Changes for page Water Quality Sensors
Last modified by Karry Zhuang on 2025/02/18 15:43
From version 20.1
edited by Karry Zhuang
on 2024/07/18 19:02
on 2024/07/18 19:02
Change comment:
Uploaded new attachment "image-20240718190204-2.png", version {1}
To version 14.1
edited by Karry Zhuang
on 2024/07/18 16:11
on 2024/07/18 16:11
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 2 removed)
Details
- Page properties
-
- Content
-
... ... @@ -37,118 +37,13 @@ 37 37 == 1.5 Installation == 38 38 39 39 40 -**Electrode installation form** 41 - 42 -A:Side wall installation 43 - 44 -B:Top flange installation 45 - 46 -C:Pipeline bend installation 47 - 48 -D:Pipeline bend installation 49 - 50 -E:Flow-through installation 51 - 52 -F:Submerged installation 53 - 54 -[[image:image-20240716104537-2.png||height="475" width="706"]] 55 - 56 -**Several common installation methods of electrodes** 57 - 58 -When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation. 59 - 60 -A. Several common incorrect installation methods 61 - 62 -[[image:image-20240717103452-1.png||height="320" width="610"]] 63 - 64 -Error cause: The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error. 65 - 66 - 67 -[[image:image-20240716105124-4.png||height="326" width="569"]] 68 - 69 -Error cause: Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes. 70 - 71 -B. Correct installation method 72 - 73 -[[image:image-20240716105318-5.png||height="330" width="594"]] 74 - 75 - 76 76 == 1.6 Maintain == 77 77 78 78 79 -* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible! 80 -* There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use. 81 -* Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water. 82 -* The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective. 83 -* Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response. 84 -* The electrode should be cleaned with deionized water before and after measurement to ensure accuracy. 85 -* After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance. 86 -* Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. 87 -* ((( 88 -The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 89 -))) 90 - 91 91 == 1.7 RS485 Commands == 92 92 45 +=== 1.7.1 Query data === 93 93 94 -RS485 signal (K1 default address 0x12; K10 default address 0x11): 95 -Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 96 - 97 - 98 -=== 1.7.1 Query address === 99 - 100 -send 101 - 102 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 103 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 104 -|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4 105 - 106 -If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 107 - 108 - 109 -response 110 - 111 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %) 112 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 113 -|(% style="width:99px" %)0X1|(% style="width:112px" %)0X3|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 114 - 115 -=== 1.7.2 Change address === 116 - 117 -For example: Change the address of the sensor with address 1 to 2, master → slave 118 - 119 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 120 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 121 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 122 - 123 -If the sensor receives correctly, the data is returned along the original path. 124 -Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query. 125 - 126 - 127 -=== 1.7.3 Modify intercept === 128 - 129 - 130 -send 131 - 132 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 133 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 134 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XFA|(% style="width:1px" %)((( 135 -0X97 136 -))) 137 - 138 -Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command. 139 - 140 -response 141 - 142 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 143 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 144 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 145 -0X02 146 -)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X0A|(% style="width:1px" %)((( 147 -0XE5 148 -))) 149 - 150 -=== 1.7.4 Query data === 151 - 152 152 The address of the EC K10 sensor is 11 153 153 154 154 The query data command is 11 03 00 00 00 02 C6 9B ... ... @@ -160,17 +160,15 @@ 160 160 161 161 The query data command is 12 03 00 00 00 02 C6 A8 162 162 163 -For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686, K=1, EC: 686uS/cm 58 +For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686, K=1, EC: 686uS/cm. 164 164 165 165 166 -=== 1.7. 5Calibration Method ===61 +=== 1.7.2 Calibration Method === 167 167 168 168 169 -This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution. 64 +This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413uS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution. The calibration steps are as follows: 65 +(1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413HS/cm standard solution, enter the following calibration command after the data is stable. 170 170 171 -The calibration steps are as follows: 172 -(1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable. 173 - 174 174 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 175 175 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 176 176 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( ... ... @@ -183,14 +183,13 @@ 183 183 0X32 184 184 )))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC 185 185 186 - 1413*10 gives 0X0000373279 +return 187 187 188 -response 189 - 190 190 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 191 191 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 192 192 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0 193 193 85 + 194 194 (2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command 195 195 196 196 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) ... ... @@ -205,15 +205,17 @@ 205 205 0X20 206 206 )))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75 207 207 208 - 12880*10 gives 0X01F720100 +Return 209 209 210 -response 211 - 212 212 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 213 213 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 214 214 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50 215 215 216 216 107 + 108 + 109 + 110 + 217 217 = 2. DR-PH01 Water PH Sensor = 218 218 219 219 == 2.7 RS485 Commands ==
- image-20240718190121-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -281.1 KB - Content
- image-20240718190204-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.karry - Size
-
... ... @@ -1,1 +1,0 @@ 1 -111.8 KB - Content