Changes for page Water Quality Sensors
Last modified by Karry Zhuang on 2025/07/25 09:38
From version 45.48
edited by Xiaoling
on 2024/08/06 13:55
on 2024/08/06 13:55
Change comment:
There is no comment for this version
To version 25.1
edited by Karry Zhuang
on 2024/07/18 19:13
on 2024/07/18 19:13
Change comment:
Uploaded new attachment "image-20240718191348-6.png", version {1}
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 8 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.karry - Content
-
... ... @@ -3,13 +3,10 @@ 3 3 {{toc/}} 4 4 5 5 6 - 7 - 8 8 = 1. DR-ECK Water EC Probe = 9 9 10 10 == 1.1 Specification: == 11 11 12 - 13 13 * **Power Input**: DC7~~30 14 14 * **Power Consumption** : < 0.5W 15 15 * **Interface**: RS485. 9600 Baud Rate ... ... @@ -26,7 +26,6 @@ 26 26 27 27 == 1.2 Application for Different Range == 28 28 29 - 30 30 [[image:image-20240714173018-1.png]] 31 31 32 32 ... ... @@ -33,12 +33,8 @@ 33 33 == 1.3 Wiring == 34 34 35 35 36 -[[image:image-20240720172533-1.png||height="347" width="569"]] 37 - 38 - 39 39 == 1.4 Mechinical Drawing == 40 40 41 - 42 42 [[image:image-20240714174241-2.png]] 43 43 44 44 ... ... @@ -45,19 +45,19 @@ 45 45 == 1.5 Installation == 46 46 47 47 48 -**Electrode installation form :**40 +**Electrode installation form** 49 49 50 -A: 42 +A:Side wall installation 51 51 52 -B: 44 +B:Top flange installation 53 53 54 -C: 46 +C:Pipeline bend installation 55 55 56 -D: 48 +D:Pipeline bend installation 57 57 58 -E: 50 +E:Flow-through installation 59 59 60 -F: 52 +F:Submerged installation 61 61 62 62 [[image:image-20240718190121-1.png||height="350" width="520"]] 63 63 ... ... @@ -69,11 +69,11 @@ 69 69 70 70 [[image:image-20240718190204-2.png||height="262" width="487"]] 71 71 72 - **Error cause:**The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error.64 +Error cause: The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error. 73 73 74 74 [[image:image-20240718190221-3.png||height="292" width="500"]] 75 75 76 - **Error cause:**Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes.68 +Error cause: Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes. 77 77 78 78 B. Correct installation method 79 79 ... ... @@ -80,13 +80,20 @@ 80 80 [[image:image-20240718190249-4.png||height="287" width="515"]] 81 81 82 82 83 -== 1.6 Maint enance==75 +== 1.6 Maintain == 84 84 85 85 86 -* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible. 87 -* If the electrode is not used for a long time, it can generally be stored in a dry place, but it must be placed (stored) in distilled water for several hours before use to activate the electrode. Electrodes that are frequently used can be placed (stored) in distilled water. 88 -* Cleaning of conductivity electrodes: Organic stains on the electrode can be cleaned with warm water containing detergent, or with alcohol. Calcium and magnesium precipitates are best cleaned with 10% citric acid. The electrode plate or pole can only be cleaned by chemical methods or by shaking in water. Wiping the electrode plate will damage the coating (platinum black) on the electrode surface. 89 -* The equipment should be calibrated before each use. It is recommended to calibrate it every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). 78 +* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible! 79 +* There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use. 80 +* Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water. 81 +* The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective. 82 +* Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response. 83 +* The electrode should be cleaned with deionized water before and after measurement to ensure accuracy. 84 +* After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance. 85 +* Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. 86 +* ((( 87 +The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 88 +))) 90 90 91 91 == 1.7 RS485 Commands == 92 92 ... ... @@ -97,98 +97,70 @@ 97 97 98 98 === 1.7.1 Query address === 99 99 99 +send 100 100 101 -**send:** 101 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 102 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 103 +|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4 102 102 103 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 104 -|=(% style="width: 74.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 high 105 -|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:50px" %)0X00|(% style="width:42px" %)0X50|(% style="width:42px" %)0X00|(% style="width:42px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4 106 - 107 107 If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 108 108 109 109 110 - **response:**108 +response 111 111 112 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:51 2px" %)113 -|=(% style="width: 100px;background-color:#4F81BD;color:white" %)New address|=(% style="width:110px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high114 -|(% style="width:99px" %)0X 01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0110 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %) 111 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 112 +|(% style="width:99px" %)0X1|(% style="width:112px" %)0X3|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 115 