<
From version < 34.2 >
edited by Karry Zhuang
on 2024/07/19 16:31
To version < 32.2 >
edited by Karry Zhuang
on 2024/07/19 15:13
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -278,7 +278,7 @@
278 278  RS485 signaldefault address 0x10
279 279  Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
280 280  
281 -=== 2.6.1 Query address ===
281 +=== 2.6.1 Query data ===
282 282  
283 283  send
284 284  
... ... @@ -418,25 +418,17 @@
418 418  [[image:image-20240718191336-5.png||height="239" width="326"]]
419 419  
420 420  
421 -=== 3.5 Maintenance ===
421 +=== 6.3.5 Maintenance ===
422 422  
423 423  
424 424  (1) The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
425 -
426 426  (2) In general, ORP electrodes do not need to be calibrated and can be used directly. When there is doubt about the quality and test results of the ORP electrode, the electrode potential can be checked with an ORP standard solution to determine whether the ORP electrode meets the measurement requirements, and the electrode can be recalibrated or replaced with a new ORP electrode. The frequency of calibration or inspection of the measuring electrode depends on different application conditions (the degree of dirt in the application, the deposition of chemical substances, etc.).
427 -
428 428  (3) There is an appropriate soaking solution in the protective bottle at the front end of the electrode, and the electrode head is soaked in it to ensure the activation of the platinum sheet and the liquid junction. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
429 -
430 430  (4) Preparation of electrode soaking solution: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water to prepare a 3.3M potassium chloride solution.
431 -
432 432  (5) Before measuring, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
433 -
434 434  (6) The electrode should be cleaned with deionized water before and after the measurement to ensure the measurement accuracy.
435 -
436 436  (7) After long-term use, the ORP electrode will be passivated, which is manifested as a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the platinum sheet at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
437 -
438 438  (8) Electrode contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. If the platinum of the electrode is severely contaminated and an oxide film is formed, toothpaste can be applied to the platinum surface and then gently scrubbed to restore the platinum's luster.
439 -
440 440  (9) The equipment should be calibrated before each use. It is recommended to calibrate once every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
441 441  
442 442  == 3.6 RS485 Commands ==
... ... @@ -445,7 +445,7 @@
445 445  RS485 signaldefault address 0x13
446 446  Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
447 447  
448 -=== 3.6.1 Query address ===
440 +=== 3.6.1 Query data ===
449 449  
450 450  send
451 451  
... ... @@ -534,118 +534,6 @@
534 534  
535 535  == 4.1 Specification ==
536 536  
537 -
538 -* **Measuring range**: 0-20mg/L, 0-50℃
539 -* **Accuracy**: 3%, ±0.5℃
540 -* **Resolution**: 0.01 mg/L, 0.01℃
541 -* **Maximum operating pressure**: 6 bar
542 -* **Output signal**: A: 4-20mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01)
543 -* **Power supply voltage**: 5-24V DC
544 -* **Working environment**: temperature 0-60℃; humidity <95%RH
545 -* **Power consumption**: ≤0.5W
546 -
547 -== 4.2 wiring ==
548 -
549 -
550 -
551 -== (% id="cke_bm_224234S" style="display:none" %) (%%)4.3 Impedance requirements for current signals ==
552 -
553 -[[image:image-20240718195414-8.png||height="100" width="575"]]
554 -
555 -
556 -== 4.4 Mechinical Drawing ==
557 -
558 -
559 -[[image:image-20240719155308-1.png||height="226" width="527"]]
560 -
561 -
562 -=== 4.5 Instructions for use and maintenance ===
563 -
564 -* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
565 -* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
566 -
567 -== 4.6 RS485 Commands ==
568 -
569 -RS485 signaldefault address 0x14
570 -Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
571 -
572 -=== 4.6.1 Query address ===
573 -
574 -send
575 -
576 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
577 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
578 -|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XF1|(% style="width:56px" %)0XD7
579 -
580 -If you forget the original address of the sensor, you can use the broadcast address 0XFF instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
581 -
582 -
583 -response
584 -
585 -Register 0 data high and register 0 data low indicate the actual address of the sensor: 1
586 -Register 1 data high and register 1 data low indicate the sensor version
587 -
588 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
589 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
590 -|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X04|(% style="width:68px" %)0X00|(% style="width:70px" %)0X01|(% style="width:72px" %)0X00|(% style="width:56px" %)0X00|(% style="width:56px" %)0XB4|(% style="width:56px" %)0X3C
591 -
592 -=== 4.6.2 Change address ===
593 -
594 -For example: Change the address of the sensor with address 1 to 2(address range: 1-119), master → slave
