Changes for page Water Quality Sensors

Last modified by Karry Zhuang on 2025/07/25 09:38

From version 17.1
edited by Karry Zhuang
on 2024/07/18 18:58
Change comment: There is no comment for this version
To version 45.65
edited by Xiaoling
on 2024/08/06 14:48
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.karry
1 +XWiki.Xiaoling
Content
... ... @@ -3,26 +3,39 @@
3 3  {{toc/}}
4 4  
5 5  
6 +
7 +
6 6  = 1. DR-ECK Water EC Probe =
7 7  
8 8  == 1.1 Specification: ==
9 9  
12 +
10 10  * **Power Input**: DC7~~30
14 +
11 11  * **Power Consumption** : < 0.5W
16 +
12 12  * **Interface**: RS485. 9600 Baud Rate
18 +
13 13  * **EC Range & Resolution:**
14 14  ** **ECK0.01** : 0.02 ~~ 20 μS/cm
15 15  ** **ECK0.1**: 0.2 ~~ 200.0 μS/cm
16 16  ** **ECK1.0** : 2 ~~ 2,000 μS/cm  Resolution: 1 μS/cm
17 17  ** **ECK10.0** : 20 ~~ 20,000 μS/cm  Resolution: 10 μS/cm
24 +
18 18  * **EC Accuracy**: ±1% FS
26 +
19 19  * **Temperature Measure Range**: -20 ~~ 60 °C
28 +
20 20  * **Temperature Accuracy: **±0.5 °C
30 +
21 21  * **IP Rated**: IP68
32 +
22 22  * **Max Pressure**: 0.6MPa
23 23  
35 +
24 24  == 1.2 Application for Different Range ==
25 25  
38 +
26 26  [[image:image-20240714173018-1.png]]
27 27  
28 28  
... ... @@ -29,8 +29,12 @@
29 29  == 1.3 Wiring ==
30 30  
31 31  
45 +[[image:image-20240720172533-1.png||height="347" width="569"]]
46 +
47 +
32 32  == 1.4 Mechinical Drawing ==
33 33  
50 +
34 34  [[image:image-20240714174241-2.png]]
35 35  
36 36  
... ... @@ -37,46 +37,49 @@
37 37  == 1.5 Installation ==
38 38  
39 39  
40 - Do not power on while connect the cables. Double check the wiring before power on.
57 +**Electrode installation form:**
41 41  
42 -Installation Photo as reference:
59 +A: Side wall installation
43 43  
44 -**~ Submerged installation:**
61 +B: Top flange installation
45 45  
46 -The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
63 +C: Pipeline bend installation
47 47  
48 -[[image:image-20240715181933-4.png||height="281" width="258"]]
65 +D: Pipeline bend installation
49 49  
50 -**~ Pipeline installation:**
67 +E: Flow-through installation
51 51  
52 -Connect the equipment to the pipeline through the 3/4 thread.
69 +F: Submerged installation
53 53  
54 -[[image:image-20240715182122-6.png||height="291" width="408"]]
71 +[[image:image-20240718190121-1.png||height="350" width="520"]]
55 55  
56 -**Sampling:**
73 +**Several common installation methods of electrodes**
57 57  
58 -Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it.
75 +When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation.
59 59  
60 -**Measure the pH of the water sample:**
77 +A. Several common incorrect installation methods
61 61  
62 -First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable.
79 +[[image:image-20240718190204-2.png||height="262" width="487"]]
63 63  
81 +**Error cause:** The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error.
64 64  
65 -== 1.6 Maintain ==
83 +[[image:image-20240718190221-3.png||height="292" width="500"]]
66 66  
85 +**Error cause: **Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes.
67 67  
68 -* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible!
69 -* There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
70 -* Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water.
71 -* The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective.
72 -* Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
73 -* The electrode should be cleaned with deionized water before and after measurement to ensure accuracy.
74 -* After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
75 -* Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant.
