Changes for page Water Quality Sensors

Last modified by Karry Zhuang on 2025/07/25 09:38

From version 15.2
edited by Karry Zhuang
on 2024/07/18 18:35
Change comment: There is no comment for this version
To version 45.97
edited by Xiaoling
on 2024/08/06 18:08
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.karry
1 +XWiki.Xiaoling
Content
... ... @@ -3,26 +3,39 @@
3 3  {{toc/}}
4 4  
5 5  
6 +
7 +
6 6  = 1. DR-ECK Water EC Probe =
7 7  
8 8  == 1.1 Specification: ==
9 9  
12 +
10 10  * **Power Input**: DC7~~30
14 +
11 11  * **Power Consumption** : < 0.5W
16 +
12 12  * **Interface**: RS485. 9600 Baud Rate
18 +
13 13  * **EC Range & Resolution:**
14 14  ** **ECK0.01** : 0.02 ~~ 20 μS/cm
15 15  ** **ECK0.1**: 0.2 ~~ 200.0 μS/cm
16 16  ** **ECK1.0** : 2 ~~ 2,000 μS/cm  Resolution: 1 μS/cm
17 17  ** **ECK10.0** : 20 ~~ 20,000 μS/cm  Resolution: 10 μS/cm
24 +
18 18  * **EC Accuracy**: ±1% FS
26 +
19 19  * **Temperature Measure Range**: -20 ~~ 60 °C
28 +
20 20  * **Temperature Accuracy: **±0.5 °C
30 +
21 21  * **IP Rated**: IP68
32 +
22 22  * **Max Pressure**: 0.6MPa
23 23  
35 +
24 24  == 1.2 Application for Different Range ==
25 25  
38 +
26 26  [[image:image-20240714173018-1.png]]
27 27  
28 28  
... ... @@ -29,8 +29,12 @@
29 29  == 1.3 Wiring ==
30 30  
31 31  
45 +[[image:image-20240720172533-1.png||height="347" width="569"]]
46 +
47 +
32 32  == 1.4 Mechinical Drawing ==
33 33  
50 +
34 34  [[image:image-20240714174241-2.png]]
35 35  
36 36  
... ... @@ -37,47 +37,53 @@
37 37  == 1.5 Installation ==
38 38  
39 39  
40 - Do not power on while connect the cables. Double check the wiring before power on.
57 +**Electrode installation form:**
41 41  
42 -Installation Photo as reference:
59 +A: Side wall installation
43 43  
44 -**~ Submerged installation:**
61 +B: Top flange installation
45 45  
46 -The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
63 +C: Pipeline bend installation
47 47  
48 -[[image:image-20240715181933-4.png||height="281" width="258"]]
65 +D: Pipeline bend installation
49 49  
50 -**~ Pipeline installation:**
67 +E: Flow-through installation
51 51  
52 -Connect the equipment to the pipeline through the 3/4 thread.
69 +F: Submerged installation
53 53  
54 -[[image:image-20240715182122-6.png||height="291" width="408"]]
71 +[[image:image-20240718190121-1.png||height="350" width="520"]]
55 55  
56 -**Sampling:**
73 +**Several common installation methods of electrodes**
57 57  
58 -Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it.
75 +When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation.
59 59  
60 -**Measure the pH of the water sample:**
77 +A. Several common incorrect installation methods
61 61  
62 -First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable.
79 +[[image:image-20240718190204-2.png||height="262" width="487"]]
63 63  
81 +**Error cause:** The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error.
64 64  
65 -== 1.6 Maintain ==
83 +[[image:image-20240718190221-3.png||height="292" width="500"]]
66 66  
85 +**Error cause: **Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes.
67 67  
68 -* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible!
69 -* There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
70 -* Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water.
71 -* The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective.
72 -* Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
73 -* The electrode should be cleaned with deionized water before and after measurement to ensure accuracy.
74 -* After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
75 -* Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant.
76 -* (((
77 -The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
78 -)))
87 +B. Correct installation method
79 79  
89 +[[image:image-20240718190249-4.png||height="287" width="515"]]
80 80  
91 +
92 +== 1.6 Maintenance ==
93 +
94 +
95 +* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
96 +
97 +* If the electrode is not used for a long time, it can generally be stored in a dry place, but it must be placed (stored) in distilled water for several hours before use to activate the electrode. Electrodes that are frequently used can be placed (stored) in distilled water.
