Changes for page Water Quality Sensors
Last modified by Karry Zhuang on 2025/02/18 15:43
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -11,17 +11,25 @@ 11 11 12 12 13 13 * **Power Input**: DC7~~30 14 + 14 14 * **Power Consumption** : < 0.5W 16 + 15 15 * **Interface**: RS485. 9600 Baud Rate 18 + 16 16 * **EC Range & Resolution:** 17 17 ** **ECK0.01** : 0.02 ~~ 20 μS/cm 18 18 ** **ECK0.1**: 0.2 ~~ 200.0 μS/cm 19 19 ** **ECK1.0** : 2 ~~ 2,000 μS/cm Resolution: 1 μS/cm 20 20 ** **ECK10.0** : 20 ~~ 20,000 μS/cm Resolution: 10 μS/cm 24 + 21 21 * **EC Accuracy**: ±1% FS 26 + 22 22 * **Temperature Measure Range**: -20 ~~ 60 °C 28 + 23 23 * **Temperature Accuracy: **±0.5 °C 30 + 24 24 * **IP Rated**: IP68 32 + 25 25 * **Max Pressure**: 0.6MPa 26 26 27 27 ... ... @@ -85,11 +85,13 @@ 85 85 86 86 87 87 * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible. 96 + 88 88 * If the electrode is not used for a long time, it can generally be stored in a dry place, but it must be placed (stored) in distilled water for several hours before use to activate the electrode. Electrodes that are frequently used can be placed (stored) in distilled water. 98 + 89 89 * Cleaning of conductivity electrodes: Organic stains on the electrode can be cleaned with warm water containing detergent, or with alcohol. Calcium and magnesium precipitates are best cleaned with 10% citric acid. The electrode plate or pole can only be cleaned by chemical methods or by shaking in water. Wiping the electrode plate will damage the coating (platinum black) on the electrode surface. 100 + 90 90 * The equipment should be calibrated before each use. It is recommended to calibrate it every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). 91 91 92 - 93 93 == 1.7 RS485 Commands == 94 94 95 95 ... ... @@ -100,7 +100,7 @@ 100 100 === 1.7.1 Query address === 101 101 102 102 103 -**send** 113 +**send:** 104 104 105 105 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 106 106 |=(% style="width: 74.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 high ... ... @@ -109,13 +109,12 @@ 109 109 If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 110 110 111 111 112 -**response** 122 +**response:** 113 113 114 114 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %) 115 115 |=(% style="width: 100px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 110px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 116 116 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 117 117 118 - 119 119 === 1.7.2 Change address === 120 120 121 121 ... ... @@ -133,7 +133,7 @@ 133 133 === 1.7.3 Modify intercept === 134 134 135 135 136 -send 145 +**send:** 137 137 138 138 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %) 139 139 |=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high ... ... @@ -143,7 +143,7 @@ 143 143 144 144 Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command. 145 145 146 -response 155 +**response:** 147 147 148 148 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %) 149 149 |=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high ... ... @@ -172,7 +172,7 @@ 172 172 173 173 The query data command is 11 03 00 00 00 02 C6 9B 174 174 175 -For example, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686, K=10, EC: 6860uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10. 184 +**For example**, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686, K=10, EC: 6860uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10. 176 176 177 177 178 178 Query the data (EC,temperature) of the sensor (address 11), host → slave ... ... @@ -191,7 +191,7 @@ 191 191 192 192 The query data command is 12 03 00 00 00 02 C6 A8 193 193 194 -For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686, K=1, EC: 686uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10. 203 +**For example**, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686, K=1, EC: 686uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10. 195 195 196 196 197 197 === 1.7.5 Calibration Method === ... ... @@ -199,53 +199,46 @@ 199 199 200 200 This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution. 201 201 202 -The calibration steps are as follows: 211 +(% style="color:blue" %)**The calibration steps are as follows:** 212 + 203 203 (1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable. 204 204 205 205 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 206 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high216 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high 207 207 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 208 208 0X00 209 - 210 210 0X00 211 - 212 212 0X37 213 - 214 214 0X32 215 215 )))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC 216 216 217 217 1413*10 gives 0X00003732 218 218 219 -response 226 +**response:** 220 220 221 221 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 222 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width:50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width:50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 high229 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high 223 223 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0 224 224 225 225 (2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command 226 226 227 227 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 228 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high235 