115 116 116 === 1.7.2 Change address === 117 117 118 - 119 119 For example: Change the address of the sensor with address 1 to 2, master → slave 120 120 121 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:5 18px" %)122 -|=(% style="width: 74.75px;rgb(79, 129, 189);;" %)Original address|=(% style="width:64.75px;rgb(79, 129, 189);;" %)Function code|=(% style="width:64.75px;rgb(79, 129, 189);;" %)Address high|=(% style="width:64.75px;rgb(79, 129, 189);;" %)Address low|=(% style="width:64.75px;rgb(79, 129, 189);;" %)Quantity high|=(% style="width:64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 59.75px;rgb(79, 129, 189);;" %)CRC16 low|=(% style="width: 59.75px;rgb(79, 129, 189);;" %)CRC16 high123 -|(% style="width: 67px" %)0X01|(% style="width:76px" %)0X06|(% style="width:60px" %)0X00|(% style="width:50px" %)0X50|(% style="width:50px" %)0X00|(% style="width:50px" %)0X02|(% style="width:57px" %)0X08|(% style="width:56px" %)0X1A118 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 119 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 120 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 124 124 125 125 If the sensor receives correctly, the data is returned along the original path. 123 +Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query. 126 126 127 -(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.** 128 128 129 - 130 130 === 1.7.3 Modify intercept === 131 131 132 132 133 - **send:**129 +send 134 134 135 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 512px" %)136 -|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width:64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width:64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width:64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width:64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width:64px;background-color:#4F81BD;color:white" %)CRC16 high137 -|(% style="width: 64px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)(((138 -0X 07131 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 132 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 133 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XFA|(% style="width:1px" %)((( 134 +0X97 139 139 ))) 140 140 141 141 Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command. 142 142 143 - **response:**139 +response 144 144 145 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 512px" %)146 -|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width:64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width:64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width:64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width:64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width:64px;background-color:#4F81BD;color:white" %)CRC16 high141 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 142 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 147 147 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 148 148 0X02 149 -)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X 38|(% style="width:1px" %)(((150 -0X 8F145 +)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X0A|(% style="width:1px" %)((( 146 +0XE5 151 151 ))) 152 152 153 153 === 1.7.4 Query data === 154 154 155 - 156 -Query the data (EC,temperature) of the sensor (address 11), host → slave 157 - 158 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 159 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 160 -|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0X9B 161 - 162 -If the sensor receives correctly, the following data will be returned, slave → host 163 - 164 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 165 -|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 166 -|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0X8B|(% style="width:56px" %)0XD0 167 - 168 168 The address of the EC K10 sensor is 11 169 169 170 170 The query data command is 11 03 00 00 00 02 C6 9B 171 171 172 - **For example**, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686, K=10, EC: 6860uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.155 +For example, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686, K=10, EC: 6860uS/cm 173 173 174 174 175 -Query the data (EC,temperature) of the sensor (address 11), host → slave 176 - 177 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 178 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 179 -|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XA8 180 - 181 -If the sensor receives correctly, the following data will be returned, slave → host 182 - 183 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 184 -|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 185 -|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0XB8|(% style="width:56px" %)0XD0 186 - 187 187 The address of the EC K1 sensor is 12 188 188 189 189 The query data command is 12 03 00 00 00 02 C6 A8 190 190 191 - **For example**, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686, K=1, EC: 686uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.162 +For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686, K=1, EC: 686uS/cm 192 192 193 193 194 194 === 1.7.5 Calibration Method === ... ... @@ -196,185 +196,58 @@ 196 196 197 197 This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution. 