Changes for page Water Quality Sensors

Last modified by Karry Zhuang on 2025/07/25 09:38

From version 27.1
edited by Karry Zhuang
on 2024/07/18 19:32
Change comment: There is no comment for this version
To version 45.63
edited by Xiaoling
on 2024/08/06 14:47
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.karry
1 +XWiki.Xiaoling
Content
... ... @@ -3,26 +3,39 @@
3 3  {{toc/}}
4 4  
5 5  
6 +
7 +
6 6  = 1. DR-ECK Water EC Probe =
7 7  
8 8  == 1.1 Specification: ==
9 9  
12 +
10 10  * **Power Input**: DC7~~30
14 +
11 11  * **Power Consumption** : < 0.5W
16 +
12 12  * **Interface**: RS485. 9600 Baud Rate
18 +
13 13  * **EC Range & Resolution:**
14 14  ** **ECK0.01** : 0.02 ~~ 20 μS/cm
15 15  ** **ECK0.1**: 0.2 ~~ 200.0 μS/cm
16 16  ** **ECK1.0** : 2 ~~ 2,000 μS/cm  Resolution: 1 μS/cm
17 17  ** **ECK10.0** : 20 ~~ 20,000 μS/cm  Resolution: 10 μS/cm
24 +
18 18  * **EC Accuracy**: ±1% FS
26 +
19 19  * **Temperature Measure Range**: -20 ~~ 60 °C
28 +
20 20  * **Temperature Accuracy: **±0.5 °C
30 +
21 21  * **IP Rated**: IP68
32 +
22 22  * **Max Pressure**: 0.6MPa
23 23  
35 +
24 24  == 1.2 Application for Different Range ==
25 25  
38 +
26 26  [[image:image-20240714173018-1.png]]
27 27  
28 28  
... ... @@ -29,8 +29,12 @@
29 29  == 1.3 Wiring ==
30 30  
31 31  
45 +[[image:image-20240720172533-1.png||height="347" width="569"]]
46 +
47 +
32 32  == 1.4 Mechinical Drawing ==
33 33  
50 +
34 34  [[image:image-20240714174241-2.png]]
35 35  
36 36  
... ... @@ -37,19 +37,19 @@
37 37  == 1.5 Installation ==
38 38  
39 39  
40 -**Electrode installation form**
57 +**Electrode installation form:**
41 41  
42 -A:Side wall installation
59 +A: Side wall installation
43 43  
44 -B:Top flange installation
61 +B: Top flange installation
45 45  
46 -C:Pipeline bend installation
63 +C: Pipeline bend installation
47 47  
48 -D:Pipeline bend installation
65 +D: Pipeline bend installation
49 49  
50 -E:Flow-through installation
67 +E: Flow-through installation
51 51  
52 -F:Submerged installation
69 +F: Submerged installation
53 53  
54 54  [[image:image-20240718190121-1.png||height="350" width="520"]]
55 55  
... ... @@ -61,11 +61,11 @@
61 61  
62 62  [[image:image-20240718190204-2.png||height="262" width="487"]]
63 63  
64 -Error cause: The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error.
81 +**Error cause:** The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error.
65 65  
66 66  [[image:image-20240718190221-3.png||height="292" width="500"]]
67 67  
68 -Error cause: Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes.
85 +**Error cause: **Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes.
