 683 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 684 -|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X03|(% style="width:72px" %)0X78|(% style="width:56px" %)0XB5|(% style="width:56px" %)0X55 685 - 686 686 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen. 687 687 688 688 Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L 689 689 690 690 691 -Query the data (temperature) of the sensor (address 14), host → slave 692 - 693 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 694 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 695 -|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X11|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XD6|(% style="width:56px" %)0XCA 696 - 697 -If the sensor receives correctly, the following data will be returned, slave → host 698 - 699 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 700 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 701 -|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X09|(% style="width:72px" %)0XA4|(% style="width:56px" %)0XB2|(% style="width:56px" %)0X6C 702 - 703 -After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**09 A4**(%%) B2 6C. 03 78 is the value of dissolved oxygen temperature. 704 - 705 -Converted to decimal, it is 2468. Add two decimal places to get the actual value. 09 A4 means the current dissolved oxygen temperature is 24.68℃ 706 - 707 - 708 708 = 5. DR-TS1 Water Turbidity Sensor = 709 709 254 +== 5.7 RS485 Commands == 710 710 711 711 712 - ==(% id="cke_bm_81470S"style="display:none"%) (%%)5.1 Specification==257 +The address of the dissolved oxygen sensor is 15 713 713 714 -* **Measuring range**: 0.1~1000.0NTU 715 -* **Accuracy**: ±5% 716 -* **Resolution**: 0.1NTU 717 -* **Stability**: ≤3mV/24 hours 718 -* **Output signal**: A: 4~20 mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01) 719 -* **Power supply voltage**: 5~24V DC (when output signal is RS485)12~24V DC (when output signal is 4~20mA) 720 -* **Working environment**: temperature 0~60℃; humidity ≤95%RH 721 -* **Power consumption**: ≤0.5W 722 - 723 -== 5.2 wiring == 724 - 725 -[[image:image-20240720172640-5.png||height="387" width="635"]] 726 - 727 - 728 -== 5.3 Impedance requirements for current signals == 729 - 730 -[[image:image-20240718195414-8.png||height="100" width="575"]] 731 - 732 - 733 -== 5.4 Mechinical Drawing == 734 - 735 -[[image:image-20240718195058-7.png||height="305" width="593"]] 736 - 737 - 738 -== 5.5 Instructions for use and maintenance == 739 - 740 -* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor. 741 -* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently. 742 - 743 -== 5.6 RS485 Commands == 744 - 745 - 746 -RS485 signaldefault address 0x15 747 -Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 748 - 749 -=== 5.6.1 Query address === 750 - 751 -send 752 - 753 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 754 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 755 -|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X50|(% style="width:70px" %)0X00|(% style="width:72px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4 756 - 757 -If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 758 - 759 - 760 -response 761 - 762 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %) 763 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 764 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 765 - 766 -=== 5.6.2 Change address === 767 - 768 -For example: Change the address of the sensor with address 1 to 2, master → slave 769 - 770 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 771 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 772 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 773 - 774 -If the sensor receives correctly, the data is returned along the original path. 775 -Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query. 776 - 777 -=== 5.6.3 Query data === 778 - 779 - 780 -Query the data (turbidity) of the sensor (address 15), host → slave 781 - 782 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 783 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 784 -|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X1E 785 - 786 -If the sensor receives correctly, the following data will be returned, slave → host 787 - 788 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 789 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 790 -|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0X9A|(% style="width:56px" %)0X09|(% style="width:56px" %)0X4C 791 - 792 792 The query data command is 15 03 00 00 00 01 87 1E 793 793 794 794 For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C 795 795 796 796 02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU 264 + 265 +
- image-20240718190121-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -281.1 KB - Content
- image-20240718190204-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -111.8 KB - Content
- image-20240718190221-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -140.2 KB - Content
- image-20240718190249-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -111.6 KB - Content
- image-20240718191336-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.6 KB - Content
- image-20240718191348-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -91.2 KB - Content
- image-20240718195058-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -97.6 KB - Content
- image-20240718195414-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -13.5 KB - Content
- image-20240719155308-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -57.4 KB - Content
- image-20240720172533-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.5 MB - Content
- image-20240720172548-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.5 MB - Content
- image-20240720172620-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.5 MB - Content
- image-20240720172632-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.5 MB - Content
- image-20240720172640-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.5 MB - Content