98 +
99 +* Cleaning of conductivity electrodes: Organic stains on the electrode can be cleaned with warm water containing detergent, or with alcohol. Calcium and magnesium precipitates are best cleaned with 10% citric acid. The electrode plate or pole can only be cleaned by chemical methods or by shaking in water. Wiping the electrode plate will damage the coating (platinum black) on the electrode surface.
100 +
101 +* The equipment should be calibrated before each use. It is recommended to calibrate it every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.).
102 +
103 +
81 81  == 1.7 RS485 Commands ==
82 82  
83 83  
... ... @@ -85,109 +85,316 @@
85 85  Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
86 86  
87 87  
88 -=== 1.7.1 Query data ===
111 +=== 1.7.1 Query address ===
89 89  
113 +
114 +**send:**
115 +
116 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
117 +|=(% style="width: 74.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 high
118 +|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:50px" %)0X00|(% style="width:42px" %)0X50|(% style="width:42px" %)0X00|(% style="width:42px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
119 +
120 +If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
121 +
122 +
123 +**response:**
124 +
125 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
126 +|=(% style="width: 100px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 110px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
127 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
128 +
129 +
130 +=== 1.7.2 Change address ===
131 +
132 +
133 +For example: Change the address of the sensor with address 1 to 2, master → slave
134 +
135 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
136 +|=(% style="width: 74.75px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
137 +|(% style="width:67px" %)0X01|(% style="width:76px" %)0X06|(% style="width:60px" %)0X00|(% style="width:50px" %)0X50|(% style="width:50px" %)0X00|(% style="width:50px" %)0X02|(% style="width:57px" %)0X08|(% style="width:56px" %)0X1A
138 +
139 +If the sensor receives correctly, the data is returned along the original path.
140 +
141 +(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
142 +
143 +
144 +=== 1.7.3 Modify intercept ===
145 +
146 +
147 +**send:**
148 +
149 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
150 +|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
151 +|(% style="width:64px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)(((
152 +0X07
153 +)))
154 +
155 +Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
156 +
157 +**response:**
158 +
159 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
160 +|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
161 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
162 +0X02
163 +)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X38|(% style="width:1px" %)(((
164 +0X8F
165 +)))
166 +
167 +
168 +=== 1.7.4 Query data ===
169 +
170 +
171 +Query the data (EC,temperature) of the sensor (address 11), host → slave
172 +
173 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
174 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
175 +|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0X9B
176 +
177 +If the sensor receives correctly, the following data will be returned, slave → host
178 +
179 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
180 +|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
181 +|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0X8B|(% style="width:56px" %)0XD0
182 +
90 90  The address of the EC K10 sensor is 11
91 91  
92 92  The query data command is 11 03 00 00 00 02 C6 9B
93 93  
94 -For example, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm
187 +**For example**, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
95 95  
96 96  
190 +Query the data (EC,temperature) of the sensor (address 11), host → slave
191 +
192 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
193 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
194 +|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XA8
195 +
196 +If the sensor receives correctly, the following data will be returned, slave → host
197 +
198 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
199 +|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
200 +|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0XB8|(% style="width:56px" %)0XD0
201 +
97 97  The address of the EC K1 sensor is 12
98 98  
99 99  The query data command is 12 03 00 00 00 02 C6 A8
100 100  
101 -For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm.
206 +**For example**, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
102 102  
103 103  
104 -=== 1.7.2 Calibration Method ===
209 +=== 1.7.5 Calibration Method ===
105 105  
106 106  
107 107  This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution.
108 108  
109 -The calibration steps are as follows:
214 +(% style="color:blue" %)**The calibration steps are as follows:**
215 +
110 110  (1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable.
