Changes for page Water Quality Sensors

Last modified by Karry Zhuang on 2025/07/25 09:38

From version 16.1
edited by Karry Zhuang
on 2024/07/18 18:56
Change comment: There is no comment for this version
To version 45.48
edited by Xiaoling
on 2024/08/06 13:55
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.karry
1 +XWiki.Xiaoling
Content
... ... @@ -3,10 +3,13 @@
3 3  {{toc/}}
4 4  
5 5  
6 +
7 +
6 6  = 1. DR-ECK Water EC Probe =
7 7  
8 8  == 1.1 Specification: ==
9 9  
12 +
10 10  * **Power Input**: DC7~~30
11 11  * **Power Consumption** : < 0.5W
12 12  * **Interface**: RS485. 9600 Baud Rate
... ... @@ -23,6 +23,7 @@
23 23  
24 24  == 1.2 Application for Different Range ==
25 25  
29 +
26 26  [[image:image-20240714173018-1.png]]
27 27  
28 28  
... ... @@ -29,8 +29,12 @@
29 29  == 1.3 Wiring ==
30 30  
31 31  
36 +[[image:image-20240720172533-1.png||height="347" width="569"]]
37 +
38 +
32 32  == 1.4 Mechinical Drawing ==
33 33  
41 +
34 34  [[image:image-20240714174241-2.png]]
35 35  
36 36  
... ... @@ -37,8 +37,229 @@
37 37  == 1.5 Installation ==
38 38  
39 39  
40 - Do not power on while connect the cables. Double check the wiring before power on.
48 +**Electrode installation form:**
41 41  
50 +A: Side wall installation
51 +
52 +B: Top flange installation
53 +
54 +C: Pipeline bend installation
55 +
56 +D: Pipeline bend installation
57 +
58 +E: Flow-through installation
59 +
60 +F: Submerged installation
61 +
62 +[[image:image-20240718190121-1.png||height="350" width="520"]]
63 +
64 +**Several common installation methods of electrodes**
65 +
66 +When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation.
67 +
68 +A. Several common incorrect installation methods
69 +
70 +[[image:image-20240718190204-2.png||height="262" width="487"]]
71 +
72 +**Error cause:** The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error.
73 +
74 +[[image:image-20240718190221-3.png||height="292" width="500"]]
75 +
76 +**Error cause: **Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes.
77 +
78 +B. Correct installation method
79 +
80 +[[image:image-20240718190249-4.png||height="287" width="515"]]
81 +
82 +
83 +== 1.6 Maintenance ==
84 +
85 +
86 +* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
87 +* If the electrode is not used for a long time, it can generally be stored in a dry place, but it must be placed (stored) in distilled water for several hours before use to activate the electrode. Electrodes that are frequently used can be placed (stored) in distilled water.
88 +* Cleaning of conductivity electrodes: Organic stains on the electrode can be cleaned with warm water containing detergent, or with alcohol. Calcium and magnesium precipitates are best cleaned with 10% citric acid. The electrode plate or pole can only be cleaned by chemical methods or by shaking in water. Wiping the electrode plate will damage the coating (platinum black) on the electrode surface.
89 +* The equipment should be calibrated before each use. It is recommended to calibrate it every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.).
90 +
91 +== 1.7 RS485 Commands ==
92 +
93 +
94 +RS485 signal (K1 default address 0x12; K10 default address 0x11):
95 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
96 +
97 +
98 +=== 1.7.1 Query address ===
99 +
100 +
101 +**send:**
102 +
103 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
104 +|=(% style="width: 74.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 high
105 +|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:50px" %)0X00|(% style="width:42px" %)0X50|(% style="width:42px" %)0X00|(% style="width:42px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
106 +
107 +If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
108 +
109 +
110 +**response:**
111 +
112 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
113 +|=(% style="width: 100px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 110px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
114 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
115 +
116 +=== 1.7.2 Change address ===
117 +
118 +
119 +For example: Change the address of the sensor with address 1 to 2, master → slave
120 +
121 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
122 +|=(% style="width: 74.75px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
123 +|(% style="width:67px" %)0X01|(% style="width:76px" %)0X06|(% style="width:60px" %)0X00|(% style="width:50px" %)0X50|(% style="width:50px" %)0X00|(% style="width:50px" %)0X02|(% style="width:57px" %)0X08|(% style="width:56px" %)0X1A
124 +
125 +If the sensor receives correctly, the data is returned along the original path.