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high 229 229 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 230 230 0X00 231 - 232 232 0X01 233 - 234 234 0XF7 235 - 236 236 0X20 237 237 )))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75 238 238 239 239 12880*10 gives 0X01F720 240 240 241 -response 245 +**response:** 242 242 243 243 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 244 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width:50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width:50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 high248 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high 245 245 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50 246 246 247 - 248 - 249 249 = 2. DR-PH01 Water PH Sensor = 250 250 251 251 == 2.1 Specification == ... ... @@ -252,51 +252,65 @@ 252 252 253 253 254 254 * **Power Input**: DC7~~30 257 + 255 255 * **Power Consumption** : < 0.5W 259 + 256 256 * **Interface**: RS485. 9600 Baud Rate 261 + 257 257 * **pH measurement range**: 0~~14.00pH; resolution: 0.01pH 258 -* **pH measurement error**:±0.15pH 259 -* **Repeatability error**:±0.02pH 260 -* **Temperature measurement range**:0~~60℃; resolution: 0.1℃ (set temperature for manual temperature compensation, default 25℃) 261 -* **Temperature measurement error**: ±0.5℃ 263 + 264 +* **pH measurement error**: ±0.15pH 265 + 266 +* **Repeatability error**: ±0.02pH 267 + 268 +* **Temperature measurement range**:0~~60°C; resolution: 0.1°C (set temperature for manual temperature compensation, default 25°C) 269 + 270 +* **Temperature measurement error**: ±0.5°C 271 + 262 262 * **Temperature Measure Range**: -20 ~~ 60 °C 273 + 263 263 * **Temperature Accuracy: **±0.5 °C 275 + 264 264 * **IP Rated**: IP68 277 + 265 265 * **Max Pressure**: 0.6MPa 266 266 267 267 == 2.2 Wiring == 268 268 282 + 269 269 [[image:image-20240720172548-2.png||height="348" width="571"]] 270 270 271 271 272 -== (% style="color:inherit; font-family:inherit" %)2.3(% style="color:inherit; font-family:inherit; font-size:26px" %)Mechinical Drawing(%%)==286 +== 2.3 Mechinical Drawing == 273 273 288 + 274 274 [[image:image-20240714174241-2.png]] 275 275 276 276 277 277 == 2.4 Installation Notice == 278 278 294 + 279 279 Do not power on while connect the cables. Double check the wiring before power on. 280 280 281 281 Installation Photo as reference: 282 282 283 -** ~Submerged installation:**299 +(% style="color:blue" %)**Submerged installation:** 284 284 285 285 The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded. 286 286 287 287 [[image:image-20240718191348-6.png]] 288 288 289 -** ~Pipeline installation:**305 +(% style="color:blue" %)**Pipeline installation:** 290 290 291 291 Connect the equipment to the pipeline through the 3/4 thread. 292 292 293 293 [[image:image-20240718191336-5.png||height="239" width="326"]] 294 294 295 -**Sampling:** 311 +(% style="color:blue" %)**Sampling:** 296 296 297 297 Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it. 298 298 299 -**Measure the pH of the water sample:** 315 +(% style="color:blue" %)**Measure the pH of the water sample:** 300 300 301 301 First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable. 302 302 ... ... @@ -305,55 +305,67 @@ 305 305 306 306 307 307 * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible! 324 + 308 308 * There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use. 326 + 309 309 * Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water. 328 + 310 310 * The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective. 330 + 311 311 * Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response. 332 + 312 312 * The electrode should be cleaned with deionized water before and after measurement to ensure accuracy. 334 + 313 313 * After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance. 336 + 314 314 * Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. 315 -* ((( 316 -The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 317 -))) 318 318 339 +* The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 340 + 341 + 319 319 == 2.6 RS485 Commands == 320 320 344 + 321 321 RS485 signaldefault address 0x10 322 322 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 323 323 348 + 324 324 === 2.6.1 Query address === 325 325 326 -send 327 327 328 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 329 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 352 +**send:** 353 + 354 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 355 +|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high 330 330 |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4 331 331 332 -response 358 +**response:** 333 333 334 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:5 61.333px" %)335 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width:50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width:93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high360 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 361 +|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 336 336 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 337 337 338 338 === 2.6.2 Change address === 339 339 366 + 340 340 For example: Change the address of the sensor with address 1 to 2, master → slave 341 341 342 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 676.25px" %)343 -|=(% style="width: 5 0px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high369 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 370 +|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high 344 344 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 345 345 346 346 If the sensor receives correctly, the data is returned along the original path. 347 -Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query. 