Changes for page Water Quality Sensors
Last modified by Karry Zhuang on 2025/02/18 15:43
From version 16.3
edited by Karry Zhuang
on 2024/07/18 18:57
on 2024/07/18 18:57
Change comment:
There is no comment for this version
To version 10.1
edited by Karry Zhuang
on 2024/07/18 12:01
on 2024/07/18 12:01
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -37,113 +37,16 @@ 37 37 == 1.5 Installation == 38 38 39 39 40 - Do not power on while connect the cables. Double check the wiring before power on. 41 - 42 -Installation Photo as reference: 43 - 44 -**~ Submerged installation:** 45 - 46 -The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded. 47 - 48 -[[image:image-20240715181933-4.png||height="281" width="258"]] 49 - 50 -**~ Pipeline installation:** 51 - 52 -Connect the equipment to the pipeline through the 3/4 thread. 53 - 54 -[[image:image-20240715182122-6.png||height="291" width="408"]] 55 - 56 -**Sampling:** 57 - 58 -Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it. 59 - 60 -**Measure the pH of the water sample:** 61 - 62 -First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable. 63 - 64 - 65 65 == 1.6 Maintain == 66 66 67 67 68 -* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible! 69 -* There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use. 70 -* Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water. 71 -* The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective. 72 -* Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response. 73 -* The electrode should be cleaned with deionized water before and after measurement to ensure accuracy. 74 -* After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance. 75 -* Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. 76 -* ((( 77 -The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 78 -))) 79 - 80 80 == 1.7 RS485 Commands == 81 81 45 +The address of the EC K1 sensor is 11 82 82 83 -RS485 signal (K1 default address 0x12; K10 default address 0x11): 84 -Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 85 - 86 - 87 -=== 1.7.1 Query address === 88 - 89 -send 90 - 91 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 92 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 93 -|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4 94 - 95 -If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 96 - 97 - 98 -response 99 - 100 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %) 101 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 102 -|(% style="width:99px" %)0X1|(% style="width:112px" %)0X3|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 103 - 104 -=== 1.7.2 Change address === 105 - 106 -For example: Change the address of the sensor with address 1 to 2, master → slave 107 - 108 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 109 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 110 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 111 - 112 -If the sensor receives correctly, the data is returned along the original path. 113 -Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query. 114 - 115 - 116 -=== 1.7.3 Modify intercept === 117 - 118 - 119 -send 120 - 121 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 122 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 123 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XFA|(% style="width:1px" %)((( 124 -0X97 125 -))) 126 - 127 -Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command. 128 - 129 -response 130 - 131 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 132 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 133 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 134 -0X02 135 -)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X0A|(% style="width:1px" %)((( 136 -0XE5 137 -))) 138 - 139 - 140 -=== 1.7.4 Query data === 141 - 142 -The address of the EC K10 sensor is 11 143 - 144 144 The query data command is 11 03 00 00 00 02 C6 9B 145 145 146 -For example, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%)01 64 8B D0.02 AE is converted to decimal 686, K=10, EC: 6860uS/cm49 +For example, the returned data is 11 03 04 02 AE 01 64 8B D0, 02 AE is converted to decimal 686, K=1, EC: 686uS/cm 147 147 148 148 149 149 The address of the EC K1 sensor is 12 ... ... @@ -150,105 +150,39 @@ 150 150 151 151 The query data command is 12 03 00 00 00 02 C6 A8 152 152 153 - Forexample, thereturneddata is 12 03 04 (% style="color:red" %)**02 AE**(%%) 0164 B8 D0. 02 AE is converted to decimal 686,K=1,EC: 686uS/cm56 +~; when K=10, EC: 6860uS/cm. 154 154 155 - 156 -=== 1.7.5 Calibration Method === 157 - 158 - 159 -This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution. 160 - 161 -The calibration steps are as follows: 162 -(1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable. 163 - 164 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 165 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 166 -|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 167 -0X00 168 - 169 -0X00 170 - 171 -0X37 172 - 173 -0X32 174 -)))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC 175 - 176 -1413*10 gives 0X00003732 177 - 178 -response 179 - 180 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 181 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 182 -|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0 183 - 184 -(2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command 185 - 186 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 187 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 188 -|(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 189 -0X00 190 - 191 -0X01 192 - 193 -0XF7 194 - 195 -0X20 196 -)))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75 197 - 198 -12880*10 gives 0X01F720 199 - 200 -response 201 - 202 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 203 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 204 -|(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50 205 - 206 - 207 - 208 - 209 - 210 210 = 2. DR-PH01 Water PH Sensor = 211 211 212 212 == 2.7 RS485 Commands == 213 213 62 +The address of the dissolved oxygen sensor is 12 214 214 215 -The addressofthepH sensoris 1064 +The query data command is 14 03 00 14 00 01 C6 CB 216 216 217 -The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned. 218 218 219 -For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B. 220 - 221 -02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86. 222 - 223 - 224 224 = 3. DR-ORP1 Water ORP Sensor = 225 225 226 226 == 3.7 RS485 Commands == 227 227 228 228 229 -The address of the ORPsensor is 1372 +The address of the dissolved oxygen sensor is 13 230 230 231 -The query data command is 1 303 000000 01877874 +The query data command is 14 03 00 14 00 01 C6 CB 232 232 233 -For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B. 234 234 235 -02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV 236 - 237 - 238 238 = 4. DR-DO1 Dissolved Oxygen Sensor = 239 239 240 240 == 4.7 RS485 Commands == 241 241 242 - 243 243 The address of the dissolved oxygen sensor is 14 244 244 245 245 The query data command is 14 03 00 14 00 01 C6 CB 246 246 247 -After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%)B5 55. 03 78 is the value of dissolved oxygen.85 +After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 03 78 B5 55. 03 78 is the value of dissolved oxygen. 248 248 249 249 Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L 250 250 251 - 252 252 = 5. DR-TS1 Water Turbidity Sensor = 253 253 254 254 == 5.7 RS485 Commands == ... ... @@ -256,10 +256,6 @@ 256 256 257 257 The address of the dissolved oxygen sensor is 15 258 258 259 -The query data command is 15 03 00 0000 01871E96 +The query data command is 15 03 00 14 00 01 C6 CB 260 260 261 -For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C 262 - 263 -02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU 264 - 265 265