111 111  
112 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
113 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
218 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
219 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
114 114  |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
115 115  0X00
116 -
117 117  0X00
118 -
119 119  0X37
120 -
121 121  0X32
122 122  )))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC
123 123  
124 124  1413*10 gives 0X00003732
125 125  
126 -Return
229 +**response:**
127 127  
128 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
129 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
231 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
232 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
130 130  |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0
131 131  
132 -
133 133  (2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command
134 134  
135 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
136 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
237 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
238 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
137 137  |(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
138 138  0X00
139 -
140 140  0X01
141 -
142 142  0XF7
143 -
144 144  0X20
145 145  )))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75
146 146  
147 147  12880*10 gives 0X01F720
148 148  
149 -Return
248 +**response:**
150 150  
151 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
152 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
250 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
251 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
153 153  |(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50
154 154  
155 155  
156 -=== 1.7.3 Query address ===
255 += 2. DR-PH01 Water PH Sensor =
157 157  
257 +== 2.1 Specification ==
158 158  
159 -send
160 160  
161 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
162 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
260 +* **Power Input**: DC7~~30
261 +
262 +* **Power Consumption** : < 0.5W
263 +
264 +* **Interface**: RS485. 9600 Baud Rate
265 +
266 +* **pH measurement range**: 0~~14.00pH; resolution: 0.01pH
267 +
268 +* **pH measurement error**: ±0.15pH
269 +
270 +* **Repeatability error**: ±0.02pH
271 +
272 +* **Temperature measurement range**:0~~60°C; resolution: 0.1°C (set temperature for manual temperature compensation, default 25°C)
273 +
274 +* **Temperature measurement error**: ±0.5°C
275 +
276 +* **Temperature Measure Range**: -20 ~~ 60 °C
277 +
278 +* **Temperature Accuracy: **±0.5 °C
279 +
280 +* **IP Rated**: IP68
281 +
282 +* **Max Pressure**: 0.6MPa
283 +
284 +
285 +== 2.2 Wiring ==
286 +
287 +
288 +[[image:image-20240720172548-2.png||height="348" width="571"]]
289 +
290 +
291 +== 2.3 Mechinical Drawing ==
292 +
293 +
294 +[[image:image-20240714174241-2.png]]
295 +
296 +
297 +== 2.4 Installation Notice ==
298 +
299 +
300 +Do not power on while connect the cables. Double check the wiring before power on.
301 +
302 +Installation Photo as reference:
303 +
304 +(% style="color:blue" %)**Submerged installation:**
305 +
306 +The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
307 +
308 +[[image:image-20240718191348-6.png]]
309 +
310 +(% style="color:blue" %)**Pipeline installation:**
311 +
312 +Connect the equipment to the pipeline through the 3/4 thread.
313 +
314 +[[image:image-20240718191336-5.png||height="239" width="326"]]
315 +
316 +(% style="color:blue" %)**Sampling:**
317 +
318 +Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it.
319 +
320 +(% style="color:blue" %)**Measure the pH of the water sample:**
321 +
322 +First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable.
323 +
324 +
325 +== 2.5 Maintenance ==
326 +
327 +
328 +* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible!
329 +
330 +* There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
331 +
332 +* Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water.
333 +
334 +* The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective.
335 +
336 +* Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
337 +
338 +* The electrode should be cleaned with deionized water before and after measurement to ensure accuracy.
339 +
340 +* After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
341 +
342 +* Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant.
343 +
344 +* The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
345 +
346 +
347 +== 2.6 RS485 Commands ==
348 +
349 +
350 +RS485 signaldefault address 0x10
351 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
352 +
353 +
354 +=== 2.6.1 Query address ===
355 +
356 +
357 +**send:**
358 +
359 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
360 +|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
163 163  |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
164 164  
165 -If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
363 +**response:**
166 166  
365 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
366 +|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
367 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
167 167  
168 -return
369 +=== 2.6.2 Change address ===
169 169  
170 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
171 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
172 -|(% style="width:99px" %)0X0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
173 173  
372 +For example: Change the address of the sensor with address 1 to 2, master → slave
174 174  
374 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
375 +|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
376 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
175 175  
378 +If the sensor receives correctly, the data is returned along the original path.
176 176  
380 +(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
177 177  
178 178  
383 +=== 2.6.3 Modify intercept ===
179 179  
180 180  
386 +**send:**
181 181  
388 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
389 +|=(% style="width: 44.75px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
390 +|(% style="width:71px" %)0X10|(% style="width:74px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X10|(% style="width:69px" %)0X00|(% style="width:66px" %)0X64|(% style="width:57px" %)0X8A|(% style="width:57px" %)(((
391 +0XA5
392 +)))
182 182  
394 +Change the intercept of the sensor at address 10 to 1 (default is 0). You need to pass the intercept 1*100 =100 into the command 0x006.