126 +
127 +(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
128 +
129 +
130 +=== 1.7.3 Modify intercept ===
131 +
132 +
133 +**send:**
134 +
135 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
136 +|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
137 +|(% style="width:64px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)(((
138 +0X07
139 +)))
140 +
141 +Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
142 +
143 +**response:**
144 +
145 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
146 +|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
147 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
148 +0X02
149 +)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X38|(% style="width:1px" %)(((
150 +0X8F
151 +)))
152 +
153 +=== 1.7.4 Query data ===
154 +
155 +
156 +Query the data (EC,temperature) of the sensor (address 11), host → slave
157 +
158 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
159 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
160 +|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0X9B
161 +
162 +If the sensor receives correctly, the following data will be returned, slave → host
163 +
164 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
165 +|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
166 +|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0X8B|(% style="width:56px" %)0XD0
167 +
168 +The address of the EC K10 sensor is 11
169 +
170 +The query data command is 11 03 00 00 00 02 C6 9B
171 +
172 +**For example**, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
173 +
174 +
175 +Query the data (EC,temperature) of the sensor (address 11), host → slave
176 +
177 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
178 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
179 +|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XA8
180 +
181 +If the sensor receives correctly, the following data will be returned, slave → host
182 +
183 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
184 +|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
185 +|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0XB8|(% style="width:56px" %)0XD0
186 +
187 +The address of the EC K1 sensor is 12
188 +
189 +The query data command is 12 03 00 00 00 02 C6 A8
190 +
191 +**For example**, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
192 +
193 +
194 +=== 1.7.5 Calibration Method ===
195 +
196 +
197 +This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution.
198 +
199 +**The calibration steps are as follows:**
200 +(1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable.
201 +
202 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
203 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
204 +|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
205 +0X00
206 +0X00
207 +0X37
208 +0X32
209 +)))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC
210 +
211 +1413*10 gives 0X00003732
212 +
213 +**response:**
214 +
215 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
216 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
217 +|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0
218 +
219 +(2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command
220 +
221 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
222 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
223 +|(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
224 +0X00
225 +0X01
226 +0XF7
227 +0X20
228 +)))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75
229 +
230 +12880*10 gives 0X01F720
231 +
232 +**response:**
233 +
234 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
235 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
236 +|(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50
237 +
238 +
239 += 2. DR-PH01 Water PH Sensor =
240 +
241 +== 2.1 Specification ==
242 +
243 +
244 +* **Power Input**: DC7~~30
245 +* **Power Consumption** : < 0.5W
246 +* **Interface**: RS485. 9600 Baud Rate
247 +* **pH measurement range**: 0~~14.00pH; resolution: 0.01pH
248 +* **pH measurement error**:±0.15pH
249 +* **Repeatability error**:±0.02pH
250 +* **Temperature measurement range**:0~~60℃; resolution: 0.1℃ (set temperature for manual temperature compensation, default 25℃)
251 +* **Temperature measurement error**: ±0.5℃
252 +* **Temperature Measure Range**: -20 ~~ 60 °C
253 +* **Temperature Accuracy: **±0.5 °C
254 +* **IP Rated**: IP68
255 +* **Max Pressure**: 0.6MPa
256 +
257 +== 2.2 Wiring ==
258 +
259 +[[image:image-20240720172548-2.png||height="348" width="571"]]
260 +
261 +
262 +== (% style="color:inherit; font-family:inherit" %)2.3 (% style="color:inherit; font-family:inherit; font-size:26px" %)Mechinical Drawing(%%) ==
263 +
264 +[[image:image-20240714174241-2.png]]
265 +
266 +
267 +== 2.4 Installation Notice ==
268 +
269 +Do not power on while connect the cables. Double check the wiring before power on.