76 -* (((
77 -The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
78 -)))
87 +B. Correct installation method
79 79  
89 +[[image:image-20240718190249-4.png||height="287" width="515"]]
90 +
91 +
92 +== 1.6 Maintenance ==
93 +
94 +
95 +* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
96 +* If the electrode is not used for a long time, it can generally be stored in a dry place, but it must be placed (stored) in distilled water for several hours before use to activate the electrode. Electrodes that are frequently used can be placed (stored) in distilled water.
97 +* Cleaning of conductivity electrodes: Organic stains on the electrode can be cleaned with warm water containing detergent, or with alcohol. Calcium and magnesium precipitates are best cleaned with 10% citric acid. The electrode plate or pole can only be cleaned by chemical methods or by shaking in water. Wiping the electrode plate will damage the coating (platinum black) on the electrode surface.
98 +* The equipment should be calibrated before each use. It is recommended to calibrate it every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.).
99 +
80 80  == 1.7 RS485 Commands ==
81 81  
82 82  
... ... @@ -86,71 +86,98 @@
86 86  
87 87  === 1.7.1 Query address ===
88 88  
89 -send
90 90  
91 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
92 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
93 -|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
110 +**send:**
94 94  
112 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
113 +|=(% style="width: 74.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 high
114 +|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:50px" %)0X00|(% style="width:42px" %)0X50|(% style="width:42px" %)0X00|(% style="width:42px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
115 +
95 95  If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
96 96  
97 97  
98 -response
119 +**response:**
99 99  
100 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
101 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
102 -|(% style="width:99px" %)0X1|(% style="width:112px" %)0X3|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
121 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
122 +|=(% style="width: 100px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 110px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
123 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
103 103  
104 104  === 1.7.2 Change address ===
105 105  
127 +
106 106  For example: Change the address of the sensor with address 1 to 2, master → slave
107 107  
108 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
109 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
110 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
130 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
131 +|=(% style="width: 74.75px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
132 +|(% style="width:67px" %)0X01|(% style="width:76px" %)0X06|(% style="width:60px" %)0X00|(% style="width:50px" %)0X50|(% style="width:50px" %)0X00|(% style="width:50px" %)0X02|(% style="width:57px" %)0X08|(% style="width:56px" %)0X1A
111 111  
112 112  If the sensor receives correctly, the data is returned along the original path.
113 -Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
114 114  
136 +(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
115 115  
138 +
116 116  === 1.7.3 Modify intercept ===
117 117  
118 118  
119 -send
142 +**send:**
120 120  
121 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
122 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
123 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XFA|(% style="width:1px" %)(((
124 -0X97
144 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
145 +|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
146 +|(% style="width:64px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)(((
147 +0X07
125 125  )))
126 126  
127 127  Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
128 128  
129 -response
152 +**response:**
130 130  
131 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
132 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
154 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
155 +|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
133 133  |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
134 134  0X02
135 -)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X0A|(% style="width:1px" %)(((
136 -0XE5
158 +)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X38|(% style="width:1px" %)(((
159 +0X8F
137 137  )))
138 138  
139 -
140 140  === 1.7.4 Query data ===
141 141  
164 +
165 +Query the data (EC,temperature) of the sensor (address 11), host → slave
166 +
167 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
168 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
169 +|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0X9B
170 +
171 +If the sensor receives correctly, the following data will be returned, slave → host
172 +
173 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
174 +|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
175 +|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0X8B|(% style="width:56px" %)0XD0
176 +
142 142  The address of the EC K10 sensor is 11
143 143  
144 144  The query data command is 11 03 00 00 00 02 C6 9B
145 145  
146 -For example, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm
181 +**For example**, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
147 147  
148 148  
184 +Query the data (EC,temperature) of the sensor (address 11), host → slave
185 +
186 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
187 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
188 +|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XA8
189 +
190 +If the sensor receives correctly, the following data will be returned, slave → host
191 +
192 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
193 +|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
194 +|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0XB8|(% style="width:56px" %)0XD0
195 +
149 149  The address of the EC K1 sensor is 12
150 150  
151 151  The query data command is 12 03 00 00 00 02 C6 A8
152 152  
153 -For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm
200 +**For example**, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
154 154  
155 155  
156 156  === 1.7.5 Calibration Method ===
... ... @@ -158,60 +158,211 @@
158 158  
159 159  This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution.
