Changes for page Water Quality Sensors
Last modified by Karry Zhuang on 2025/07/25 09:38
From version 15.2
edited by Karry Zhuang
on 2024/07/18 18:35
on 2024/07/18 18:35
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 14 added, 0 removed)
- image-20240718190121-1.png
- image-20240718190204-2.png
- image-20240718190221-3.png
- image-20240718190249-4.png
- image-20240718191336-5.png
- image-20240718191348-6.png
- image-20240718195058-7.png
- image-20240718195414-8.png
- image-20240719155308-1.png
- image-20240720172533-1.png
- image-20240720172548-2.png
- image-20240720172620-3.png
- image-20240720172632-4.png
- image-20240720172640-5.png
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. karry1 +XWiki.Xiaoling - Content
-
... ... @@ -3,10 +3,13 @@ 3 3 {{toc/}} 4 4 5 5 6 + 7 + 6 6 = 1. DR-ECK Water EC Probe = 7 7 8 8 == 1.1 Specification: == 9 9 12 + 10 10 * **Power Input**: DC7~~30 11 11 * **Power Consumption** : < 0.5W 12 12 * **Interface**: RS485. 9600 Baud Rate ... ... @@ -23,6 +23,7 @@ 23 23 24 24 == 1.2 Application for Different Range == 25 25 29 + 26 26 [[image:image-20240714173018-1.png]] 27 27 28 28 ... ... @@ -29,8 +29,12 @@ 29 29 == 1.3 Wiring == 30 30 31 31 36 +[[image:image-20240720172533-1.png||height="347" width="569"]] 37 + 38 + 32 32 == 1.4 Mechinical Drawing == 33 33 41 + 34 34 [[image:image-20240714174241-2.png]] 35 35 36 36 ... ... @@ -37,47 +37,49 @@ 37 37 == 1.5 Installation == 38 38 39 39 40 - Do not powern whileconnectthe cables. Double checkthe wiringbefore power on.48 +**Electrode installation form:** 41 41 42 - InstallationPhoto as reference:50 +A: Side wall installation 43 43 44 - **~Submergedinstallation:**52 +B: Top flange installation 45 45 46 - Thelead wire of the equipment passes through the waterproof pipe, and the3/4 thread onthe top of the equipment is connectedto the 3/4 thread of the waterproof pipe with raw tape. Ensurethat the top of the equipmentandthe equipment wire are not flooded.54 +C: Pipeline bend installation 47 47 48 - [[image:image-20240715181933-4.png||height="281"width="258"]]56 +D: Pipeline bend installation 49 49 50 - **~Pipelineinstallation:**58 +E: Flow-through installation 51 51 52 - Connectthe equipment to thepipelinethrough the 3/4 thread.60 +F: Submerged installation 53 53 54 -[[image:image-2024071 5182122-6.png||height="291" width="408"]]62 +[[image:image-20240718190121-1.png||height="350" width="520"]] 55 55 56 -**Sam pling:**64 +**Several common installation methods of electrodes** 57 57 58 - Takerepresentativewatersamplesaccordingto samplingrequirements.Ifitis inconvenienttake samples, youcan also put the electrodeintothesolution to betested andreadtheoutput data. After a periodof time,take out the electrodeandcleanit.66 +When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation. 59 59 60 - **Measurethe pHofthewatersample:**68 +A. Several common incorrect installation methods 61 61 62 - First rinse the electrode with distilled water, then rinse it with the water sample, thenimmerse theelectrodein the sample, carefully shakethetest cup or stir it to accelerate the electrode balance, letit stand, and record the pH value when the reading is stable.70 +[[image:image-20240718190204-2.png||height="262" width="487"]] 63 63 72 +**Error cause:** The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error. 64 64 65 - == 1.6 Maintain ==74 +[[image:image-20240718190221-3.png||height="292" width="500"]] 66 66 76 +**Error cause: **Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes. 67 67 68 -* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible! 69 -* There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use. 70 -* Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water. 71 -* The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective. 72 -* Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response. 73 -* The electrode should be cleaned with deionized water before and after measurement to ensure accuracy. 74 -* After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance. 75 -* Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. 76 -* ((( 77 -The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 78 -))) 78 +B. Correct installation method 79 79 80 +[[image:image-20240718190249-4.png||height="287" width="515"]] 80 80 82 + 83 +== 1.6 Maintenance == 84 + 85 + 86 +* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible. 87 +* If the electrode is not used for a long time, it can generally be stored in a dry place, but it must be placed (stored) in distilled water for several hours before use to activate the electrode. Electrodes that are frequently used can be placed (stored) in distilled water. 88 +* Cleaning of conductivity electrodes: Organic stains on the electrode can be cleaned with warm water containing detergent, or with alcohol. Calcium and magnesium precipitates are best cleaned with 10% citric acid. The electrode plate or pole can only be cleaned by chemical methods or by shaking in water. Wiping the electrode plate will damage the coating (platinum black) on the electrode surface. 89 +* The equipment should be calibrated before each use. It is recommended to calibrate it every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). 