270 +
42 42  Installation Photo as reference:
43 43  
44 44  **~ Submerged installation:**
... ... @@ -45,13 +45,13 @@
45 45  
46 46  The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
47 47  
48 -[[image:image-20240715181933-4.png||height="281" width="258"]]
277 +[[image:image-20240718191348-6.png]]
49 49  
50 50  **~ Pipeline installation:**
51 51  
52 52  Connect the equipment to the pipeline through the 3/4 thread.
53 53  
54 -[[image:image-20240715182122-6.png||height="291" width="408"]]
283 +[[image:image-20240718191336-5.png||height="239" width="326"]]
55 55  
56 56  **Sampling:**
57 57  
... ... @@ -62,7 +62,7 @@
62 62  First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable.
63 63  
64 64  
65 -== 1.6 Maintain ==
294 +== 2.5 Maintenance ==
66 66  
67 67  
68 68  * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible!
... ... @@ -77,15 +77,13 @@
77 77  The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
78 78  )))
79 79  
80 -== 1.7 RS485 Commands ==
309 +== 2.6 RS485 Commands ==
81 81  
82 -
83 -RS485 signal (K1 default address 0x12; K10 default address 0x11):
311 +RS485 signaldefault address 0x10
84 84  Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
85 85  
314 +=== 2.6.1 Query address ===
86 86  
87 -=== 1.7.1 Query address ===
88 -
89 89  send
90 90  
91 91  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
... ... @@ -92,18 +92,14 @@
92 92  |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
93 93  |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
94 94  
95 -If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
96 -
97 -
98 98  response
99 99  
100 100  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
101 101  |=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
102 -|(% style="width:99px" %)0X1|(% style="width:112px" %)0X3|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
326 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
103 103  
328 +=== 2.6.2 Change address ===
104 104  
105 -=== 1.7.2 Change address ===
106 -
107 107  For example: Change the address of the sensor with address 1 to 2, master → slave
108 108  
109 109  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
... ... @@ -114,122 +114,222 @@
114 114  Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
115 115  
116 116  
117 -=== 1.7.3 Modify intercept ===
340 +=== 2.6.3 Modify intercept ===
118 118  
119 119  
120 120  send
121 121  
122 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
123 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
124 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XFA|(% style="width:1px" %)(((
125 -0X97
345 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:570.333px" %)
346 +|=(% style="width: 71px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 74px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 69px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 57px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 57px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
347 +|(% style="width:71px" %)0X10|(% style="width:74px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X10|(% style="width:69px" %)0X00|(% style="width:66px" %)0X64|(% style="width:57px" %)0X8A|(% style="width:57px" %)(((
348 +0XA5
126 126  )))
127 127  
128 -Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
351 +Change the intercept of the sensor at address 10 to 1 (default is 0). You need to pass the intercept 1*100 =100 into the command 0x006.
129 129  
130 130  response
131 131  
132 132  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
133 133  |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
134 -|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
135 -0X02
136 -)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X0A|(% style="width:1px" %)(((
137 -0XE5
357 +|(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
358 +0X00
359 +)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
360 +0XA5
138 138  )))
139 139  
363 +=== 2.6.4 Query data ===
140 140  
141 -=== 1.7.4 Query data ===
142 142  
143 -The address of the EC K10 sensor is
366 +Query the data (PH) of the sensor (address 10), host → slave
144 144  
145 -The query data command is 11 03 00 00 00 02 C6 9B
368 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
369 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
370 +|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X4B
146 146  
147 -For example, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm
372 +If the sensor receives correctly, the following data will be returned, slave → host
148 148  
374 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
375 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
376 +|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0XC4|(% style="width:56px" %)0X9B
149 149  
150 -The address of the EC K1 sensor is 12
378 +The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned.