183 183  
184 -= 2. DR-PH01 Water PH Sensor =
396 +**response:**
185 185  
186 -== 2.7 RS485 Commands ==
398 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
399 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
400 +|(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
401 +0X00
402 +)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
403 +0XA5
404 +)))
187 187  
406 +=== 2.6.4 Query data ===
188 188  
189 -The address of the pH  sensor is 10
190 190  
409 +Query the data (PH) of the sensor (address 10), host → slave
410 +
411 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
412 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
413 +|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X4B
414 +
415 +If the sensor receives correctly, the following data will be returned, slave → host
416 +
417 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
418 +|=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
419 +|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0XC4|(% style="width:56px" %)0X9B
420 +
191 191  The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned.
192 192  
193 193  For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B.
... ... @@ -195,13 +195,201 @@
195 195  02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86.
196 196  
197 197  
428 +=== 2.6.5 Calibration Method ===
429 +
430 +
431 +This device uses three-point calibration, and three known pH standard solutions need to be prepared.
432 +
433 +(% style="color:blue" %)**The calibration steps are as follows:**
434 +
435 +(1) Place the electrode in distilled water to clean it, and then place it in 9.18 standard buffer solution. After the data stabilizes, enter the following calibration command, and the 9.18 calibration is completed.
436 +
437 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
438 +|=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
439 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
440 +0X00
441 +)))|(% style="width:68px" %)0X20|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X8A|(% style="width:55px" %)(((
442 +0XF1
443 +)))
444 +
445 +(2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed.
446 +
447 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
448 +|=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
449 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
450 +0X00
451 +)))|(% style="width:68px" %)0X21|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XDB|(% style="width:55px" %)(((
452 +0X31
453 +)))
454 +
455 +(3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed.
456 +
457 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
458 +|=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
459 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
460 +0X00
461 +)))|(% style="width:68px" %)0X22|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X2B|(% style="width:55px" %)(((
462 +0X31
463 +)))
464 +
465 +After the above three steps are completed, the calibration is successful. The advantage of three-point calibration compared to two-point calibration is that the electrode is calibrated separately in the acid and alkali parts, thereby achieving accurate calibration of the full range and making the measurement data more accurate.
466 +
467 +
198 198  = 3. DR-ORP1 Water ORP Sensor =
199 199  
200 -== 3.7 RS485 Commands ==
470 +== 3.1 Specification ==
201 201  
202 202  
203 -The address of the ORP sensor is 13
473 +* **Power Input**: DC7~~30
204 204  
475 +* **Measuring range**:** **-1999~~1999mV
476 +
477 +* **Resolution**: 1mV
478 +
479 +* **Interface**: RS485. 9600 Baud Rate
480 +
481 +* **Measurement error**: ±3mV
482 +
483 +* **Stability**: ≤2mv/24 hours
484 +
485 +* **Equipment working conditions**: Ambient temperature: 0-60°C Relative humidity: <85%RH
486 +
487 +* **IP Rated**: IP68
488 +
489 +* **Max Pressure**: 0.6MPa
490 +
491 +
492 +== 3.2 Wiring ==
493 +
494 +
495 +[[image:image-20240720172620-3.png||height="378" width="620"]]
496 +
497 +
498 +== 3.3 Mechinical Drawing ==
499 +
500 +
501 +[[image:image-20240714174241-2.png]]
502 +
503 +
504 +== 3.4 Installation Notice ==
505 +
506 +
507 +Do not power on while connect the cables. Double check the wiring before power on.
508 +
509 +**Installation Photo as reference:**
510 +
511 +(% style="color:blue" %)** Submerged installation:**
512 +
513 +The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
514 +
515 +[[image:image-20240718191348-6.png]]
516 +
517 +(% style="color:blue" %)** Pipeline installation:**
518 +
519 +Connect the equipment to the pipeline through the 3/4 thread.
520 +
521 +[[image:image-20240718191336-5.png||height="239" width="326"]]
522 +
523 +
524 +== 3.5 Maintenance ==
525 +
526 +
527 +(1) The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
528 +
529 +(2) In general, ORP electrodes do not need to be calibrated and can be used directly. When there is doubt about the quality and test results of the ORP electrode, the electrode potential can be checked with an ORP standard solution to determine whether the ORP electrode meets the measurement requirements, and the electrode can be recalibrated or replaced with a new ORP electrode. The frequency of calibration or inspection of the measuring electrode depends on different application conditions (the degree of dirt in the application, the deposition of chemical substances, etc.).