69 69  
70 70  B. Correct installation method
71 71  
... ... @@ -72,7 +72,7 @@
72 72  [[image:image-20240718190249-4.png||height="287" width="515"]]
73 73  
74 74  
75 -== 1.6 Maintain ==
92 +== 1.6 Maintenance ==
76 76  
77 77  
78 78  * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
... ... @@ -89,50 +89,53 @@
89 89  
90 90  === 1.7.1 Query address ===
91 91  
92 -send
93 93  
94 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
95 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
96 -|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
110 +**send:**
97 97  
112 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
113 +|=(% style="width: 74.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 high
114 +|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:50px" %)0X00|(% style="width:42px" %)0X50|(% style="width:42px" %)0X00|(% style="width:42px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
115 +
98 98  If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
99 99  
100 100  
101 -response
119 +**response:**
102 102  
103 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
104 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
121 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
122 +|=(% style="width: 100px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 110px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
105 105  |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
106 106  
107 107  === 1.7.2 Change address ===
108 108  
127 +
109 109  For example: Change the address of the sensor with address 1 to 2, master → slave
110 110  
111 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
112 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
113 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
130 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
131 +|=(% style="width: 74.75px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
132 +|(% style="width:67px" %)0X01|(% style="width:76px" %)0X06|(% style="width:60px" %)0X00|(% style="width:50px" %)0X50|(% style="width:50px" %)0X00|(% style="width:50px" %)0X02|(% style="width:57px" %)0X08|(% style="width:56px" %)0X1A
114 114  
115 115  If the sensor receives correctly, the data is returned along the original path.
116 -Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
117 117  
136 +(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
118 118  
138 +
119 119  === 1.7.3 Modify intercept ===
120 120  
121 121  
122 -send
142 +**send:**
123 123  
124 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
125 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
126 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)(((
144 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
145 +|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
146 +|(% style="width:64px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)(((
127 127  0X07
128 128  )))
129 129  
130 130  Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
131 131  
132 -response
152 +**response:**
133 133  
134 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
135 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
154 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
155 +|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
136 136  |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
137 137  0X02
138 138  )))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X38|(% style="width:1px" %)(((
... ... @@ -141,18 +141,43 @@
141 141  
142 142  === 1.7.4 Query data ===
143 143  
164 +
165 +Query the data (EC,temperature) of the sensor (address 11), host → slave
166 +
167 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
168 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
169 +|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0X9B
170 +
171 +If the sensor receives correctly, the following data will be returned, slave → host
172 +
173 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
174 +|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
175 +|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0X8B|(% style="width:56px" %)0XD0
176 +
144 144  The address of the EC K10 sensor is 11
145 145  
146 146  The query data command is 11 03 00 00 00 02 C6 9B
147 147  
148 -For example, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm
181 +**For example**, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
149 149  
150 150  
184 +Query the data (EC,temperature) of the sensor (address 11), host → slave
185 +
186 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
187 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
188 +|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XA8
189 +
190 +If the sensor receives correctly, the following data will be returned, slave → host
191 +
192 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
193 +|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
194 +|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0XB8|(% style="width:56px" %)0XD0
195 +
151 151  The address of the EC K1 sensor is 12
152 152  
153 153  The query data command is 12 03 00 00 00 02 C6 A8
154 154  
155 -For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm
200 +**For example**, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
156 156  
157 157  
158 158  === 1.7.5 Calibration Method ===
... ... @@ -160,169 +160,190 @@
160 160  
161 161  This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution.
162 162  
163 -The calibration steps are as follows:
208 +(% style="color:blue" %)**The calibration steps are as follows:**
209 +
164 164  (1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable.
