Changes for page Water Quality Sensors
Last modified by Karry Zhuang on 2025/02/18 15:43
From version 21.1
edited by Karry Zhuang
on 2024/07/18 19:02
on 2024/07/18 19:02
Change comment:
Uploaded new attachment "image-20240718190221-3.png", version {1}
To version 10.1
edited by Karry Zhuang
on 2024/07/18 12:01
on 2024/07/18 12:01
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 3 removed)
Details
- Page properties
-
- Content
-
... ... @@ -37,123 +37,16 @@ 37 37 == 1.5 Installation == 38 38 39 39 40 -**Electrode installation form** 41 - 42 -A:Side wall installation 43 - 44 -B:Top flange installation 45 - 46 -C:Pipeline bend installation 47 - 48 -D:Pipeline bend installation 49 - 50 -E:Flow-through installation 51 - 52 -F:Submerged installation 53 - 54 -[[image:image-20240716104537-2.png||height="475" width="706"]] 55 - 56 -**Several common installation methods of electrodes** 57 - 58 -When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation. 59 - 60 -A. Several common incorrect installation methods 61 - 62 -[[image:image-20240717103452-1.png||height="320" width="610"]] 63 - 64 -Error cause: The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error. 65 - 66 - 67 -[[image:image-20240716105124-4.png||height="326" width="569"]] 68 - 69 -Error cause: Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes. 70 - 71 -B. Correct installation method 72 - 73 -[[image:image-20240716105318-5.png||height="330" width="594"]] 74 - 75 - 76 76 == 1.6 Maintain == 77 77 78 78 79 -* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible! 80 -* There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use. 81 -* Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water. 82 -* The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective. 83 -* Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response. 84 -* The electrode should be cleaned with deionized water before and after measurement to ensure accuracy. 85 -* After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance. 86 -* Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. 87 -* ((( 88 -The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 89 -))) 90 - 91 91 == 1.7 RS485 Commands == 92 92 45 +The address of the EC K1 sensor is 11 93 93 94 -RS485 signal (K1 default address 0x12; K10 default address 0x11): 95 -Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 96 - 97 - 98 -=== 1.7.1 Query address === 99 - 100 -send 101 - 102 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 103 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 104 -|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4 105 - 106 -If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 107 - 108 - 109 -response 110 - 111 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %) 112 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 113 -|(% style="width:99px" %)0X1|(% style="width:112px" %)0X3|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 114 - 115 -=== 1.7.2 Change address === 116 - 117 -For example: Change the address of the sensor with address 1 to 2, master → slave 118 - 119 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 120 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 121 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 122 - 123 -If the sensor receives correctly, the data is returned along the original path. 124 -Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query. 125 - 126 - 127 -=== 1.7.3 Modify intercept === 128 - 129 - 130 -send 131 - 132 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 133 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 134 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XFA|(% style="width:1px" %)((( 135 -0X97 136 -))) 137 - 138 -Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command. 139 - 140 -response 141 - 142 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 143 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 144 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 145 -0X02 146 -)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X0A|(% style="width:1px" %)((( 147 -0XE5 148 -))) 149 - 150 -=== 1.7.4 Query data === 151 - 152 -The address of the EC K10 sensor is 11 153 - 154 154 The query data command is 11 03 00 00 00 02 C6 9B 155 155 156 -For example, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%)01 64 8B D0.02 AE is converted to decimal 686, K=10, EC: 6860uS/cm49 +For example, the returned data is 11 03 04 02 AE 01 64 8B D0, 02 AE is converted to decimal 686, K=1, EC: 686uS/cm 157 157 158 158 159 159 The address of the EC K1 sensor is 12 ... ... @@ -160,102 +160,39 @@ 160 160 161 161 The query data command is 12 03 00 00 00 02 C6 A8 162 162 163 - Forexample, thereturneddata is 12 03 04 (% style="color:red" %)**02 AE**(%%) 0164 B8 D0. 02 AE is converted to decimal 686,K=1,EC: 686uS/cm56 +~; when K=10, EC: 6860uS/cm. 164 164 165 - 166 -=== 1.7.5 Calibration Method === 167 - 168 - 169 -This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution. 170 - 171 -The calibration steps are as follows: 172 -(1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable. 173 - 174 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 175 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 176 -|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 177 -0X00 178 - 179 -0X00 180 - 181 -0X37 182 - 183 -0X32 184 -)))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC 185 - 186 -1413*10 gives 0X00003732 187 - 188 -response 189 - 190 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 191 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 192 -|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0 193 - 194 -(2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command 195 - 196 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 197 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 198 -|(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 199 -0X00 200 - 201 -0X01 202 - 203 -0XF7 204 - 205 -0X20 206 -)))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75 207 - 208 -12880*10 gives 0X01F720 209 - 210 -response 211 - 212 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 213 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 214 -|(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50 215 - 216 - 217 217 = 2. DR-PH01 Water PH Sensor = 218 218 219 219 == 2.7 RS485 Commands == 220 220 62 +The address of the dissolved oxygen sensor is 12 221 221 222 -The addressofthepH sensoris 1064 +The query data command is 14 03 00 14 00 01 C6 CB 223 223 224 -The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned. 225 225 226 -For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B. 227 - 228 -02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86. 229 - 230 - 231 231 = 3. DR-ORP1 Water ORP Sensor = 232 232 233 233 == 3.7 RS485 Commands == 234 234 235 235 236 -The address of the ORPsensor is 1372 +The address of the dissolved oxygen sensor is 13 237 237 238 -The query data command is 1 303 000000 01877874 +The query data command is 14 03 00 14 00 01 C6 CB 239 239 240 -For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B. 241 241 242 -02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV 243 - 244 - 245 245 = 4. DR-DO1 Dissolved Oxygen Sensor = 246 246 247 247 == 4.7 RS485 Commands == 248 248 249 - 250 250 The address of the dissolved oxygen sensor is 14 251 251 252 252 The query data command is 14 03 00 14 00 01 C6 CB 253 253 254 -After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%)B5 55. 03 78 is the value of dissolved oxygen.85 +After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 03 78 B5 55. 03 78 is the value of dissolved oxygen. 255 255 256 256 Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L 257 257 258 - 259 259 = 5. DR-TS1 Water Turbidity Sensor = 260 260 261 261 == 5.7 RS485 Commands == ... ... @@ -263,10 +263,6 @@ 263 263 264 264 The address of the dissolved oxygen sensor is 15 265 265 266 -The query data command is 15 03 00 0000 01871E96 +The query data command is 15 03 00 14 00 01 C6 CB 267 267 268 -For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C 269 - 270 -02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU 271 - 272 272
- image-20240718190121-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -281.1 KB - Content
- image-20240718190204-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -111.8 KB - Content
- image-20240718190221-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -140.2 KB - Content