160 160  
161 -The calibration steps are as follows:
208 +(% style="color:blue" %)**The calibration steps are as follows:**
209 +
162 162  (1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable.
163 163  
164 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
165 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
212 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
213 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
166 166  |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
167 167  0X00
168 -
169 169  0X00
170 -
171 171  0X37
172 -
173 173  0X32
174 174  )))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC
175 175  
176 176  1413*10 gives 0X00003732
177 177  
178 -response
223 +**response:**
179 179  
180 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
181 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
225 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
226 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
182 182  |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0
183 183  
184 184  (2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command
185 185  
186 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
187 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
231 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
232 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
188 188  |(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
189 189  0X00
190 -
191 191  0X01
192 -
193 193  0XF7
194 -
195 195  0X20
196 196  )))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75
197 197  
198 198  12880*10 gives 0X01F720
199 199  
200 -response
242 +**response:**
201 201  
202 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
203 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
244 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
245 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
204 204  |(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50
205 205  
248 += 2. DR-PH01 Water PH Sensor =
206 206  
250 +== 2.1 Specification ==
207 207  
208 -= 2. DR-PH01 Water PH Sensor =
209 209  
210 -== 2.7 RS485 Commands ==
253 +* **Power Input**: DC7~~30
211 211  
255 +* **Power Consumption** : < 0.5W
212 212  
213 -The address of the pH  sensor is 10
257 +* **Interface**: RS485. 9600 Baud Rate
214 214  
259 +* **pH measurement range**: 0~~14.00pH; resolution: 0.01pH
260 +
261 +* **pH measurement error**: ±0.15pH
262 +
263 +* **Repeatability error**: ±0.02pH
264 +
265 +* **Temperature measurement range**:0~~60°C; resolution: 0.1°C (set temperature for manual temperature compensation, default 25°C)
266 +
267 +* **Temperature measurement error**: ±0.5°C
268 +
269 +* **Temperature Measure Range**: -20 ~~ 60 °C
270 +
271 +* **Temperature Accuracy: **±0.5 °C
272 +
273 +* **IP Rated**: IP68
274 +
275 +* **Max Pressure**: 0.6MPa
276 +
277 +== 2.2 Wiring ==
278 +
279 +
280 +[[image:image-20240720172548-2.png||height="348" width="571"]]
281 +
282 +
283 +== 2.3 Mechinical Drawing ==
284 +
285 +
286 +[[image:image-20240714174241-2.png]]
287 +
288 +
289 +== 2.4 Installation Notice ==
290 +
291 +
292 +Do not power on while connect the cables. Double check the wiring before power on.
293 +
294 +Installation Photo as reference:
295 +
296 +(% style="color:blue" %)**Submerged installation:**
297 +
298 +The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
299 +
300 +[[image:image-20240718191348-6.png]]
301 +
302 +(% style="color:blue" %)**Pipeline installation:**
303 +
304 +Connect the equipment to the pipeline through the 3/4 thread.
305 +
306 +[[image:image-20240718191336-5.png||height="239" width="326"]]
307 +
308 +(% style="color:blue" %)**Sampling:**
309 +
310 +Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it.
311 +
312 +(% style="color:blue" %)**Measure the pH of the water sample:**
313 +
314 +First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable.
315 +
316 +
317 +== 2.5 Maintenance ==
318 +
319 +
320 +* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible!
321 +
322 +* There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
323 +
324 +* Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water.
325 +
326 +* The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective.
327 +
328 +* Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
329 +
330 +* The electrode should be cleaned with deionized water before and after measurement to ensure accuracy.
331 +
332 +* After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
333 +
334 +* Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant.