165 165  
166 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
167 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
212 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
213 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
168 168  |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
169 169  0X00
170 -
171 171  0X00
172 -
173 173  0X37
174 -
175 175  0X32
176 176  )))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC
177 177  
178 178  1413*10 gives 0X00003732
179 179  
180 -response
223 +**response:**
181 181  
182 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
183 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
225 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
226 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
184 184  |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0
185 185  
186 186  (2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command
187 187  
188 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
189 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
231 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
232 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
190 190  |(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
191 191  0X00
192 -
193 193  0X01
194 -
195 195  0XF7
196 -
197 197  0X20
198 198  )))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75
199 199  
200 200  12880*10 gives 0X01F720
201 201  
202 -response
242 +**response:**
203 203  
204 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
205 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
244 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
245 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
206 206  |(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50
207 207  
208 -
209 209  = 2. DR-PH01 Water PH Sensor =
210 210  
250 +== 2.1 Specification ==
211 211  
212 -== 2.1 Specification:[[Edit>>url:http://wiki.dragino.com/xwiki/bin/edit/Main/Water%20Quality%20Sensors/WebHome?section=2]] ==
213 213  
214 214  * **Power Input**: DC7~~30
254 +
215 215  * **Power Consumption** : < 0.5W
256 +
216 216  * **Interface**: RS485. 9600 Baud Rate
258 +
217 217  * **pH measurement range**: 0~~14.00pH; resolution: 0.01pH
218 -* **pH measurement error**:±0.15pH
219 -* **Repeatability error**:±0.02pH
220 -* **Temperature measurement range**:0~~60℃; resolution: 0.1℃ (set temperature for manual temperature compensation, default 25℃)
221 -* **Temperature measurement error**: ±0.5℃
260 +
261 +* **pH measurement error**: ±0.15pH
262 +
263 +* **Repeatability error**: ±0.02pH
264 +
265 +* **Temperature measurement range**:0~~60°C; resolution: 0.1°C (set temperature for manual temperature compensation, default 25°C)
266 +
267 +* **Temperature measurement error**: ±0.5°C
268 +
222 222  * **Temperature Measure Range**: -20 ~~ 60 °C
270 +
223 223  * **Temperature Accuracy: **±0.5 °C
272 +
224 224  * **IP Rated**: IP68
274 +
225 225  * **Max Pressure**: 0.6MPa
226 226  
227 227  == 2.2 Wiring ==
228 228  
229 229  
230 -== (% style="color:inherit; font-family:inherit" %)2.3 (% style="color:inherit; font-family:inherit; font-size:26px" %)Mechinical Drawing(%%) ==
280 +[[image:image-20240720172548-2.png||height="348" width="571"]]
231 231  
282 +
283 +== 2.3 Mechinical Drawing ==
284 +
285 +
232 232  [[image:image-20240714174241-2.png]]
233 233  
234 234  
235 235  == 2.4 Installation Notice ==
236 236  
291 +
237 237  Do not power on while connect the cables. Double check the wiring before power on.
238 238  
239 239  Installation Photo as reference:
240 240  
241 -**~ Submerged installation:**
296 +(% style="color:blue" %)**Submerged installation:**
242 242  
243 243  The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
244 244  
245 245  [[image:image-20240718191348-6.png]]
246 246  
247 -**~ Pipeline installation:**
302 +(% style="color:blue" %)**Pipeline installation:**
248 248  
249 249  Connect the equipment to the pipeline through the 3/4 thread.
250 250  
251 251  [[image:image-20240718191336-5.png||height="239" width="326"]]
252 252  
253 -**Sampling:**
308 +(% style="color:blue" %)**Sampling:**
254 254  
255 255  Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it.
256 256  
257 -**Measure the pH of the water sample:**
312 +(% style="color:blue" %)**Measure the pH of the water sample:**
258 258  
259 259  First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable.
260 260  
261 261  
262 -=== 2.5 Maintenance ===
317 +== 2.5 Maintenance ==
263 263  
264 264  
265 265  * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible!
321 +
266 266  * There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
323 +
267 267  * Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water.
325 +
268 268  * The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective.
327 +
269 269  * Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
329 +
270 270  * The electrode should be cleaned with deionized water before and after measurement to ensure accuracy.
331 +
271 271  * After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
333 +
272 272  * Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant.