90 + 81 81 == 1.7 RS485 Commands == 82 82 83 83 ... ... @@ -85,109 +85,311 @@ 85 85 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 86 86 87 87 88 -=== 1.7.1 Query data===98 +=== 1.7.1 Query address === 89 89 100 + 101 +**send:** 102 + 103 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 104 +|=(% style="width: 74.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 high 105 +|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:50px" %)0X00|(% style="width:42px" %)0X50|(% style="width:42px" %)0X00|(% style="width:42px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4 106 + 107 +If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 108 + 109 + 110 +**response:** 111 + 112 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %) 113 +|=(% style="width: 100px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 110px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 114 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 115 + 116 +=== 1.7.2 Change address === 117 + 118 + 119 +For example: Change the address of the sensor with address 1 to 2, master → slave 120 + 121 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 122 +|=(% style="width: 74.75px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 123 +|(% style="width:67px" %)0X01|(% style="width:76px" %)0X06|(% style="width:60px" %)0X00|(% style="width:50px" %)0X50|(% style="width:50px" %)0X00|(% style="width:50px" %)0X02|(% style="width:57px" %)0X08|(% style="width:56px" %)0X1A 124 + 125 +If the sensor receives correctly, the data is returned along the original path. 126 + 127 +(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.** 128 + 129 + 130 +=== 1.7.3 Modify intercept === 131 + 132 + 133 +**send:** 134 + 135 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %) 136 +|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high 137 +|(% style="width:64px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)((( 138 +0X07 139 +))) 140 + 141 +Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command. 142 + 143 +**response:** 144 + 145 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %) 146 +|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high 147 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 148 +0X02 149 +)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X38|(% style="width:1px" %)((( 150 +0X8F 151 +))) 152 + 153 +=== 1.7.4 Query data === 154 + 155 + 156 +Query the data (EC,temperature) of the sensor (address 11), host → slave 157 + 158 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 159 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 160 +|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0X9B 161 + 162 +If the sensor receives correctly, the following data will be returned, slave → host 163 + 164 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 165 +|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 166 +|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0X8B|(% style="width:56px" %)0XD0 167 + 90 90 The address of the EC K10 sensor is 11 91 91 92 92 The query data command is 11 03 00 00 00 02 C6 9B 93 93 94 -For example, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686, K=10, EC: 6860uS/cm 172 +**For example**, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686, K=10, EC: 6860uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10. 95 95 96 96 175 +Query the data (EC,temperature) of the sensor (address 11), host → slave 176 + 177 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 178 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 179 +|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XA8 180 + 181 +If the sensor receives correctly, the following data will be returned, slave → host 182 + 183 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 184 +|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 185 +|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0XB8|(% style="width:56px" %)0XD0 186 + 97 97 The address of the EC K1 sensor is 12 98 98 99 99 The query data command is 12 03 00 00 00 02 C6 A8 100 100 101 -For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686, K=1, EC: 686uS/cm. 191 +**For example**, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686, K=1, EC: 686uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10. 102 102 103 103 104 -=== 1.7. 2Calibration Method ===194 +=== 1.7.5 Calibration Method === 105 105 106 106 107 107 This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution. 108 108 109 -The calibration steps are as follows: 199 +**The calibration steps are as follows:** 110 110 (1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable. 111 111 112 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 676.25px" %)113 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high202 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 203 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high 114 114 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 115 115 0X00 116 - 117 117 0X00 118 - 119 119 0X37 120 - 121 121 0X32 122 122 )))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC 123 123 124 124 1413*10 gives 0X00003732 125 125 126 - Return213 +**response:** 127 127 128 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 676.25px" %)129 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width:50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width:50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 