530 +
531 +(3) There is an appropriate soaking solution in the protective bottle at the front end of the electrode, and the electrode head is soaked in it to ensure the activation of the platinum sheet and the liquid junction. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
532 +
533 +(4) Preparation of electrode soaking solution: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water to prepare a 3.3M potassium chloride solution.
534 +
535 +(5) Before measuring, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
536 +
537 +(6) The electrode should be cleaned with deionized water before and after the measurement to ensure the measurement accuracy.
538 +
539 +(7) After long-term use, the ORP electrode will be passivated, which is manifested as a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the platinum sheet at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
540 +
541 +(8) Electrode contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. If the platinum of the electrode is severely contaminated and an oxide film is formed, toothpaste can be applied to the platinum surface and then gently scrubbed to restore the platinum's luster.
542 +
543 +(9) The equipment should be calibrated before each use. It is recommended to calibrate once every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
544 +
545 +
546 +== 3.6 RS485 Commands ==
547 +
548 +
549 +RS485 signaldefault address 0x13
550 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
551 +
552 +
553 +=== 3.6.1 Query address ===
554 +
555 +
556 +**send:**
557 +
558 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
559 +|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
560 +|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
561 +
562 +
563 +**response:**
564 +
565 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
566 +|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
567 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
568 +
569 +
570 +=== 3.6.2 Change address ===
571 +
572 +
573 +For example: Change the address of the sensor with address 1 to 2, master → slave
574 +
575 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
576 +|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
577 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
578 +
579 +If the sensor receives correctly, the data is returned along the original path.
580 +
581 +(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
582 +
583 +
584 +=== 3.6.3 Modify intercept ===
585 +
586 +
587 +**send:**
588 +
589 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
590 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
591 +|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
592 +0X96
593 +)))
594 +
595 +Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
596 +
597 +**response:**
598 +
599 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
600 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
601 +|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
602 +0X00
603 +)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
604 +0X96
605 +)))
606 +
607 +
608 +=== 3.6.4 Query data ===
609 +
610 +
611 +Query the data (ORP) of the sensor (address 13), host → slave
612 +
613 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
614 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
615 +|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X78
616 +
617 +If the sensor receives correctly, the following data will be returned, slave → host
618 +
619 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
620 +|=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
621 +|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X80|(% style="width:56px" %)0X9B
622 +
205 205  The query data command is 13 03 00 00 00 01 87 78
206 206  
207 207  For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B.
... ... @@ -209,31 +209,267 @@
209 209  02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV
210 210  
211 211  
630 +=== 3.6.5 Calibration Method ===
631 +
632 +
633 +This device uses two-point calibration, and two known ORP standard solutions need to be prepared. The calibration steps are as follows:
634 +(1) Place the electrode in distilled water to clean it, and then place it in 86mV standard buffer solution. After the data stabilizes,
635 +enter the following calibration command, and the 86mV point calibration is completed;
636 +
637 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
638 +|=(% style="width: 42px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
639 +|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
640 +0X00
641 +)))|(% style="width:68px" %)0X24|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XCB|(% style="width:55px" %)(((
642 +0X03
643 +)))
644 +
645 +Wash the electrode in distilled water and place it in 256mV standard buffer. After the data is stable, enter the following calibration command to complete the 256mV point calibration.