273 -* (((
274 -The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
275 -)))
276 276  
336 +* The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
337 +
338 +
277 277  == 2.6 RS485 Commands ==
278 278  
341 +
279 279  RS485 signaldefault address 0x10
280 280  Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
281 281  
282 -=== 2.6.1 Query data ===
283 283  
284 -send
346 +=== 2.6.1 Query address ===
285 285  
286 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
287 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
348 +
349 +**send:**
350 +
351 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
352 +|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
288 288  |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
289 289  
290 -response
355 +**response:**
291 291  
292 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
293 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
357 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
358 +|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
294 294  |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
295 295  
296 -
297 297  === 2.6.2 Change address ===
298 298  
363 +
299 299  For example: Change the address of the sensor with address 1 to 2, master → slave
300 300  
301 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
302 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
366 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
367 +|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
303 303  |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
304 304  
305 305  If the sensor receives correctly, the data is returned along the original path.
306 -Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
307 307  
372 +(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
308 308  
374 +
309 309  === 2.6.3 Modify intercept ===
310 310  
311 311  
312 -send
378 +**send:**
313 313  
314 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
315 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
316 -|(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
380 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
381 +|=(% style="width: 44.75px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
382 +|(% style="width:71px" %)0X10|(% style="width:74px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X10|(% style="width:69px" %)0X00|(% style="width:66px" %)0X64|(% style="width:57px" %)0X8A|(% style="width:57px" %)(((
317 317  0XA5
318 318  )))
319 319  
320 -Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
386 +Change the intercept of the sensor at address 10 to 1 (default is 0). You need to pass the intercept 1*100 =100 into the command 0x006.
321 321  
322 -response
388 +**response:**
323 323  
324 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
325 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
390 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
391 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
326 326  |(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
327 327  0X00
328 328  )))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
... ... @@ -329,12 +329,21 @@
329 329  0XA5
330 330  )))
331 331  
332 -
333 333  === 2.6.4 Query data ===
334 334  
335 335  
336 -The address of the pH  sensor is 10
401 +Query the data (PH) of the sensor (address 10), host → slave
337 337  
403 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
404 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
405 +|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X4B
406 +
407 +If the sensor receives correctly, the following data will be returned, slave → host
408 +
409 +(% border="1" cellspacing="3" style="background-color:#f2f2f2;width:518px" %)
410 +|=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
411 +|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0XC4|(% style="width:56px" %)0X9B
412 +
338 338  The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned.
339 339  
340 340  For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B.
... ... @@ -346,10 +346,12 @@
346 346  
347 347  
348 348  This device uses three-point calibration, and three known pH standard solutions need to be prepared.
349 -The calibration steps are as follows:
424 +
425 +(% style="color:blue" %)**The calibration steps are as follows:**
426 +
350 350  (1) Place the electrode in distilled water to clean it, and then place it in 9.18 standard buffer solution. After the data stabilizes, enter the following calibration command, and the 9.18 calibration is completed.
351 351  
352 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
429 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
353 353  |=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
354 354  |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
355 355  0X00
... ... @@ -359,7 +359,7 @@
359 359  
360 360  (2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed.
361 361  
362 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
439 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
363 363  |=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
364 364  |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
365 365  0X00
... ... @@ -369,7 +369,7 @@
369 369  
370 370  (3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed.
371 371  
372 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
449 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
373 373  |=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
374 374  |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
375 375  0X00
... ... @@ -382,11 +382,136 @@
382 382  
383 383  = 3. DR-ORP1 Water ORP Sensor =
384 384  
385 -== 3.7 RS485 Commands ==
462 +== 3.1 Specification ==
386 386  
464 +* **Power Input**: DC7~~30
465 +* **Measuring range**:** **-1999~~1999mV
466 +**Resolution**: 1mV
467 +* **Interface**: RS485. 9600 Baud Rate
468 +* **Measurement error**: ±3mV
469 +* **Stability**: ≤2mv/24 hours
470 +* **Equipment working conditions**: Ambient temperature: 0-60℃ Relative humidity: <85%RH
471 +* **IP Rated**: IP68
472 +* **Max Pressure**: 0.6MPa
387 387  
388 -The address of the ORP sensor is 13
474 +== 3.2 Wiring ==
389 389  
476 +[[image:image-20240720172620-3.png||height="378" width="620"]]
477 +
478 +
479 +== 3.3 Mechinical Drawing ==
480 +
481 +[[image:image-20240714174241-2.png]]
482 +
483 +== 3.4 Installation Notice ==
484 +
485 +Do not power on while connect the cables. Double check the wiring before power on.