198 198 199 - **The calibration steps are as follows:**170 +The calibration steps are as follows: 200 200 (1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable. 201 201 202 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:5 18px" %)203 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high173 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 174 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 204 204 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 205 205 0X00 177 + 206 206 0X00 179 + 207 207 0X37 181 + 208 208 0X32 209 209 )))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC 210 210 211 211 1413*10 gives 0X00003732 212 212 213 - **response:**187 +response 214 214 215 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:5 18px" %)216 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width:68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width:68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width:68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width:68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width:68px;background-color:#4F81BD;color:white" %)CRC16 high189 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 190 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 217 217 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0 218 218 219 219 (2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command 220 220 221 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:5 18px" %)222 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high195 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 196 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 223 223 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 224 224 0X00 199 + 225 225 0X01 201 + 226 226 0XF7 203 + 227 227 0X20 228 228 )))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75 229 229 230 230 12880*10 gives 0X01F720 231 231 232 -**response:** 233 - 234 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 235 -|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high 236 -|(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50 237 - 238 - 239 -= 2. DR-PH01 Water PH Sensor = 240 - 241 -== 2.1 Specification == 242 - 243 - 244 -* **Power Input**: DC7~~30 245 -* **Power Consumption** : < 0.5W 246 -* **Interface**: RS485. 9600 Baud Rate 247 -* **pH measurement range**: 0~~14.00pH; resolution: 0.01pH 248 -* **pH measurement error**:±0.15pH 249 -* **Repeatability error**:±0.02pH 250 -* **Temperature measurement range**:0~~60℃; resolution: 0.1℃ (set temperature for manual temperature compensation, default 25℃) 251 -* **Temperature measurement error**: ±0.5℃ 252 -* **Temperature Measure Range**: -20 ~~ 60 °C 253 -* **Temperature Accuracy: **±0.5 °C 254 -* **IP Rated**: IP68 255 -* **Max Pressure**: 0.6MPa 256 - 257 -== 2.2 Wiring == 258 - 259 -[[image:image-20240720172548-2.png||height="348" width="571"]] 260 - 261 - 262 -== (% style="color:inherit; font-family:inherit" %)2.3 (% style="color:inherit; font-family:inherit; font-size:26px" %)Mechinical Drawing(%%) == 263 - 264 -[[image:image-20240714174241-2.png]] 265 - 266 - 267 -== 2.4 Installation Notice == 268 - 269 -Do not power on while connect the cables. Double check the wiring before power on. 270 - 271 -Installation Photo as reference: 272 - 273 -**~ Submerged installation:** 274 - 275 -The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded. 276 - 277 -[[image:image-20240718191348-6.png]] 278 - 279 -**~ Pipeline installation:** 280 - 281 -Connect the equipment to the pipeline through the 3/4 thread. 282 - 283 -[[image:image-20240718191336-5.png||height="239" width="326"]] 284 - 285 -**Sampling:** 286 - 287 -Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it. 288 - 289 -**Measure the pH of the water sample:** 290 - 291 -First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable. 292 - 293 - 294 -== 2.5 Maintenance == 295 - 296 - 297 -* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible! 298 -* There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use. 299 -* Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water. 300 -* The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective. 301 -* Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response. 302 -* The electrode should be cleaned with deionized water before and after measurement to ensure accuracy. 303 -* After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance. 304 -* Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. 305 -* ((( 306 -The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 307 -))) 308 - 309 -== 2.6 RS485 Commands == 310 - 311 -RS485 signaldefault address 0x10 312 -Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 313 - 314 -=== 2.6.1 Query address === 315 - 316 -send 317 - 318 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 319 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 320 -|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4 321 - 322 322 response 323 323 324 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %) 325 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 326 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 327 - 328 -=== 2.6.2 Change address === 329 - 330 -For example: Change the address of the sensor with address 1 to 2, master → slave 331 - 332 332 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 333 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 334 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 335 - 336 -If the sensor receives correctly, the data is returned along the original path. 337 -Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query. 