646 +
647 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
648 +|=(% style="width: 42px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
649 +|(% style="width:68px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
650 +0X00
651 +)))|(% style="width:68px" %)0X25|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X9A|(% style="width:55px" %)(((
652 +0XC3
653 +)))
654 +
212 212  = 4. DR-DO1 Dissolved Oxygen Sensor =
213 213  
214 -== 4.7 RS485 Commands ==
657 +== 4.1 Specification ==
215 215  
216 216  
217 -The address of the dissolved oxygen sensor is 14
660 +* **Measuring range**: 0-20mg/L, 0-50°C
218 218  
219 -The query data command is 14 03 00 14 00 01 C6 CB
662 +* **Accuracy**: 3%, ±0.5°C
220 220  
664 +* **Resolution**: 0.01 mg/L, 0.01°C
665 +
666 +* **Maximum operating pressure**: 6 bar
667 +
668 +* **Output signal**: A: 4-20mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01)
669 +
670 +* **Power supply voltage**: 5-24V DC
671 +
672 +* **Working environment**: temperature 0-60°C; humidity <95%RH
673 +
674 +* **Power consumption**: ≤0.5W
675 +
676 +== 4.2 wiring ==
677 +
678 +
679 +[[image:image-20240720172632-4.png||height="390" width="640"]]
680 +
681 +
682 +== 4.3 Impedance requirements for current signals ==
683 +
684 +
685 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
686 +|=(% style="width: 140px" %)Supply Voltage|=(% style="width: 70px;" %)9V|=(% style="width: 70px;" %)**12V**|=(% style="width: 70px;" %)**20V**|=(% style="width: 70px;" %)**24V**
687 +|(% style="width:137px" %)**Max Impedance**|(% style="width:70px" %)**<250Ω**|(% style="width:68px" %)**<400Ω**|(% style="width:68px" %)**<500Ω**|(% style="width:70px" %)**<900Ω**
688 +
689 +[[image:image-20240718195414-8.png||height="100" width="575"]]
690 +
691 +
692 +== 4.4 Mechinical Drawing ==
693 +
694 +
695 +[[image:image-20240719155308-1.png||height="226" width="527"]]
696 +
697 +
698 +== 4.5 Instructions for use and maintenance ==
699 +
700 +
701 +* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
702 +
703 +* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
704 +
705 +
706 +== 4.6 RS485 Commands ==
707 +
708 +
709 +RS485 signaldefault address 0x14
710 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
711 +
712 +
713 +=== 4.6.1 Query address ===
714 +
715 +
716 +**send:**
717 +
718 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
719 +|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
720 +|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XF1|(% style="width:56px" %)0XD7
721 +
722 +If you forget the original address of the sensor, you can use the broadcast address 0XFF instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
723 +
724 +
725 +**response:**
726 +
727 +Register 0 data high and register 0 data low indicate the actual address of the sensor: 1
728 +Register 1 data high and register 1 data low indicate the sensor version
729 +
730 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
731 +|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
732 +|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X04|(% style="width:68px" %)0X00|(% style="width:70px" %)0X01|(% style="width:72px" %)0X00|(% style="width:56px" %)0X00|(% style="width:56px" %)0XB4|(% style="width:56px" %)0X3C
733 +
734 +=== 4.6.2 Change address ===
735 +
736 +
737 +For example: Change the address of the sensor with address 1 to 2(address range: 1-119), master → slave
738 +
739 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
740 +|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Start address high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Start address low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 39px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high|=(% style="width: 39px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low
741 +|(% style="width:67px" %)0X01|(% style="width:71px" %)0X10|(% style="width:65px" %)0X00|(% style="width:65px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X04|(% style="width:53px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X00|(% style="width:53px" %)0X00|(% style="width:56px" %)0XD2|(% style="width:53px" %)0X10
742 +
743 +**response:**
744 +
745 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
746 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
747 +|(% style="width:99px" %)0X01|(% style="width:72px" %)0X10|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0X61|(% style="width:56px" %)0XCA
748 +
749 +
750 +=== 4.6.3 Query data ===
751 +
752 +
753 +Query the data (dissolved oxygen) of the sensor (address 14), host → slave
754 +
755 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
756 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
757 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X14|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XCB
758 +
759 +If the sensor receives correctly, the following data will be returned, slave → host
760 +
761 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
762 +|=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
763 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X03|(% style="width:72px" %)0X78|(% style="width:56px" %)0XB5|(% style="width:56px" %)0X55
764 +
221 221  After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen.
222 222  
223 223  Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L
224 224  
225 225  
770 +Query the data (temperature) of the sensor (address 14), host → slave
771 +
772 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
773 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
774 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X11|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XD6|(% style="width:56px" %)0XCA
775 +
776 +If the sensor receives correctly, the following data will be returned, slave → host
777 +
778 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
779 +|=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
780 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X09|(% style="width:72px" %)0XA4|(% style="width:56px" %)0XB2|(% style="width:56px" %)0X6C
781 +
782 +After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**09 A4**(%%) B2 6C. 03 78 is the value of dissolved oxygen temperature.