486 +
487 +Installation Photo as reference:
488 +
489 +**~ Submerged installation:**
490 +
491 +The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
492 +
493 +[[image:image-20240718191348-6.png]]
494 +
495 +**~ Pipeline installation:**
496 +
497 +Connect the equipment to the pipeline through the 3/4 thread.
498 +
499 +[[image:image-20240718191336-5.png||height="239" width="326"]]
500 +
501 +
502 +== 3.5 Maintenance ==
503 +
504 +
505 +(1) The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
506 +
507 +(2) In general, ORP electrodes do not need to be calibrated and can be used directly. When there is doubt about the quality and test results of the ORP electrode, the electrode potential can be checked with an ORP standard solution to determine whether the ORP electrode meets the measurement requirements, and the electrode can be recalibrated or replaced with a new ORP electrode. The frequency of calibration or inspection of the measuring electrode depends on different application conditions (the degree of dirt in the application, the deposition of chemical substances, etc.).
508 +
509 +(3) There is an appropriate soaking solution in the protective bottle at the front end of the electrode, and the electrode head is soaked in it to ensure the activation of the platinum sheet and the liquid junction. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
510 +
511 +(4) Preparation of electrode soaking solution: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water to prepare a 3.3M potassium chloride solution.
512 +
513 +(5) Before measuring, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
514 +
515 +(6) The electrode should be cleaned with deionized water before and after the measurement to ensure the measurement accuracy.
516 +
517 +(7) After long-term use, the ORP electrode will be passivated, which is manifested as a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the platinum sheet at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
518 +
519 +(8) Electrode contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. If the platinum of the electrode is severely contaminated and an oxide film is formed, toothpaste can be applied to the platinum surface and then gently scrubbed to restore the platinum's luster.
520 +
521 +(9) The equipment should be calibrated before each use. It is recommended to calibrate once every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
522 +
523 +== 3.6 RS485 Commands ==
524 +
525 +
526 +RS485 signaldefault address 0x13
527 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
528 +
529 +=== 3.6.1 Query address ===
530 +
531 +send
532 +
533 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
534 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
535 +|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
536 +
537 +response
538 +
539 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
540 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
541 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
542 +
543 +=== 3.6.2 Change address ===
544 +
545 +For example: Change the address of the sensor with address 1 to 2, master → slave
546 +
547 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
548 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
549 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
550 +
551 +If the sensor receives correctly, the data is returned along the original path.
552 +Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
553 +
554 +
555 +=== 3.6.3 Modify intercept ===
556 +
557 +send
558 +
559 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
560 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 69px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
561 +|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
562 +0X96
563 +)))
564 +
565 +Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
566 +
567 +response
568 +
569 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
570 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
571 +|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
572 +0X00
573 +)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
574 +0X96
575 +)))
576 +
577 +=== 3.6.4 Query data ===
578 +
579 +
580 +Query the data (ORP) of the sensor (address 13), host → slave
581 +
582 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
583 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
584 +|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X78
585 +
586 +If the sensor receives correctly, the following data will be returned, slave → host
587 +
588 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
589 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
590 +|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X80|(% style="width:56px" %)0X9B
591 +
390 390  The query data command is 13 03 00 00 00 01 87 78
391 391  
392 392  For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B.
... ... @@ -394,27 +394,227 @@
394 394  02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV
395 395  
396 396  
599 +=== 3.6.5 Calibration Method ===
600 +
601 +This device uses two-point calibration, and two known ORP standard solutions need to be prepared. The calibration steps are as follows:
602 +(1) Place the electrode in distilled water to clean it, and then place it in 86mV standard buffer solution. After the data stabilizes,
603 +enter the following calibration command, and the 86mV point calibration is completed;
604 +
605 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
606 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
607 +|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
608 +0X00
609 +)))|(% style="width:68px" %)0X24|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XCB|(% style="width:55px" %)(((
610 +0X03
611 +)))
612 +
613 +Wash the electrode in distilled water and place it in 256mV standard buffer. After the data is stable, enter the following calibration command to complete the 256mV point calibration.