151 151  
152 -The query data command is 12 03 00 00 00 02 C6 A8
380 +For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B.
153 153  
154 -For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm
382 +02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86.
155 155  
156 156  
157 -=== 7.1.5 Calibration Method ===
385 +=== 2.6.5 Calibration Method ===
158 158  
159 159  
160 -This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution.
161 -
388 +This device uses three-point calibration, and three known pH standard solutions need to be prepared.
162 162  The calibration steps are as follows:
163 -(1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable.
390 +(1) Place the electrode in distilled water to clean it, and then place it in 9.18 standard buffer solution. After the data stabilizes, enter the following calibration command, and the 9.18 calibration is completed.
164 164  
165 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
166 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
167 -|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
392 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
393 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
394 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
168 168  0X00
396 +)))|(% style="width:68px" %)0X20|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X8A|(% style="width:55px" %)(((
397 +0XF1
398 +)))
169 169  
400 +(2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed.
401 +
402 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
403 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
404 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
170 170  0X00
406 +)))|(% style="width:68px" %)0X21|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XDB|(% style="width:55px" %)(((
407 +0X31
408 +)))
171 171  
172 -0X37
410 +(3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed.
173 173  
174 -0X32
175 -)))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC
412 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
413 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
414 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
415 +0X00
416 +)))|(% style="width:68px" %)0X22|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X2B|(% style="width:55px" %)(((
417 +0X31
418 +)))
176 176  
177 -1413*10 gives 0X00003732
420 +After the above three steps are completed, the calibration is successful. The advantage of three-point calibration compared to two-point calibration is that the electrode is calibrated separately in the acid and alkali parts, thereby achieving accurate calibration of the full range and making the measurement data more accurate.
178 178  
179 -response
180 180  
181 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
182 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
183 -|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0
423 += 3. DR-ORP1 Water ORP Sensor =
184 184  
185 -(2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command
186 186  
187 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
188 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
189 -|(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
190 -0X00
426 +== 3.1 Specification ==
191 191  
192 -0X01
428 +* **Power Input**: DC7~~30
429 +* **Measuring range**:** **-1999~~1999mV
430 +**Resolution**: 1mV
431 +* **Interface**: RS485. 9600 Baud Rate
432 +* **Measurement error**: ±3mV
433 +* **Stability**: ≤2mv/24 hours
434 +* **Equipment working conditions**: Ambient temperature: 0-60℃ Relative humidity: <85%RH
435 +* **IP Rated**: IP68
436 +* **Max Pressure**: 0.6MPa
193 193  
194 -0XF7
438 +== 3.2 Wiring ==
195 195  
196 -0X20
197 -)))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75
440 +[[image:image-20240720172620-3.png||height="378" width="620"]]
198 198  
199 -12880*10 gives 0X01F720
200 200  
201 -response
443 +== 3.3 Mechinical Drawing ==
202 202  
445 +[[image:image-20240714174241-2.png]]
446 +
447 +== 3.4 Installation Notice ==
448 +
449 +Do not power on while connect the cables. Double check the wiring before power on.
450 +
451 +Installation Photo as reference:
452 +
453 +**~ Submerged installation:**
454 +
455 +The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
456 +
457 +[[image:image-20240718191348-6.png]]
458 +
459 +**~ Pipeline installation:**
460 +
461 +Connect the equipment to the pipeline through the 3/4 thread.