783 +
784 +Converted to decimal, it is 2468. Add two decimal places to get the actual value. 09 A4 means the current dissolved oxygen temperature is 24.68°C
785 +
786 +
226 226  = 5. DR-TS1 Water Turbidity Sensor =
227 227  
228 -== 5.7 RS485 Commands ==
789 +== 5.1 Specification ==
229 229  
230 230  
231 -The address of the dissolved oxygen sensor is 15
792 +* **Measuring range**: 0.11000.0NTU
232 232  
794 +* **Accuracy**: ±5%
795 +
796 +* **Resolution**: 0.1NTU
797 +
798 +* **Stability**: ≤3mV/24 hours
799 +
800 +* **Output signal**: A: 420 mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01)
801 +
802 +* **Power supply voltage**: 524V DC (when output signal is RS485)1224V DC (when output signal is 420mA)
803 +
804 +* **Working environment**: temperature 060°C; humidity ≤ 95%RH
805 +
806 +* **Power consumption**: ≤ 0.5W
807 +
808 +== 5.2 wiring ==
809 +
810 +
811 +[[image:image-20240720172640-5.png||height="387" width="635"]]
812 +
813 +
814 +== 5.3 Impedance requirements for current signals ==
815 +
816 +
817 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
818 +|=(% style="width: 140px" %)Supply Voltage|=(% style="width: 70px;" %)9V|=(% style="width: 70px;" %)**12V**|=(% style="width: 70px;" %)**20V**|=(% style="width: 70px;" %)**24V**
819 +|(% style="width:137px" %)**Max Impedance**|(% style="width:70px" %)**<250Ω**|(% style="width:68px" %)**<400Ω**|(% style="width:68px" %)**<500Ω**|(% style="width:70px" %)**<900Ω**
820 +
821 +
822 +== 5.4 Mechinical Drawing ==
823 +
824 +
825 +[[image:image-20240718195058-7.png||height="305" width="593"]]
826 +
827 +
828 +== 5.5 Instructions for use and maintenance ==
829 +
830 +
831 +* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
832 +
833 +* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
834 +
835 +== 5.6 RS485 Commands ==
836 +
837 +
838 +RS485 signaldefault address 0x15
839 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
840 +
841 +
842 +=== 5.6.1 Query address ===
843 +
844 +
845 +**send:**
846 +
847 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
848 +|=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 54.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 58.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
849 +|(% style="width:99px" %)0XFE |(% style="width:64.75px" %)0X03|(% style="width:64px" %)0X00|(% style="width:64.75px" %)0X50|(% style="width:70px" %)0X00|(% style="width:72px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
850 +
851 +If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
852 +
853 +
854 +**response:**
855 +
856 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
857 +|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
858 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
859 +
860 +=== 5.6.2 Change address ===
861 +
862 +
863 +For example: Change the address of the sensor with address 1 to 2, master → slave
864 +
865 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
866 +|=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 54.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 58.75px;background-color:#4F81BD;color:white" %)CRC16 high
867 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
868 +
869 +If the sensor receives correctly, the data is returned along the original path.
870 +
871 +(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
872 +
873 +
874 +=== 5.6.3 Query data ===
875 +
876 +
877 +Query the data (turbidity) of the sensor (address 15), host → slave
878 +
879 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
880 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
881 +|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X1E
882 +
883 +If the sensor receives correctly, the following data will be returned, slave → host
884 +
885 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
886 +|=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
887 +|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0X9A|(% style="width:56px" %)0X09|(% style="width:56px" %)0X4C
888 +
233 233  The query data command is 15 03 00 00 00 01 87 1E
234 234  
235 235  For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C
236 236  
237 237  02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU
238 -
239 -
image-20240718190121-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +281.1 KB
Content
image-20240718190204-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +111.8 KB
Content
image-20240718190221-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +140.2 KB
Content
image-20240718190249-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +111.6 KB
Content
image-20240718191336-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240718191348-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +91.2 KB
Content
image-20240718195058-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +97.6 KB
Content
image-20240718195414-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +13.5 KB
Content
image-20240719155308-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +57.4 KB
Content
image-20240720172533-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20240720172548-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20240720172620-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20240720172632-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20240720172640-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content