high215 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 216 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high 130 130 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0 131 131 132 - 133 133 (2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command 134 134 135 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 676.25px" %)136 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high221 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 222 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high 137 137 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 138 138 0X00 139 - 140 140 0X01 141 - 142 142 0XF7 143 - 144 144 0X20 145 145 )))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75 146 146 147 147 12880*10 gives 0X01F720 148 148 149 - Return232 +**response:** 150 150 151 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 676.25px" %)152 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width:50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width:50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 high234 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 235 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high 153 153 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50 154 154 238 += 2. DR-PH01 Water PH Sensor = 155 155 156 -== =1.7.3 Queryaddress===240 +== 2.1 Specification == 157 157 158 158 159 - send243 +* **Power Input**: DC7~~30 160 160 161 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 162 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 245 +* **Power Consumption** : < 0.5W 246 + 247 +* **Interface**: RS485. 9600 Baud Rate 248 + 249 +* **pH measurement range**: 0~~14.00pH; resolution: 0.01pH 250 + 251 +* **pH measurement error**: ±0.15pH 252 + 253 +* **Repeatability error**: ±0.02pH 254 + 255 +* **Temperature measurement range**:0~~60°C; resolution: 0.1°C (set temperature for manual temperature compensation, default 25°C) 256 + 257 +* **Temperature measurement error**: ±0.5°C 258 + 259 +* **Temperature Measure Range**: -20 ~~ 60 °C 260 + 261 +* **Temperature Accuracy: **±0.5 °C 262 + 263 +* **IP Rated**: IP68 264 + 265 +* **Max Pressure**: 0.6MPa 266 + 267 +== 2.2 Wiring == 268 + 269 + 270 +[[image:image-20240720172548-2.png||height="348" width="571"]] 271 + 272 + 273 +== 2.3 Mechinical Drawing == 274 + 275 + 276 +[[image:image-20240714174241-2.png]] 277 + 278 + 279 +== 2.4 Installation Notice == 280 + 281 + 282 +Do not power on while connect the cables. Double check the wiring before power on. 283 + 284 +Installation Photo as reference: 285 + 286 +(% style="color:blue" %)**Submerged installation:** 287 + 288 +The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded. 289 + 290 +[[image:image-20240718191348-6.png]] 291 + 292 +(% style="color:blue" %)**Pipeline installation:** 293 + 294 +Connect the equipment to the pipeline through the 3/4 thread. 295 + 296 +[[image:image-20240718191336-5.png||height="239" width="326"]] 297 + 298 +(% style="color:blue" %)**Sampling:** 299 + 300 +Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it. 301 + 302 +(% style="color:blue" %)**Measure the pH of the water sample:** 303 + 304 +First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable. 305 + 306 + 307 +== 2.5 Maintenance == 308 + 309 + 310 +* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible! 311 + 312 +* There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use. 313 + 314 +* Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water. 315 + 316 +* The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective. 317 + 318 +* Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response. 319 + 320 +* The electrode should be cleaned with deionized water before and after measurement to ensure accuracy. 321 + 322 +* After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance. 323 + 324 +* Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. 325 + 326 +* The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 327 + 328 + 329 +== 2.6 RS485 Commands == 330 + 331 + 332 +RS485 signaldefault address 0x10 333 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 334 + 335 + 336 +=== 2.6.1 Query address === 337 + 338 + 339 +**send:** 340 + 341 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 342 +|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high 163 163 |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4 164 164 165 - If you forget the original addressof the sensor, you can usethe broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.345 +**response:** 166 166 347 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 348 +|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 349 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 167 167 168 - return351 +=== 2.6.2 Change address === 169 169 170 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 171 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 172 -|(% style="width:99px" %)0X0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4 173 173 354 +For example: Change the address of the sensor with address 1 to 2, master → slave 174 174 356 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 357 +|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high 358 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 175 175 360 +If the sensor receives correctly, the data is returned along the original path. 176 176 362 +(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.