462 +
463 +[[image:image-20240718191336-5.png||height="239" width="326"]]
464 +
465 +
466 +== 3.5 Maintenance ==
467 +
468 +
469 +(1) The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
470 +
471 +(2) In general, ORP electrodes do not need to be calibrated and can be used directly. When there is doubt about the quality and test results of the ORP electrode, the electrode potential can be checked with an ORP standard solution to determine whether the ORP electrode meets the measurement requirements, and the electrode can be recalibrated or replaced with a new ORP electrode. The frequency of calibration or inspection of the measuring electrode depends on different application conditions (the degree of dirt in the application, the deposition of chemical substances, etc.).
472 +
473 +(3) There is an appropriate soaking solution in the protective bottle at the front end of the electrode, and the electrode head is soaked in it to ensure the activation of the platinum sheet and the liquid junction. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
474 +
475 +(4) Preparation of electrode soaking solution: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water to prepare a 3.3M potassium chloride solution.
476 +
477 +(5) Before measuring, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
478 +
479 +(6) The electrode should be cleaned with deionized water before and after the measurement to ensure the measurement accuracy.
480 +
481 +(7) After long-term use, the ORP electrode will be passivated, which is manifested as a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the platinum sheet at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
482 +
483 +(8) Electrode contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. If the platinum of the electrode is severely contaminated and an oxide film is formed, toothpaste can be applied to the platinum surface and then gently scrubbed to restore the platinum's luster.
484 +
485 +(9) The equipment should be calibrated before each use. It is recommended to calibrate once every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
486 +
487 +== 3.6 RS485 Commands ==
488 +
489 +
490 +RS485 signaldefault address 0x13
491 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
492 +
493 +=== 3.6.1 Query address ===
494 +
495 +send
496 +
203 203  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
204 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
205 -|(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50
498 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
499 +|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
206 206  
501 +response
207 207  
503 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
504 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
505 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
208 208  
507 +=== 3.6.2 Change address ===
209 209  
509 +For example: Change the address of the sensor with address 1 to 2, master → slave
210 210  
511 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
512 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
513 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
211 211  
212 -= 2. DR-PH01 Water PH Sensor =
515 +If the sensor receives correctly, the data is returned along the original path.
516 +Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
213 213  
214 -== 2.7 RS485 Commands ==
215 215  
519 +=== 3.6.3 Modify intercept ===
216 216  
217 -The address of the pH  sensor is 10
521 +send
218 218  
219 -The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned.
523 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
524 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 69px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
525 +|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
526 +0X96
527 +)))
220 220  
221 -For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B.
529 +Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
222 222  
223 -02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86.
531 +response
224 224  
533 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
534 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
535 +|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
536 +0X00
537 +)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
538 +0X96
539 +)))
225 225  
226 -= 3. DR-ORP1 Water ORP Sensor =
541 +=== 3.6.4 Query data ===
227 227  
228 -== 3.7 RS485 Commands ==
229 229  
544 +Query the data (ORP) of the sensor (address 13), host → slave
230 230  
231 -The address of the ORP sensor is 13
546 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
547 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
548 +|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X78
232 232  
550 +If the sensor receives correctly, the following data will be returned, slave → host
551 +
552 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
553 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
554 +|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X80|(% style="width:56px" %)0X9B
555 +
233 233  The query data command is 13 03 00 00 00 01 87 78
234 234  
235 235  For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B.
... ... @@ -237,31 +237,229 @@
237 237  02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV
238 238  
239 239  
563 +=== 3.6.5 Calibration Method ===
564 +
565 +This device uses two-point calibration, and two known ORP standard solutions need to be prepared. The calibration steps are as follows:
566 +(1) Place the electrode in distilled water to clean it, and then place it in 86mV standard buffer solution. After the data stabilizes,
567 +enter the following calibration command, and the 86mV point calibration is completed;
568 +
569 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
570 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
571 +|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
572 +0X00
573 +)))|(% style="width:68px" %)0X24|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XCB|(% style="width:55px" %)(((
574 +0X03
575 +)))
576 +
577 +Wash the electrode in distilled water and place it in 256mV standard buffer. After the data is stable, enter the following calibration command to complete the 256mV point calibration.