338 - 339 - 340 -=== 2.6.3 Modify intercept === 341 - 342 - 343 -send 344 - 345 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:570.333px" %) 346 -|=(% style="width: 71px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 74px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 69px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 57px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 57px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 347 -|(% style="width:71px" %)0X10|(% style="width:74px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X10|(% style="width:69px" %)0X00|(% style="width:66px" %)0X64|(% style="width:57px" %)0X8A|(% style="width:57px" %)((( 348 -0XA5 349 -))) 350 - 351 -Change the intercept of the sensor at address 10 to 1 (default is 0). You need to pass the intercept 1*100 =100 into the command 0x006. 352 - 353 -response 354 - 355 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 356 356 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 357 -|(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 358 -0X00 359 -)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)((( 360 -0XA5 361 -))) 213 +|(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50 362 362 363 -= ==2.6.4 Querydata===215 += 2. DR-PH01 Water PH Sensor = 364 364 217 +== 2.7 RS485 Commands == 365 365 366 -Query the data (PH) of the sensor (address 10), host → slave 367 367 368 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 369 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 370 -|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X4B 220 +The address of the pH sensor is 10 371 371 372 -If the sensor receives correctly, the following data will be returned, slave → host 373 - 374 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 375 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 376 -|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0XC4|(% style="width:56px" %)0X9B 377 - 378 378 The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned. 379 379 380 380 For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B. ... ... @@ -382,177 +382,13 @@ 382 382 02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86. 383 383 384 384 385 -=== 2.6.5 Calibration Method === 386 - 387 - 388 -This device uses three-point calibration, and three known pH standard solutions need to be prepared. 389 -The calibration steps are as follows: 390 -(1) Place the electrode in distilled water to clean it, and then place it in 9.18 standard buffer solution. After the data stabilizes, enter the following calibration command, and the 9.18 calibration is completed. 391 - 392 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %) 393 -|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 394 -|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 395 -0X00 396 -)))|(% style="width:68px" %)0X20|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X8A|(% style="width:55px" %)((( 397 -0XF1 398 -))) 399 - 400 -(2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed. 401 - 402 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %) 403 -|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 404 -|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 405 -0X00 406 -)))|(% style="width:68px" %)0X21|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XDB|(% style="width:55px" %)((( 407 -0X31 408 -))) 409 - 410 -(3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed. 411 - 412 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %) 413 -|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 414 -|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 415 -0X00 416 -)))|(% style="width:68px" %)0X22|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X2B|(% style="width:55px" %)((( 417 -0X31 418 -))) 419 - 420 -After the above three steps are completed, the calibration is successful. The advantage of three-point calibration compared to two-point calibration is that the electrode is calibrated separately in the acid and alkali parts, thereby achieving accurate calibration of the full range and making the measurement data more accurate. 421 - 422 - 423 423 = 3. DR-ORP1 Water ORP Sensor = 424 424 231 +== 3.7 RS485 Commands == 425 425 426 -== 3.1 Specification == 427 427 428 -* **Power Input**: DC7~~30 429 -* **Measuring range**:** **-1999~~1999mV 430 -**Resolution**: 1mV 431 -* **Interface**: RS485. 9600 Baud Rate 432 -* **Measurement error**: ±3mV 433 -* **Stability**: ≤2mv/24 hours 434 -* **Equipment working conditions**: Ambient temperature: 0-60℃ Relative humidity: <85%RH 435 -* **IP Rated**: IP68 436 -* **Max Pressure**: 0.6MPa 234 +The address of the ORP sensor is 13 437 437 438 -== 3.2 Wiring == 439 - 440 -[[image:image-20240720172620-3.png||height="378" width="620"]] 441 - 442 - 443 -== 3.3 Mechinical Drawing == 444 - 445 -[[image:image-20240714174241-2.png]] 446 - 447 -== 3.4 Installation Notice == 448 - 449 -Do not power on while connect the cables. Double check the wiring before power on. 450 - 451 -Installation Photo as reference: 452 - 453 -**~ Submerged installation:** 454 - 455 -The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded. 456 - 457 -[[image:image-20240718191348-6.png]] 458 - 459 -**~ Pipeline installation:** 460 - 461 -Connect the equipment to the pipeline through the 3/4 thread. 