335 +
336 +* The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
337 +
338 +
339 +== 2.6 RS485 Commands ==
340 +
341 +
342 +RS485 signaldefault address 0x10
343 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
344 +
345 +
346 +=== 2.6.1 Query address ===
347 +
348 +
349 +**send:**
350 +
351 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
352 +|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
353 +|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
354 +
355 +**response:**
356 +
357 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
358 +|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
359 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
360 +
361 +=== 2.6.2 Change address ===
362 +
363 +
364 +For example: Change the address of the sensor with address 1 to 2, master → slave
365 +
366 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
367 +|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
368 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
369 +
370 +If the sensor receives correctly, the data is returned along the original path.
371 +
372 +(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
373 +
374 +
375 +=== 2.6.3 Modify intercept ===
376 +
377 +
378 +**send:**
379 +
380 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
381 +|=(% style="width: 44.75px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
382 +|(% style="width:71px" %)0X10|(% style="width:74px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X10|(% style="width:69px" %)0X00|(% style="width:66px" %)0X64|(% style="width:57px" %)0X8A|(% style="width:57px" %)(((
383 +0XA5
384 +)))
385 +
386 +Change the intercept of the sensor at address 10 to 1 (default is 0). You need to pass the intercept 1*100 =100 into the command 0x006.
387 +
388 +**response:**
389 +
390 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
391 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
392 +|(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
393 +0X00
394 +)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
395 +0XA5
396 +)))
397 +
398 +=== 2.6.4 Query data ===
399 +
400 +
401 +Query the data (PH) of the sensor (address 10), host → slave
402 +
403 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
404 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
405 +|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X4B
406 +
407 +If the sensor receives correctly, the following data will be returned, slave → host
408 +
409 +(% border="1" cellspacing="3" style="background-color:#f2f2f2;width:518px" %)
410 +|=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
411 +|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0XC4|(% style="width:56px" %)0X9B
412 +
215 215  The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned.
216 216  
217 217  For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B.
... ... @@ -219,13 +219,178 @@
219 219  02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86.
220 220  
221 221  
420 +=== 2.6.5 Calibration Method ===
421 +
422 +
423 +This device uses three-point calibration, and three known pH standard solutions need to be prepared.
424 +
425 +(% style="color:blue" %)**The calibration steps are as follows:**
426 +
427 +(1) Place the electrode in distilled water to clean it, and then place it in 9.18 standard buffer solution. After the data stabilizes, enter the following calibration command, and the 9.18 calibration is completed.
428 +
429 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
430 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
431 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
432 +0X00
433 +)))|(% style="width:68px" %)0X20|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X8A|(% style="width:55px" %)(((
434 +0XF1
435 +)))
436 +
437 +(2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed.
438 +
439 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
440 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
441 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
442 +0X00
443 +)))|(% style="width:68px" %)0X21|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XDB|(% style="width:55px" %)(((
444 +0X31
445 +)))
446 +
447 +(3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed.
448 +
449 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
450 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
451 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
452 +0X00
453 +)))|(% style="width:68px" %)0X22|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X2B|(% style="width:55px" %)(((
454 +0X31
455 +)))
456 +
457 +After the above three steps are completed, the calibration is successful. The advantage of three-point calibration compared to two-point calibration is that the electrode is calibrated separately in the acid and alkali parts, thereby achieving accurate calibration of the full range and making the measurement data more accurate.
458 +
459 +
222 222  = 3. DR-ORP1 Water ORP Sensor =
223 223  
224 -== 3.7 RS485 Commands ==
462 +== 3.1 Specification ==
225 225  
464 +* **Power Input**: DC7~~30
465 +* **Measuring range**:** **-1999~~1999mV
466 +**Resolution**: 1mV
467 +* **Interface**: RS485. 9600 Baud Rate
468 +* **Measurement error**: ±3mV
469 +* **Stability**: ≤2mv/24 hours
470 +* **Equipment working conditions**: Ambient temperature: 0-60℃ Relative humidity: <85%RH
471 +* **IP Rated**: IP68
472 +* **Max Pressure**: 0.6MPa
226 226  
227 -The address of the ORP sensor is 13
474 +== 3.2 Wiring ==
228 228  
476 +[[image:image-20240720172620-3.png||height="378" width="620"]]
477 +
478 +
479 +== 3.3 Mechinical Drawing ==
480 +
481 +[[image:image-20240714174241-2.png]]
482 +
483 +== 3.4 Installation Notice ==
484 +
485 +Do not power on while connect the cables. Double check the wiring before power on.