578 +
579 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
580 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
581 +|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
582 +0X00
583 +)))|(% style="width:68px" %)0X25|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X9A|(% style="width:55px" %)(((
584 +0XC3
585 +)))
586 +
240 240  = 4. DR-DO1 Dissolved Oxygen Sensor =
241 241  
242 -== 4.7 RS485 Commands ==
243 243  
244 244  
245 -The address of the dissolved oxygen sensor is 14
591 +== 4.1 Specification ==
246 246  
247 -The query data command is 14 03 00 14 00 01 C6 CB
248 248  
594 +* **Measuring range**: 0-20mg/L, 0-50℃
595 +* **Accuracy**: 3%, ±0.5℃
596 +* **Resolution**: 0.01 mg/L, 0.01℃
597 +* **Maximum operating pressure**: 6 bar
598 +* **Output signal**: A: 4-20mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01)
599 +* **Power supply voltage**: 5-24V DC
600 +* **Working environment**: temperature 0-60℃; humidity <95%RH
601 +* **Power consumption**: ≤0.5W
602 +
603 +== 4.2 wiring ==
604 +
605 +[[image:image-20240720172632-4.png||height="390" width="640"]]
606 +
607 +
608 +== (% id="cke_bm_224234S" style="display:none" %) (%%)4.3 Impedance requirements for current signals ==
609 +
610 +[[image:image-20240718195414-8.png||height="100" width="575"]]
611 +
612 +
613 +== 4.4 Mechinical Drawing ==
614 +
615 +
616 +[[image:image-20240719155308-1.png||height="226" width="527"]]
617 +
618 +
619 +== 4.5 Instructions for use and maintenance ==
620 +
621 +* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
622 +* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
623 +
624 +== 4.6 RS485 Commands ==
625 +
626 +RS485 signaldefault address 0x14
627 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
628 +
629 +=== 4.6.1 Query address ===
630 +
631 +send
632 +
633 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
634 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
635 +|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XF1|(% style="width:56px" %)0XD7
636 +
637 +If you forget the original address of the sensor, you can use the broadcast address 0XFF instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
638 +
639 +
640 +response
641 +
642 +Register 0 data high and register 0 data low indicate the actual address of the sensor: 1
643 +Register 1 data high and register 1 data low indicate the sensor version
644 +
645 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
646 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
647 +|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X04|(% style="width:68px" %)0X00|(% style="width:70px" %)0X01|(% style="width:72px" %)0X00|(% style="width:56px" %)0X00|(% style="width:56px" %)0XB4|(% style="width:56px" %)0X3C
648 +
649 +=== 4.6.2 Change address ===
650 +
651 +For example: Change the address of the sensor with address 1 to 2(address range: 1-119), master → slave
652 +
653 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:907.333px" %)
654 +|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 71px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low
655 +|(% style="width:67px" %)0X01|(% style="width:71px" %)0X10|(% style="width:65px" %)0X00|(% style="width:65px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X04|(% style="width:53px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X00|(% style="width:53px" %)0X00|(% style="width:56px" %)0XD2|(% style="width:53px" %)0X10
656 +
657 +response
658 +
659 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
660 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
661 +|(% style="width:99px" %)0X01|(% style="width:72px" %)0X10|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0X61|(% style="width:56px" %)0XCA
662 +
663 +=== 4.6.3 Query data ===
664 +
665 +
666 +Query the data (dissolved oxygen) of the sensor (address 14), host → slave
667 +
668 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
669 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
670 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X14|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XCB
671 +
672 +If the sensor receives correctly, the following data will be returned, slave → host
673 +
674 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
675 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
676 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X03|(% style="width:72px" %)0X78|(% style="width:56px" %)0XB5|(% style="width:56px" %)0X55
677 +
249 249  After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen.