462 - 463 -[[image:image-20240718191336-5.png||height="239" width="326"]] 464 - 465 - 466 -== 3.5 Maintenance == 467 - 468 - 469 -(1) The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible. 470 - 471 -(2) In general, ORP electrodes do not need to be calibrated and can be used directly. When there is doubt about the quality and test results of the ORP electrode, the electrode potential can be checked with an ORP standard solution to determine whether the ORP electrode meets the measurement requirements, and the electrode can be recalibrated or replaced with a new ORP electrode. The frequency of calibration or inspection of the measuring electrode depends on different application conditions (the degree of dirt in the application, the deposition of chemical substances, etc.). 472 - 473 -(3) There is an appropriate soaking solution in the protective bottle at the front end of the electrode, and the electrode head is soaked in it to ensure the activation of the platinum sheet and the liquid junction. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use. 474 - 475 -(4) Preparation of electrode soaking solution: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water to prepare a 3.3M potassium chloride solution. 476 - 477 -(5) Before measuring, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response. 478 - 479 -(6) The electrode should be cleaned with deionized water before and after the measurement to ensure the measurement accuracy. 480 - 481 -(7) After long-term use, the ORP electrode will be passivated, which is manifested as a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the platinum sheet at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance. 482 - 483 -(8) Electrode contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. If the platinum of the electrode is severely contaminated and an oxide film is formed, toothpaste can be applied to the platinum surface and then gently scrubbed to restore the platinum's luster. 484 - 485 -(9) The equipment should be calibrated before each use. It is recommended to calibrate once every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 486 - 487 -== 3.6 RS485 Commands == 488 - 489 - 490 -RS485 signaldefault address 0x13 491 -Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 492 - 493 -=== 3.6.1 Query address === 494 - 495 -send 496 - 497 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 498 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 499 -|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4 500 - 501 -response 502 - 503 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %) 504 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 505 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 506 - 507 -=== 3.6.2 Change address === 508 - 509 -For example: Change the address of the sensor with address 1 to 2, master → slave 510 - 511 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 512 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 513 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 514 - 515 -If the sensor receives correctly, the data is returned along the original path. 516 -Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query. 517 - 518 - 519 -=== 3.6.3 Modify intercept === 520 - 521 -send 522 - 523 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 524 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 69px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 525 -|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)((( 526 -0X96 527 -))) 528 - 529 -Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command. 530 - 531 -response 532 - 533 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 534 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 535 -|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 536 -0X00 537 -)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)((( 538 -0X96 539 -))) 540 - 541 -=== 3.6.4 Query data === 542 - 543 - 544 -Query the data (ORP) of the sensor (address 13), host → slave 545 - 546 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 547 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 548 -|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X78 549 - 550 -If the sensor receives correctly, the following data will be returned, slave → host 551 - 552 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 553 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 554 -|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X80|(% style="width:56px" %)0X9B 555 - 556 556 The query data command is 13 03 00 00 00 01 87 78 557 557 558 558 For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B. ... ... @@ -560,229 +560,30 @@ 560 560 02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV 561 561 562 562 563 -=== 3.6.5 Calibration Method === 564 - 565 -This device uses two-point calibration, and two known ORP standard solutions