614 +
615 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
616 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
617 +|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
618 +0X00
619 +)))|(% style="width:68px" %)0X25|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X9A|(% style="width:55px" %)(((
620 +0XC3
621 +)))
622 +
397 397  = 4. DR-DO1 Dissolved Oxygen Sensor =
398 398  
399 -== 4.7 RS485 Commands ==
400 400  
401 401  
402 -The address of the dissolved oxygen sensor is 14
627 +== 4.1 Specification ==
403 403  
404 -The query data command is 14 03 00 14 00 01 C6 CB
405 405  
630 +* **Measuring range**: 0-20mg/L, 0-50℃
631 +* **Accuracy**: 3%, ±0.5℃
632 +* **Resolution**: 0.01 mg/L, 0.01℃
633 +* **Maximum operating pressure**: 6 bar
634 +* **Output signal**: A: 4-20mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01)
635 +* **Power supply voltage**: 5-24V DC
636 +* **Working environment**: temperature 0-60℃; humidity <95%RH
637 +* **Power consumption**: ≤0.5W
638 +
639 +== 4.2 wiring ==
640 +
641 +[[image:image-20240720172632-4.png||height="390" width="640"]]
642 +
643 +
644 +== (% id="cke_bm_224234S" style="display:none" %) (%%)4.3 Impedance requirements for current signals ==
645 +
646 +[[image:image-20240718195414-8.png||height="100" width="575"]]
647 +
648 +
649 +== 4.4 Mechinical Drawing ==
650 +
651 +
652 +[[image:image-20240719155308-1.png||height="226" width="527"]]
653 +
654 +
655 +== 4.5 Instructions for use and maintenance ==
656 +
657 +* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
658 +* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
659 +
660 +== 4.6 RS485 Commands ==
661 +
662 +RS485 signaldefault address 0x14
663 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
664 +
665 +=== 4.6.1 Query address ===
666 +
667 +send
668 +
669 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
670 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
671 +|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XF1|(% style="width:56px" %)0XD7
672 +
673 +If you forget the original address of the sensor, you can use the broadcast address 0XFF instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
674 +
675 +
676 +response
677 +
678 +Register 0 data high and register 0 data low indicate the actual address of the sensor: 1
679 +Register 1 data high and register 1 data low indicate the sensor version
680 +
681 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
682 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
683 +|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X04|(% style="width:68px" %)0X00|(% style="width:70px" %)0X01|(% style="width:72px" %)0X00|(% style="width:56px" %)0X00|(% style="width:56px" %)0XB4|(% style="width:56px" %)0X3C
684 +
685 +=== 4.6.2 Change address ===
686 +
687 +For example: Change the address of the sensor with address 1 to 2(address range: 1-119), master → slave
688 +
689 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:907.333px" %)
690 +|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 71px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low
691 +|(% style="width:67px" %)0X01|(% style="width:71px" %)0X10|(% style="width:65px" %)0X00|(% style="width:65px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X04|(% style="width:53px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X00|(% style="width:53px" %)0X00|(% style="width:56px" %)0XD2|(% style="width:53px" %)0X10
692 +
693 +response
694 +
695 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
696 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
697 +|(% style="width:99px" %)0X01|(% style="width:72px" %)0X10|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0X61|(% style="width:56px" %)0XCA
698 +
699 +=== 4.6.3 Query data ===
700 +
701 +
702 +Query the data (dissolved oxygen) of the sensor (address 14), host → slave
703 +
704 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
705 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
706 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X14|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XCB
707 +
708 +If the sensor receives correctly, the following data will be returned, slave → host
709 +
710 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
711 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
712 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X03|(% style="width:72px" %)0X78|(% style="width:56px" %)0XB5|(% style="width:56px" %)0X55
713 +
406 406  After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen.