250 250  
251 251  Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L
252 252  
253 253  
683 +Query the data (temperature) of the sensor (address 14), host → slave
684 +
685 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
686 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
687 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X11|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XD6|(% style="width:56px" %)0XCA
688 +
689 +If the sensor receives correctly, the following data will be returned, slave → host
690 +
691 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
692 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
693 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X09|(% style="width:72px" %)0XA4|(% style="width:56px" %)0XB2|(% style="width:56px" %)0X6C
694 +
695 +After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**09 A4**(%%) B2 6C. 03 78 is the value of dissolved oxygen temperature.
696 +
697 +Converted to decimal, it is 2468. Add two decimal places to get the actual value. 09 A4 means the current dissolved oxygen temperature is 24.68℃
698 +
699 +
254 254  = 5. DR-TS1 Water Turbidity Sensor =
255 255  
256 -== 5.7 RS485 Commands ==
257 257  
258 258  
259 -The address of the dissolved oxygen sensor is 15
704 +== (% id="cke_bm_81470S" style="display:none" %) (%%)5.1 Specification ==
260 260  
706 +* **Measuring range**: 0.1~1000.0NTU
707 +* **Accuracy**: ±5%
708 +* **Resolution**: 0.1NTU
709 +* **Stability**: ≤3mV/24 hours
710 +* **Output signal**: A: 4~20 mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01)
711 +* **Power supply voltage**: 5~24V DC (when output signal is RS485)12~24V DC (when output signal is 4~20mA)
712 +* **Working environment**: temperature 0~60℃; humidity ≤95%RH
713 +* **Power consumption**: ≤0.5W
714 +
715 +== 5.2 wiring ==
716 +
717 +[[image:image-20240720172640-5.png||height="387" width="635"]]
718 +
719 +
720 +== 5.3 Impedance requirements for current signals ==
721 +
722 +[[image:image-20240718195414-8.png||height="100" width="575"]]
723 +
724 +
725 +== 5.4 Mechinical Drawing ==
726 +
727 +[[image:image-20240718195058-7.png||height="305" width="593"]]
728 +
729 +
730 +== 5.5 Instructions for use and maintenance ==
731 +
732 +* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
733 +* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
734 +
735 +== 5.6 RS485 Commands ==
736 +
737 +
738 +RS485 signaldefault address 0x15
739 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
740 +
741 +=== 5.6.1 Query address ===
742 +
743 +send
744 +
745 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
746 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
747 +|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X50|(% style="width:70px" %)0X00|(% style="width:72px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
748 +
749 +If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
750 +
751 +
752 +response
753 +
754 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
755 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
756 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
757 +
758 +=== 5.6.2 Change address ===
759 +
760 +For example: Change the address of the sensor with address 1 to 2, master → slave
761 +
762 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
763 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
764 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
765 +
766 +If the sensor receives correctly, the data is returned along the original path.
767 +Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
768 +
769 +=== 5.6.3 Query data ===
770 +
771 +
772 +Query the data (turbidity) of the sensor (address 15), host → slave
773 +
774 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
775 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
776 +|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X1E
777 +
778 +If the sensor receives correctly, the following data will be returned, slave → host
779 +
780 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
781 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
782 +|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0X9A|(% style="width:56px" %)0X09|(% style="width:56px" %)0X4C
783 +
261 261  The query data command is 15 03 00 00 00 01 87 1E
262 262  
263 263  For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C
264 264  
265 265  02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU
266 -
267 -
image-20240718190121-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +281.1 KB
Content
image-20240718190204-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +111.8 KB
Content
image-20240718190221-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +140.2 KB
Content
image-20240718190249-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +111.6 KB
Content
image-20240718191336-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240718191348-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +91.2 KB
Content
image-20240718195058-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +97.6 KB
Content
image-20240718195414-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +13.5 KB
Content
image-20240719155308-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +57.4 KB
Content
image-20240720172533-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20240720172548-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20240720172620-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20240720172632-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20240720172640-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content