need to be prepared. The calibration steps are as follows: 566 -(1) Place the electrode in distilled water to clean it, and then place it in 86mV standard buffer solution. After the data stabilizes, 567 -enter the following calibration command, and the 86mV point calibration is completed; 568 - 569 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %) 570 -|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 571 -|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 572 -0X00 573 -)))|(% style="width:68px" %)0X24|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XCB|(% style="width:55px" %)((( 574 -0X03 575 -))) 576 - 577 -Wash the electrode in distilled water and place it in 256mV standard buffer. After the data is stable, enter the following calibration command to complete the 256mV point calibration. 578 - 579 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %) 580 -|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 581 -|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 582 -0X00 583 -)))|(% style="width:68px" %)0X25|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X9A|(% style="width:55px" %)((( 584 -0XC3 585 -))) 586 - 587 587 = 4. DR-DO1 Dissolved Oxygen Sensor = 588 588 245 +== 4.7 RS485 Commands == 589 589 590 590 591 - ==4.1 Specification==248 +The address of the dissolved oxygen sensor is 14 592 592 250 +The query data command is 14 03 00 14 00 01 C6 CB 593 593 594 -* **Measuring range**: 0-20mg/L, 0-50℃ 595 -* **Accuracy**: 3%, ±0.5℃ 596 -* **Resolution**: 0.01 mg/L, 0.01℃ 597 -* **Maximum operating pressure**: 6 bar 598 -* **Output signal**: A: 4-20mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01) 599 -* **Power supply voltage**: 5-24V DC 600 -* **Working environment**: temperature 0-60℃; humidity <95%RH 601 -* **Power consumption**: ≤0.5W 602 - 603 -== 4.2 wiring == 604 - 605 -[[image:image-20240720172632-4.png||height="390" width="640"]] 606 - 607 - 608 -== (% id="cke_bm_224234S" style="display:none" %) (%%)4.3 Impedance requirements for current signals == 609 - 610 -[[image:image-20240718195414-8.png||height="100" width="575"]] 611 - 612 - 613 -== 4.4 Mechinical Drawing == 614 - 615 - 616 -[[image:image-20240719155308-1.png||height="226" width="527"]] 617 - 618 - 619 -== 4.5 Instructions for use and maintenance == 620 - 621 -* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor. 622 -* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently. 623 - 624 -== 4.6 RS485 Commands == 625 - 626 -RS485 signaldefault address 0x14 627 -Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 628 - 629 -=== 4.6.1 Query address === 630 - 631 -send 632 - 633 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 634 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 635 -|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XF1|(% style="width:56px" %)0XD7 636 - 637 -If you forget the original address of the sensor, you can use the broadcast address 0XFF instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 638 - 639 - 640 -response 641 - 642 -Register 0 data high and register 0 data low indicate the actual address of the sensor: 1 643 -Register 1 data high and register 1 data low indicate the sensor version 644 - 645 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 646 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 647 -|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X04|(% style="width:68px" %)0X00|(% style="width:70px" %)0X01|(% style="width:72px" %)0X00|(% style="width:56px" %)0X00|(% style="width:56px" %)0XB4|(% style="width:56px" %)0X3C 648 - 649 -=== 4.6.2 Change address === 650 - 651 -For example: Change the address of the sensor with address 1 to 2(address range: 1-119), master → slave 652 - 653 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:907.333px" %) 654 -|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 71px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low 655 -|(% style="width:67px" %)0X01|(% style="width:71px" %)0X10|(% style="width:65px" %)0X00|(% style="width:65px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X04|(% style="width:53px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X00|(% style="width:53px" %)0X00|(% style="width:56px" %)0XD2|(% style="width:53px" %)0X10 656 - 657 -response 658 - 659 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 660 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 661 -|(% style="width:99px" %)0X01|(% style="width:72px" %)0X10|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0X61|(% style="width:56px" %)0XCA 662 - 663 -=== 4.6.3 Query data === 664 - 665 - 666 -Query the data (dissolved oxygen) of the sensor (address 14), host → slave 667 - 668 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 669 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 670 -|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X14|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XCB 671 - 672 -If the sensor receives correctly, the following data will be returned, slave → host 673 - 674 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 675 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 676 -|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X03|(% style="width:72px" %)0X78|(% style="width:56px" %)0XB5|(% style="width:56px" %)0X55 