595 -
596 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:907.333px" %)
597 -|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 71px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low
598 -|(% style="width:67px" %)0X01|(% style="width:71px" %)0X10|(% style="width:65px" %)0X00|(% style="width:65px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X04|(% style="width:53px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X00|(% style="width:53px" %)0X00|(% style="width:56px" %)0XD2|(% style="width:53px" %)0X10
599 -
600 -response
601 -
602 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
603 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
604 -|(% style="width:99px" %)0X01|(% style="width:72px" %)0X10|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0X61|(% style="width:56px" %)0XCA
605 -
606 -=== 4.6.3 Query data ===
607 -
608 -
609 -Query the data (dissolved oxygen) of the sensor (address 14), host → slave
610 -
611 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
612 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
613 -|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X14|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XCB
614 -
615 -If the sensor receives correctly, the following data will be returned, slave → host
616 -
617 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
618 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
619 -|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X03|(% style="width:72px" %)0X78|(% style="width:56px" %)0XB5|(% style="width:56px" %)0X55
620 -
621 -After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen.
622 -
623 -Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L
624 -
625 -
626 -Query the data (temperature) of the sensor (address 14), host → slave
627 -
628 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
629 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
630 -|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X11|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XD6|(% style="width:56px" %)0XCA
631 -
632 -If the sensor receives correctly, the following data will be returned, slave → host
633 -
634 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
635 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
636 -|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X09|(% style="width:72px" %)0XA4|(% style="width:56px" %)0XB2|(% style="width:56px" %)0X6C
637 -
638 -After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**09 A4**(%%) B2 6C. 03 78 is the value of dissolved oxygen temperature.
639 -
640 -Converted to decimal, it is 2468. Add two decimal places to get the actual value. 09 A4 means the current dissolved oxygen temperature is 24.68℃
641 -
642 -
643 -= 5. DR-TS1 Water Turbidity Sensor =
644 -
645 -
646 -
647 -== (% id="cke_bm_81470S" style="display:none" %) (%%)5.1 Specification ==
648 -
649 649  * **Measuring range**: 0.1~1000.0NTU
650 650  * **Accuracy**: ±5%
651 651  * **Resolution**: 0.1NTU
... ... @@ -655,44 +655,39 @@
655 655  * **Working environment**: temperature 0~60℃; humidity ≤95%RH
656 656  * **Power consumption**: ≤0.5W
657 657  
658 -== 5.2 wiring ==
538 +== 4.2 Impedance requirements for current signals ==
659 659  
660 -
661 -== 5.3 Impedance requirements for current signals ==
662 -
663 663  [[image:image-20240718195414-8.png||height="100" width="575"]]
664 664  
665 665  
666 -== 5.4 Mechinical Drawing ==
543 +== 4.3 wiring ==
667 667  
545 +== 4.4 Mechinical Drawing ==
546 +
668 668  [[image:image-20240718195058-7.png||height="305" width="593"]]
669 669  
670 670  
671 -=== 5.5 Instructions for use and maintenance ===
550 +=== 4.5 Instructions for use and maintenance ===
672 672  
673 673  * It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
674 674  * If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
675 675  
676 -== 5.6 RS485 Commands ==
555 +== 4.6 RS485 Commands ==
677 677  
678 -=== 4.6.1 Query address ===
557 +4.6.1
679 679  
680 -send
559 +The address of the dissolved oxygen sensor is 14
681 681  
682 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
683 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
684 -|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X50|(% style="width:70px" %)0X00|(% style="width:72px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
561 +The query data command is 14 03 00 14 00 01 C6 CB
685 685  
686 -If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
563 +After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen.
687 687  
565 +Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L
688 688  
689 -response
690 690  
691 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
692 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
693 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
568 += 5. DR-TS1 Water Turbidity Sensor =
694 694  
695 -=== 5.6.2 Query data ===
570 +== 5.7 RS485 Commands ==
696 696  
697 697  
698 698  The address of the dissolved oxygen sensor is 15
image-20240719155308-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.karry
Size
... ... @@ -1,1 +1,0 @@
1 -57.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0