** 177 177 178 178 365 +=== 2.6.3 Modify intercept === 179 179 180 180 368 +**send:** 181 181 370 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 371 +|=(% style="width: 44.75px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 372 +|(% style="width:71px" %)0X10|(% style="width:74px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X10|(% style="width:69px" %)0X00|(% style="width:66px" %)0X64|(% style="width:57px" %)0X8A|(% style="width:57px" %)((( 373 +0XA5 374 +))) 182 182 376 +Change the intercept of the sensor at address 10 to 1 (default is 0). You need to pass the intercept 1*100 =100 into the command 0x006. 183 183 184 - = 2. DR-PH01 WaterPH Sensor =378 +**response:** 185 185 186 -== 2.7 RS485 Commands == 380 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 381 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high 382 +|(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 383 +0X00 384 +)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)((( 385 +0XA5 386 +))) 187 187 388 +=== 2.6.4 Query data === 188 188 189 -The address of the pH sensor is 10 190 190 391 +Query the data (PH) of the sensor (address 10), host → slave 392 + 393 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 394 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 395 +|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X4B 396 + 397 +If the sensor receives correctly, the following data will be returned, slave → host 398 + 399 +(% border="1" cellspacing="3" style="background-color:#f2f2f2;width:518px" %) 400 +|=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 401 +|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0XC4|(% style="width:56px" %)0X9B 402 + 191 191 The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned. 192 192 193 193 For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B. ... ... @@ -195,13 +195,178 @@ 195 195 02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86. 196 196 197 197 410 +=== 2.6.5 Calibration Method === 411 + 412 + 413 +This device uses three-point calibration, and three known pH standard solutions need to be prepared. 414 + 415 +(% style="color:blue" %)**The calibration steps are as follows:** 416 + 417 +(1) Place the electrode in distilled water to clean it, and then place it in 9.18 standard buffer solution. After the data stabilizes, enter the following calibration command, and the 9.18 calibration is completed. 418 + 419 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 420 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 421 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 422 +0X00 423 +)))|(% style="width:68px" %)0X20|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X8A|(% style="width:55px" %)((( 424 +0XF1 425 +))) 426 + 427 +(2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed. 428 + 429 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 430 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 431 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 432 +0X00 433 +)))|(% style="width:68px" %)0X21|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XDB|(% style="width:55px" %)((( 434 +0X31 435 +))) 436 + 437 +(3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed. 438 + 439 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 440 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 441 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 442 +0X00 443 +)))|(% style="width:68px" %)0X22|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X2B|(% style="width:55px" %)((( 444 +0X31 445 +))) 446 + 447 +After the above three steps are completed, the calibration is successful. The advantage of three-point calibration compared to two-point calibration is that the electrode is calibrated separately in the acid and alkali parts, thereby achieving accurate calibration of the full range and making the measurement data more accurate. 448 + 449 + 198 198 = 3. DR-ORP1 Water ORP Sensor = 199 199 200 -== 3. 7RS485 Commands==452 +== 3.1 Specification == 201 201 454 +* **Power Input**: DC7~~30 455 +* **Measuring range**:** **-1999~~1999mV 456 +**Resolution**: 1mV 457 +* **Interface**: RS485. 9600 Baud Rate 458 +* **Measurement error**: ±3mV 459 +* **Stability**: ≤2mv/24 hours 460 +* **Equipment working conditions**: Ambient temperature: 0-60℃ Relative humidity: <85%RH 461 +* **IP Rated**: IP68 462 +* **Max Pressure**: 0.6MPa 202 202 203 - Theaddressof the ORP sensors13464 +== 3.2 Wiring == 204 204 466 +[[image:image-20240720172620-3.png||height="378" width="620"]] 467 + 468 + 469 +== 3.3 Mechinical Drawing == 470 + 471 +[[image:image-20240714174241-2.png]] 472 + 473 +== 3.4 Installation Notice == 474 + 475 +Do not power on while connect the cables. Double check the wiring before power on. 476 + 477 +Installation Photo as reference: 478 + 479 +**~ Submerged installation:** 480 + 481 +The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded. 482 + 483 +[[image:image-20240718191348-6.png]] 484 + 485 +**~ Pipeline installation:** 486 + 487 +Connect the equipment to the pipeline through the 3/4 thread. 