486 +
487 +Installation Photo as reference:
488 +
489 +**~ Submerged installation:**
490 +
491 +The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
492 +
493 +[[image:image-20240718191348-6.png]]
494 +
495 +**~ Pipeline installation:**
496 +
497 +Connect the equipment to the pipeline through the 3/4 thread.
498 +
499 +[[image:image-20240718191336-5.png||height="239" width="326"]]
500 +
501 +
502 +== 3.5 Maintenance ==
503 +
504 +
505 +(1) The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
506 +
507 +(2) In general, ORP electrodes do not need to be calibrated and can be used directly. When there is doubt about the quality and test results of the ORP electrode, the electrode potential can be checked with an ORP standard solution to determine whether the ORP electrode meets the measurement requirements, and the electrode can be recalibrated or replaced with a new ORP electrode. The frequency of calibration or inspection of the measuring electrode depends on different application conditions (the degree of dirt in the application, the deposition of chemical substances, etc.).
508 +
509 +(3) There is an appropriate soaking solution in the protective bottle at the front end of the electrode, and the electrode head is soaked in it to ensure the activation of the platinum sheet and the liquid junction. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
510 +
511 +(4) Preparation of electrode soaking solution: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water to prepare a 3.3M potassium chloride solution.
512 +
513 +(5) Before measuring, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
514 +
515 +(6) The electrode should be cleaned with deionized water before and after the measurement to ensure the measurement accuracy.
516 +
517 +(7) After long-term use, the ORP electrode will be passivated, which is manifested as a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the platinum sheet at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
518 +
519 +(8) Electrode contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. If the platinum of the electrode is severely contaminated and an oxide film is formed, toothpaste can be applied to the platinum surface and then gently scrubbed to restore the platinum's luster.
520 +
521 +(9) The equipment should be calibrated before each use. It is recommended to calibrate once every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
522 +
523 +== 3.6 RS485 Commands ==
524 +
525 +
526 +RS485 signaldefault address 0x13
527 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
528 +
529 +=== 3.6.1 Query address ===
530 +
531 +send
532 +
533 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
534 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
535 +|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
536 +
537 +response
538 +
539 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
540 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
541 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
542 +
543 +=== 3.6.2 Change address ===
544 +
545 +For example: Change the address of the sensor with address 1 to 2, master → slave
546 +
547 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
548 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
549 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
550 +
551 +If the sensor receives correctly, the data is returned along the original path.
552 +Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
553 +
554 +
555 +=== 3.6.3 Modify intercept ===
556 +
557 +send
558 +
559 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
560 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 69px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
561 +|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
562 +0X96
563 +)))
564 +
565 +Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
566 +
567 +response
568 +
569 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
570 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
571 +|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
572 +0X00
573 +)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
574 +0X96
575 +)))
576 +
577 +=== 3.6.4 Query data ===
578 +
579 +
580 +Query the data (ORP) of the sensor (address 13), host → slave
581 +
582 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
583 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
584 +|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X78
585 +
586 +If the sensor receives correctly, the following data will be returned, slave → host
587 +
588 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
589 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
590 +|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X80|(% style="width:56px" %)0X9B
591 +
229 229  The query data command is 13 03 00 00 00 01 87 78
230 230  
231 231  For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B.
... ... @@ -233,31 +233,229 @@
233 233  02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV
234 234  
235 235  
599 +=== 3.6.5 Calibration Method ===
600 +
601 +This device uses two-point calibration, and two known ORP standard solutions need to be prepared. The calibration steps are as follows:
602 +(1) Place the electrode in distilled water to clean it, and then place it in 86mV standard buffer solution. After the data stabilizes,
603 +enter the following calibration command, and the 86mV point calibration is completed;
604 +
605 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
606 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
607 +|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
608 +0X00
609 +)))|(% style="width:68px" %)0X24|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XCB|(% style="width:55px" %)(((
610 +0X03
611 +)))
612 +
613 +Wash the electrode in distilled water and place it in 256mV standard buffer. After the data is stable, enter the following calibration command to complete the 256mV point calibration.