407 407  
408 408  Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L
409 409  
410 410  
719 +Query the data (temperature) of the sensor (address 14), host → slave
720 +
721 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
722 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
723 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X11|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XD6|(% style="width:56px" %)0XCA
724 +
725 +If the sensor receives correctly, the following data will be returned, slave → host
726 +
727 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
728 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
729 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X09|(% style="width:72px" %)0XA4|(% style="width:56px" %)0XB2|(% style="width:56px" %)0X6C
730 +
731 +After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**09 A4**(%%) B2 6C. 03 78 is the value of dissolved oxygen temperature.
732 +
733 +Converted to decimal, it is 2468. Add two decimal places to get the actual value. 09 A4 means the current dissolved oxygen temperature is 24.68℃
734 +
735 +
411 411  = 5. DR-TS1 Water Turbidity Sensor =
412 412  
413 -== 5.7 RS485 Commands ==
414 414  
415 415  
416 -The address of the dissolved oxygen sensor is 15
740 +== (% id="cke_bm_81470S" style="display:none" %) (%%)5.1 Specification ==
417 417  
742 +* **Measuring range**: 0.1~1000.0NTU
743 +* **Accuracy**: ±5%
744 +* **Resolution**: 0.1NTU
745 +* **Stability**: ≤3mV/24 hours
746 +* **Output signal**: A: 4~20 mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01)
747 +* **Power supply voltage**: 5~24V DC (when output signal is RS485)12~24V DC (when output signal is 4~20mA)
748 +* **Working environment**: temperature 0~60℃; humidity ≤95%RH
749 +* **Power consumption**: ≤0.5W
750 +
751 +== 5.2 wiring ==
752 +
753 +[[image:image-20240720172640-5.png||height="387" width="635"]]
754 +
755 +
756 +== 5.3 Impedance requirements for current signals ==
757 +
758 +[[image:image-20240718195414-8.png||height="100" width="575"]]
759 +
760 +
761 +== 5.4 Mechinical Drawing ==
762 +
763 +[[image:image-20240718195058-7.png||height="305" width="593"]]
764 +
765 +
766 +== 5.5 Instructions for use and maintenance ==
767 +
768 +* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
769 +* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
770 +
771 +== 5.6 RS485 Commands ==
772 +
773 +
774 +RS485 signaldefault address 0x15
775 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
776 +
777 +=== 5.6.1 Query address ===
778 +
779 +send
780 +
781 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
782 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
783 +|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X50|(% style="width:70px" %)0X00|(% style="width:72px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
784 +
785 +If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
786 +
787 +
788 +response
789 +
790 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
791 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
792 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
793 +
794 +=== 5.6.2 Change address ===
795 +
796 +For example: Change the address of the sensor with address 1 to 2, master → slave
797 +
798 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
799 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
800 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
801 +
802 +If the sensor receives correctly, the data is returned along the original path.
803 +Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
804 +
805 +=== 5.6.3 Query data ===
806 +
807 +
808 +Query the data (turbidity) of the sensor (address 15), host → slave
809 +
810 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
811 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
812 +|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X1E
813 +
814 +If the sensor receives correctly, the following data will be returned, slave → host
815 +
816 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
817 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
818 +|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0X9A|(% style="width:56px" %)0X09|(% style="width:56px" %)0X4C
819 +
418 418  The query data command is 15 03 00 00 00 01 87 1E
419 419  
420 420  For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C
image-20240718195058-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +97.6 KB
Content
image-20240718195414-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +13.5 KB
Content
image-20240719155308-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +57.4 KB
Content
image-20240720172533-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20240720172548-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20240720172620-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20240720172632-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20240720172640-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content