488 + 489 +[[image:image-20240718191336-5.png||height="239" width="326"]] 490 + 491 + 492 +== 3.5 Maintenance == 493 + 494 + 495 +(1) The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible. 496 + 497 +(2) In general, ORP electrodes do not need to be calibrated and can be used directly. When there is doubt about the quality and test results of the ORP electrode, the electrode potential can be checked with an ORP standard solution to determine whether the ORP electrode meets the measurement requirements, and the electrode can be recalibrated or replaced with a new ORP electrode. The frequency of calibration or inspection of the measuring electrode depends on different application conditions (the degree of dirt in the application, the deposition of chemical substances, etc.). 498 + 499 +(3) There is an appropriate soaking solution in the protective bottle at the front end of the electrode, and the electrode head is soaked in it to ensure the activation of the platinum sheet and the liquid junction. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use. 500 + 501 +(4) Preparation of electrode soaking solution: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water to prepare a 3.3M potassium chloride solution. 502 + 503 +(5) Before measuring, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response. 504 + 505 +(6) The electrode should be cleaned with deionized water before and after the measurement to ensure the measurement accuracy. 506 + 507 +(7) After long-term use, the ORP electrode will be passivated, which is manifested as a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the platinum sheet at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance. 508 + 509 +(8) Electrode contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. If the platinum of the electrode is severely contaminated and an oxide film is formed, toothpaste can be applied to the platinum surface and then gently scrubbed to restore the platinum's luster. 510 + 511 +(9) The equipment should be calibrated before each use. It is recommended to calibrate once every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 512 + 513 +== 3.6 RS485 Commands == 514 + 515 + 516 +RS485 signaldefault address 0x13 517 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 518 + 519 +=== 3.6.1 Query address === 520 + 521 +send 522 + 523 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 524 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 525 +|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4 526 + 527 +response 528 + 529 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %) 530 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 531 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 532 + 533 +=== 3.6.2 Change address === 534 + 535 +For example: Change the address of the sensor with address 1 to 2, master → slave 536 + 537 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 538 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 539 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 540 + 541 +If the sensor receives correctly, the data is returned along the original path. 542 +Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query. 543 + 544 + 545 +=== 3.6.3 Modify intercept === 546 + 547 +send 548 + 549 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 550 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 69px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 551 +|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)((( 552 +0X96 553 +))) 554 + 555 +Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command. 556 + 557 +response 558 + 559 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 560 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 561 +|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 562 +0X00 563 +)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)((( 564 +0X96 565 +))) 566 + 567 +=== 3.6.4 Query data === 568 + 569 + 570 +Query the data (ORP) of the sensor (address 13), host → slave 571 + 572 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 573 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 574 +|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X78 575 + 576 +If the sensor receives correctly, the following data will be returned, slave → host 577 + 578 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 579 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 580 +|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X80|(% style="width:56px" %)0X9B 581 + 205 205 The query data command is 13 03 00 00 00 01 87 78 206 206 207 207 For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B. ... ... @@ -209,31 +209,229 @@ 209 209 02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV 210 210 211 211 589 +=== 3.6.5 Calibration Method === 590 + 591 +This device uses two-point calibration, and two known ORP standard solutions need to be prepared. The calibration steps are as follows: 592 +(1) Place the electrode in distilled water to clean it, and then place it in 86mV standard buffer solution. After the data stabilizes, 593 +enter the following calibration command, and the 86mV point calibration is completed; 594 + 595 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %) 596 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 597 +|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 598 +0X00 599 +)))|(% style="width:68px" %)0X24|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XCB|(% style="width:55px" %)((( 600 +0X03 601 +))) 602 + 603 +Wash the electrode in distilled water and place it in 256mV standard buffer. After the data is stable, enter the following calibration command to complete the 256mV point calibration. 