614 +
615 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
616 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
617 +|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
618 +0X00
619 +)))|(% style="width:68px" %)0X25|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X9A|(% style="width:55px" %)(((
620 +0XC3
621 +)))
622 +
236 236  = 4. DR-DO1 Dissolved Oxygen Sensor =
237 237  
238 -== 4.7 RS485 Commands ==
239 239  
240 240  
241 -The address of the dissolved oxygen sensor is 14
627 +== 4.1 Specification ==
242 242  
243 -The query data command is 14 03 00 14 00 01 C6 CB
244 244  
630 +* **Measuring range**: 0-20mg/L, 0-50℃
631 +* **Accuracy**: 3%, ±0.5℃
632 +* **Resolution**: 0.01 mg/L, 0.01℃
633 +* **Maximum operating pressure**: 6 bar
634 +* **Output signal**: A: 4-20mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01)
635 +* **Power supply voltage**: 5-24V DC
636 +* **Working environment**: temperature 0-60℃; humidity <95%RH
637 +* **Power consumption**: ≤0.5W
638 +
639 +== 4.2 wiring ==
640 +
641 +[[image:image-20240720172632-4.png||height="390" width="640"]]
642 +
643 +
644 +== (% id="cke_bm_224234S" style="display:none" %) (%%)4.3 Impedance requirements for current signals ==
645 +
646 +[[image:image-20240718195414-8.png||height="100" width="575"]]
647 +
648 +
649 +== 4.4 Mechinical Drawing ==
650 +
651 +
652 +[[image:image-20240719155308-1.png||height="226" width="527"]]
653 +
654 +
655 +== 4.5 Instructions for use and maintenance ==
656 +
657 +* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
658 +* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
659 +
660 +== 4.6 RS485 Commands ==
661 +
662 +RS485 signaldefault address 0x14
663 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
664 +
665 +=== 4.6.1 Query address ===
666 +
667 +send
668 +
669 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
670 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
671 +|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XF1|(% style="width:56px" %)0XD7
672 +
673 +If you forget the original address of the sensor, you can use the broadcast address 0XFF instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
674 +
675 +
676 +response
677 +
678 +Register 0 data high and register 0 data low indicate the actual address of the sensor: 1
679 +Register 1 data high and register 1 data low indicate the sensor version
680 +
681 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
682 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
683 +|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X04|(% style="width:68px" %)0X00|(% style="width:70px" %)0X01|(% style="width:72px" %)0X00|(% style="width:56px" %)0X00|(% style="width:56px" %)0XB4|(% style="width:56px" %)0X3C
684 +
685 +=== 4.6.2 Change address ===
686 +
687 +For example: Change the address of the sensor with address 1 to 2(address range: 1-119), master → slave
688 +
689 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:907.333px" %)
690 +|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 71px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low
691 +|(% style="width:67px" %)0X01|(% style="width:71px" %)0X10|(% style="width:65px" %)0X00|(% style="width:65px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X04|(% style="width:53px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X00|(% style="width:53px" %)0X00|(% style="width:56px" %)0XD2|(% style="width:53px" %)0X10
692 +
693 +response
694 +
695 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
696 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
697 +|(% style="width:99px" %)0X01|(% style="width:72px" %)0X10|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0X61|(% style="width:56px" %)0XCA
698 +
699 +=== 4.6.3 Query data ===
700 +
701 +
702 +Query the data (dissolved oxygen) of the sensor (address 14), host → slave
703 +
704 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
705 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
706 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X14|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XCB
707 +
708 +If the sensor receives correctly, the following data will be returned, slave → host
709 +
710 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
711 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
712 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X03|(% style="width:72px" %)0X78|(% style="width:56px" %)0XB5|(% style="width:56px" %)0X55
713 +
245 245  After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen.
