Changes for page Water Quality Sensors
Last modified by Karry Zhuang on 2025/02/18 15:43
From version 16.1
edited by Karry Zhuang
on 2024/07/18 18:56
on 2024/07/18 18:56
Change comment:
There is no comment for this version
To version 9.1
edited by Edwin Chen
on 2024/07/18 11:22
on 2024/07/18 11:22
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. karry1 +XWiki.Edwin - Content
-
... ... @@ -37,231 +37,32 @@ 37 37 == 1.5 Installation == 38 38 39 39 40 - Do not power on while connect the cables. Double check the wiring before power on. 41 - 42 -Installation Photo as reference: 43 - 44 -**~ Submerged installation:** 45 - 46 -The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded. 47 - 48 -[[image:image-20240715181933-4.png||height="281" width="258"]] 49 - 50 -**~ Pipeline installation:** 51 - 52 -Connect the equipment to the pipeline through the 3/4 thread. 53 - 54 -[[image:image-20240715182122-6.png||height="291" width="408"]] 55 - 56 -**Sampling:** 57 - 58 -Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it. 59 - 60 -**Measure the pH of the water sample:** 61 - 62 -First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable. 63 - 64 - 65 65 == 1.6 Maintain == 66 66 67 67 68 -* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible! 69 -* There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use. 70 -* Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water. 71 -* The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective. 72 -* Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response. 73 -* The electrode should be cleaned with deionized water before and after measurement to ensure accuracy. 74 -* After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance. 75 -* Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. 76 -* ((( 77 -The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 78 -))) 79 - 80 80 == 1.7 RS485 Commands == 81 81 82 82 83 -RS485 signal (K1 default address 0x12; K10 default address 0x11): 84 -Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 85 - 86 - 87 -=== 1.7.1 Query address === 88 - 89 -send 90 - 91 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 92 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 93 -|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4 94 - 95 -If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 96 - 97 - 98 -response 99 - 100 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %) 101 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 102 -|(% style="width:99px" %)0X1|(% style="width:112px" %)0X3|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 103 - 104 - 105 -=== 1.7.2 Change address === 106 - 107 -For example: Change the address of the sensor with address 1 to 2, master → slave 108 - 109 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 110 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 111 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 112 - 113 -If the sensor receives correctly, the data is returned along the original path. 114 -Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query. 115 - 116 - 117 -=== 1.7.3 Modify intercept === 118 - 119 - 120 -send 121 - 122 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 123 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 124 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XFA|(% style="width:1px" %)((( 125 -0X97 126 -))) 127 - 128 -Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command. 129 - 130 -response 131 - 132 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 133 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 134 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 135 -0X02 136 -)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X0A|(% style="width:1px" %)((( 137 -0XE5 138 -))) 139 - 140 - 141 -=== 1.7.4 Query data === 142 - 143 -The address of the EC K10 sensor is 144 - 145 -The query data command is 11 03 00 00 00 02 C6 9B 146 - 147 -For example, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686, K=10, EC: 6860uS/cm 148 - 149 - 150 -The address of the EC K1 sensor is 12 151 - 152 -The query data command is 12 03 00 00 00 02 C6 A8 153 - 154 -For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686, K=1, EC: 686uS/cm 155 - 156 - 157 -=== 7.1.5 Calibration Method === 158 - 159 - 160 -This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution. 161 - 162 -The calibration steps are as follows: 163 -(1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable. 164 - 165 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 166 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 167 -|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 168 -0X00 169 - 170 -0X00 171 - 172 -0X37 173 - 174 -0X32 175 -)))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC 176 - 177 -1413*10 gives 0X00003732 178 - 179 -response 180 - 181 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 182 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 183 -|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0 184 - 185 -(2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command 186 - 187 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 188 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 189 -|(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 190 -0X00 191 - 192 -0X01 193 - 194 -0XF7 195 - 196 -0X20 197 -)))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75 198 - 199 -12880*10 gives 0X01F720 200 - 201 -response 202 - 203 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 204 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 205 -|(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50 206 - 207 - 208 - 209 - 210 - 211 - 212 212 = 2. DR-PH01 Water PH Sensor = 213 213 214 214 == 2.7 RS485 Commands == 215 215 216 216 217 -The address of the pH sensor is 10 218 218 219 -The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned. 220 - 221 -For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B. 222 - 223 -02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86. 224 - 225 - 226 226 = 3. DR-ORP1 Water ORP Sensor = 227 227 228 228 == 3.7 RS485 Commands == 229 229 230 230 231 -The address of the ORP sensor is 13 232 232 233 -The query data command is 13 03 00 00 00 01 87 78 234 - 235 -For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B. 236 - 237 -02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV 238 - 239 - 240 240 = 4. DR-DO1 Dissolved Oxygen Sensor = 241 241 242 242 == 4.7 RS485 Commands == 243 243 244 244 245 -The address of the dissolved oxygen sensor is 14 246 246 247 -The query data command is 14 03 00 14 00 01 C6 CB 248 - 249 -After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen. 250 - 251 -Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L 252 - 253 - 254 254 = 5. DR-TS1 Water Turbidity Sensor = 255 255 256 256 == 5.7 RS485 Commands == 257 257 258 - 259 -The address of the dissolved oxygen sensor is 15 260 - 261 -The query data command is 15 03 00 00 00 01 87 1E 262 - 263 -For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C 264 - 265 -02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU 266 - 267 267