604 + 605 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %) 606 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 607 +|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 608 +0X00 609 +)))|(% style="width:68px" %)0X25|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X9A|(% style="width:55px" %)((( 610 +0XC3 611 +))) 612 + 212 212 = 4. DR-DO1 Dissolved Oxygen Sensor = 213 213 214 -== 4.7 RS485 Commands == 215 215 216 216 217 - Theaddressofhe dissolved oxygensensor is 14617 +== 4.1 Specification == 218 218 219 -The query data command is 14 03 00 14 00 01 C6 CB 220 220 620 +* **Measuring range**: 0-20mg/L, 0-50℃ 621 +* **Accuracy**: 3%, ±0.5℃ 622 +* **Resolution**: 0.01 mg/L, 0.01℃ 623 +* **Maximum operating pressure**: 6 bar 624 +* **Output signal**: A: 4-20mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01) 625 +* **Power supply voltage**: 5-24V DC 626 +* **Working environment**: temperature 0-60℃; humidity <95%RH 627 +* **Power consumption**: ≤0.5W 628 + 629 +== 4.2 wiring == 630 + 631 +[[image:image-20240720172632-4.png||height="390" width="640"]] 632 + 633 + 634 +== (% id="cke_bm_224234S" style="display:none" %) (%%)4.3 Impedance requirements for current signals == 635 + 636 +[[image:image-20240718195414-8.png||height="100" width="575"]] 637 + 638 + 639 +== 4.4 Mechinical Drawing == 640 + 641 + 642 +[[image:image-20240719155308-1.png||height="226" width="527"]] 643 + 644 + 645 +== 4.5 Instructions for use and maintenance == 646 + 647 +* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor. 648 +* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently. 649 + 650 +== 4.6 RS485 Commands == 651 + 652 +RS485 signaldefault address 0x14 653 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 654 + 655 +=== 4.6.1 Query address === 656 + 657 +send 658 + 659 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 660 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 661 +|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XF1|(% style="width:56px" %)0XD7 662 + 663 +If you forget the original address of the sensor, you can use the broadcast address 0XFF instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 664 + 665 + 666 +response 667 + 668 +Register 0 data high and register 0 data low indicate the actual address of the sensor: 1 669 +Register 1 data high and register 1 data low indicate the sensor version 670 + 671 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 672 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 673 +|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X04|(% style="width:68px" %)0X00|(% style="width:70px" %)0X01|(% style="width:72px" %)0X00|(% style="width:56px" %)0X00|(% style="width:56px" %)0XB4|(% style="width:56px" %)0X3C 674 + 675 +=== 4.6.2 Change address === 676 + 677 +For example: Change the address of the sensor with address 1 to 2(address range: 1-119), master → slave 678 + 679 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:907.333px" %) 680 +|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 71px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low 681 +|(% style="width:67px" %)0X01|(% style="width:71px" %)0X10|(% style="width:65px" %)0X00|(% style="width:65px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X04|(% style="width:53px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X00|(% style="width:53px" %)0X00|(% style="width:56px" %)0XD2|(% style="width:53px" %)0X10 682 + 683 +response 684 + 685 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 686 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 687 +|(% style="width:99px" %)0X01|(% style="width:72px" %)0X10|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0X61|(% style="width:56px" %)0XCA 688 + 689 +=== 4.6.3 Query data === 690 + 691 + 692 +Query the data (dissolved oxygen) of the sensor (address 14), host → slave 693 + 694 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 695 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 696 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X14|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XCB 697 + 698 +If the sensor receives correctly, the following data will be returned, slave → host 699 + 700 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 701 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 702 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X03|(% style="width:72px" %)0X78|(% style="width:56px" %)0XB5|(% style="width:56px" %)0X55 703 + 221 221 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen. 222 222 223 223 Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L 224 224 225 225 709 +Query the data (temperature) of the sensor (address 14), host → slave 710 + 711 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 712 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 713 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X11|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XD6|(% style="width:56px" %)0XCA 714 + 715 +If the sensor receives correctly, the following data will be returned, slave → host 716 + 717 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 718 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 719 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X09|(% style="width:72px" %)0XA4|(% style="width:56px" %)0XB2|(% style="width:56px" %)0X6C 720 + 721 +After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**09 A4**(%%) B2 6C. 03 78 is the value of dissolved oxygen temperature. 