246 246  
247 247  Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L
248 248  
249 249  
719 +Query the data (temperature) of the sensor (address 14), host → slave
720 +
721 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
722 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
723 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X11|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XD6|(% style="width:56px" %)0XCA
724 +
725 +If the sensor receives correctly, the following data will be returned, slave → host
726 +
727 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
728 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
729 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X09|(% style="width:72px" %)0XA4|(% style="width:56px" %)0XB2|(% style="width:56px" %)0X6C
730 +
731 +After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**09 A4**(%%) B2 6C. 03 78 is the value of dissolved oxygen temperature.
732 +
733 +Converted to decimal, it is 2468. Add two decimal places to get the actual value. 09 A4 means the current dissolved oxygen temperature is 24.68℃
734 +
735 +
250 250  = 5. DR-TS1 Water Turbidity Sensor =
251 251  
252 -== 5.7 RS485 Commands ==
253 253  
254 254  
255 -The address of the dissolved oxygen sensor is 15
740 +== (% id="cke_bm_81470S" style="display:none" %) (%%)5.1 Specification ==
256 256  
742 +* **Measuring range**: 0.1~1000.0NTU
743 +* **Accuracy**: ±5%
744 +* **Resolution**: 0.1NTU
745 +* **Stability**: ≤3mV/24 hours
746 +* **Output signal**: A: 4~20 mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01)
747 +* **Power supply voltage**: 5~24V DC (when output signal is RS485)12~24V DC (when output signal is 4~20mA)
748 +* **Working environment**: temperature 0~60℃; humidity ≤95%RH
749 +* **Power consumption**: ≤0.5W
750 +
751 +== 5.2 wiring ==
752 +
753 +[[image:image-20240720172640-5.png||height="387" width="635"]]
754 +
755 +
756 +== 5.3 Impedance requirements for current signals ==
757 +
758 +[[image:image-20240718195414-8.png||height="100" width="575"]]
759 +
760 +
761 +== 5.4 Mechinical Drawing ==
762 +
763 +[[image:image-20240718195058-7.png||height="305" width="593"]]
764 +
765 +
766 +== 5.5 Instructions for use and maintenance ==
767 +
768 +* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
769 +* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
770 +
771 +== 5.6 RS485 Commands ==
772 +
773 +
774 +RS485 signaldefault address 0x15
775 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
776 +
777 +=== 5.6.1 Query address ===
778 +
779 +send
780 +
781 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
782 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
783 +|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X50|(% style="width:70px" %)0X00|(% style="width:72px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
784 +
785 +If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
786 +
787 +
788 +response
789 +
790 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
791 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
792 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
793 +
794 +=== 5.6.2 Change address ===
795 +
796 +For example: Change the address of the sensor with address 1 to 2, master → slave
797 +
798 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
799 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
800 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
801 +
802 +If the sensor receives correctly, the data is returned along the original path.
803 +Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
804 +
805 +=== 5.6.3 Query data ===
806 +
807 +
808 +Query the data (turbidity) of the sensor (address 15), host → slave
809 +
810 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
811 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
812 +|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X1E
813 +
814 +If the sensor receives correctly, the following data will be returned, slave → host
815 +
816 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
817 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
818 +|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0X9A|(% style="width:56px" %)0X09|(% style="width:56px" %)0X4C
819 +
257 257  The query data command is 15 03 00 00 00 01 87 1E
258 258  
259 259  For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C
260 260  
261 261  02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU
262 -
263 -
image-20240718190121-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +281.1 KB
Content
image-20240718190204-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +111.8 KB
Content
image-20240718190221-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +140.2 KB
Content
image-20240718190249-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +111.6 KB
Content
image-20240718191336-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240718191348-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +91.2 KB
Content
image-20240718195058-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +97.6 KB
Content
image-20240718195414-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +13.5 KB
Content
image-20240719155308-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +57.4 KB
Content
image-20240720172533-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20240720172548-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20240720172620-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20240720172632-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20240720172640-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content