348 348 375 +(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.** 349 349 377 + 350 350 === 2.6.3 Modify intercept === 351 351 352 352 353 -send 381 +**send:** 354 354 355 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:5 70.333px" %)356 -|=(% style="width: 7 1px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width:74px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 69px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width:57px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width:57px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high383 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 384 +|=(% style="width: 44.75px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 357 357 |(% style="width:71px" %)0X10|(% style="width:74px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X10|(% style="width:69px" %)0X00|(% style="width:66px" %)0X64|(% style="width:57px" %)0X8A|(% style="width:57px" %)((( 358 358 0XA5 359 359 ))) ... ... @@ -360,10 +360,10 @@ 360 360 361 361 Change the intercept of the sensor at address 10 to 1 (default is 0). You need to pass the intercept 1*100 =100 into the command 0x006. 362 362 363 -response 391 +**response:** 364 364 365 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 676.25px" %)366 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width:50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width:50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 high393 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 394 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high 367 367 |(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 368 368 0X00 369 369 )))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)((( ... ... @@ -375,14 +375,14 @@ 375 375 376 376 Query the data (PH) of the sensor (address 10), host → slave 377 377 378 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:5 99.333px" %)379 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width:72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width:70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width:72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width:56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width:56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high406 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 407 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 380 380 |(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X4B 381 381 382 382 If the sensor receives correctly, the following data will be returned, slave → host 383 383 384 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; 99.333px" %)385 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width:68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width:68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width:56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width:56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high412 +(% border="1" cellspacing="3" style="background-color:#f2f2f2;width:518px" %) 413 +|=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 386 386 |(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0XC4|(% style="width:56px" %)0X9B 387 387 388 388 The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned. ... ... @@ -396,10 +396,12 @@ 396 396 397 397 398 398 This device uses three-point calibration, and three known pH standard solutions need to be prepared. 399 -The calibration steps are as follows: 427 + 428 +(% style="color:blue" %)**The calibration steps are as follows:** 429 + 400 400 (1) Place the electrode in distilled water to clean it, and then place it in 9.18 standard buffer solution. After the data stabilizes, enter the following calibration command, and the 9.18 calibration is completed. 401 401 402 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:5 75.333px" %)432 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 403 403 |=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 404 404 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 405 405 0X00 ... ... @@ -409,7 +409,7 @@ 409 409 410 410 (2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed. 411 411 412 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:5 75.333px" %)442 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 413 413 |=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 414 414 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 415 415 0X00 ... ... @@ -419,7 +419,7 @@ 419 419 420 420 (3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed. 421 421 422 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:5 75.333px" %)452 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 423 423 |=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 424 424 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 425 425 0X00 ... ... @@ -432,7 +432,6 @@ 432 432 433 433 = 3. DR-ORP1 Water ORP Sensor = 434 434 435 - 436 436 == 3.1 Specification == 437 437 438 438 * **Power Input**: DC7~~30