677 - 678 678 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen. 679 679 680 680 Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L 681 681 682 682 683 -Query the data (temperature) of the sensor (address 14), host → slave 684 - 685 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 686 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 687 -|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X11|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XD6|(% style="width:56px" %)0XCA 688 - 689 -If the sensor receives correctly, the following data will be returned, slave → host 690 - 691 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 692 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 693 -|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X09|(% style="width:72px" %)0XA4|(% style="width:56px" %)0XB2|(% style="width:56px" %)0X6C 694 - 695 -After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**09 A4**(%%) B2 6C. 03 78 is the value of dissolved oxygen temperature. 696 - 697 -Converted to decimal, it is 2468. Add two decimal places to get the actual value. 09 A4 means the current dissolved oxygen temperature is 24.68℃ 698 - 699 - 700 700 = 5. DR-TS1 Water Turbidity Sensor = 701 701 259 +== 5.7 RS485 Commands == 702 702 703 703 704 - ==(% id="cke_bm_81470S"style="display:none"%) (%%)5.1 Specification==262 +The address of the dissolved oxygen sensor is 15 705 705 706 -* **Measuring range**: 0.1~1000.0NTU 707 -* **Accuracy**: ±5% 708 -* **Resolution**: 0.1NTU 709 -* **Stability**: ≤3mV/24 hours 710 -* **Output signal**: A: 4~20 mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01) 711 -* **Power supply voltage**: 5~24V DC (when output signal is RS485)12~24V DC (when output signal is 4~20mA) 712 -* **Working environment**: temperature 0~60℃; humidity ≤95%RH 713 -* **Power consumption**: ≤0.5W 714 - 715 -== 5.2 wiring == 716 - 717 -[[image:image-20240720172640-5.png||height="387" width="635"]] 718 - 719 - 720 -== 5.3 Impedance requirements for current signals == 721 - 722 -[[image:image-20240718195414-8.png||height="100" width="575"]] 723 - 724 - 725 -== 5.4 Mechinical Drawing == 726 - 727 -[[image:image-20240718195058-7.png||height="305" width="593"]] 728 - 729 - 730 -== 5.5 Instructions for use and maintenance == 731 - 732 -* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor. 733 -* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently. 734 - 735 -== 5.6 RS485 Commands == 736 - 737 - 738 -RS485 signaldefault address 0x15 739 -Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 740 - 741 -=== 5.6.1 Query address === 742 - 743 -send 744 - 745 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 746 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 747 -|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X50|(% style="width:70px" %)0X00|(% style="width:72px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4 748 - 749 -If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 750 - 751 - 752 -response 753 - 754 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %) 755 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 756 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 757 - 758 -=== 5.6.2 Change address === 759 - 760 -For example: Change the address of the sensor with address 1 to 2, master → slave 761 - 762 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 763 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 764 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 765 - 766 -If the sensor receives correctly, the data is returned along the original path. 767 -Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query. 768 - 769 -=== 5.6.3 Query data === 770 - 771 - 772 -Query the data (turbidity) of the sensor (address 15), host → slave 773 - 774 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 775 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 776 -|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X1E 777 - 778 -If the sensor receives correctly, the following data will be returned, slave → host 779 - 780 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 781 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 782 -|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0X9A|(% style="width:56px" %)0X09|(% style="width:56px" %)0X4C 783 - 784 784 The query data command is 15 03 00 00 00 01 87 1E 785 785 786 786 For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C 787 787 788 788 02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU 269 +
- image-20240718195058-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -97.6 KB - Content
- image-20240718195414-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -13.5 KB - Content
- image-20240719155308-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -57.4 KB - Content
- image-20240720172533-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.5 MB - Content
- image-20240720172548-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.5 MB - Content
- image-20240720172620-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.5 MB - Content
- image-20240720172632-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.5 MB - Content
- image-20240720172640-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.5 MB - Content