722 + 723 +Converted to decimal, it is 2468. Add two decimal places to get the actual value. 09 A4 means the current dissolved oxygen temperature is 24.68℃ 724 + 725 + 226 226 = 5. DR-TS1 Water Turbidity Sensor = 227 227 228 -== 5.7 RS485 Commands == 229 229 230 230 231 - Theaddressofthesolved oxygensensoris15730 +== (% id="cke_bm_81470S" style="display:none" %) (%%)5.1 Specification == 232 232 732 +* **Measuring range**: 0.1~1000.0NTU 733 +* **Accuracy**: ±5% 734 +* **Resolution**: 0.1NTU 735 +* **Stability**: ≤3mV/24 hours 736 +* **Output signal**: A: 4~20 mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01) 737 +* **Power supply voltage**: 5~24V DC (when output signal is RS485)12~24V DC (when output signal is 4~20mA) 738 +* **Working environment**: temperature 0~60℃; humidity ≤95%RH 739 +* **Power consumption**: ≤0.5W 740 + 741 +== 5.2 wiring == 742 + 743 +[[image:image-20240720172640-5.png||height="387" width="635"]] 744 + 745 + 746 +== 5.3 Impedance requirements for current signals == 747 + 748 +[[image:image-20240718195414-8.png||height="100" width="575"]] 749 + 750 + 751 +== 5.4 Mechinical Drawing == 752 + 753 +[[image:image-20240718195058-7.png||height="305" width="593"]] 754 + 755 + 756 +== 5.5 Instructions for use and maintenance == 757 + 758 +* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor. 759 +* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently. 760 + 761 +== 5.6 RS485 Commands == 762 + 763 + 764 +RS485 signaldefault address 0x15 765 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 766 + 767 +=== 5.6.1 Query address === 768 + 769 +send 770 + 771 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 772 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 773 +|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X50|(% style="width:70px" %)0X00|(% style="width:72px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4 774 + 775 +If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 776 + 777 + 778 +response 779 + 780 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %) 781 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 782 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 783 + 784 +=== 5.6.2 Change address === 785 + 786 +For example: Change the address of the sensor with address 1 to 2, master → slave 787 + 788 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 789 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 790 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 791 + 792 +If the sensor receives correctly, the data is returned along the original path. 793 +Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query. 794 + 795 +=== 5.6.3 Query data === 796 + 797 + 798 +Query the data (turbidity) of the sensor (address 15), host → slave 799 + 800 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 801 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 802 +|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X1E 803 + 804 +If the sensor receives correctly, the following data will be returned, slave → host 805 + 806 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 807 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 808 +|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0X9A|(% style="width:56px" %)0X09|(% style="width:56px" %)0X4C 809 + 233 233 The query data command is 15 03 00 00 00 01 87 1E 234 234 235 235 For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C 236 236 237 237 02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU 238 - 239 -
- image-20240718190121-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +281.1 KB - Content
- image-20240718190204-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +111.8 KB - Content
- image-20240718190221-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +140.2 KB - Content
- image-20240718190249-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +111.6 KB - Content
- image-20240718191336-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.6 KB - Content
- image-20240718191348-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +91.2 KB - Content
- image-20240718195058-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +97.6 KB - Content
- image-20240718195414-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +13.5 KB - Content
- image-20240719155308-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +57.4 KB - Content
- image-20240720172533-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20240720172548-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20240720172620-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20240720172632-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20240720172640-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content