<
From version < 15.2 >
edited by Karry Zhuang
on 2024/07/18 18:35
To version < 32.2 >
edited by Karry Zhuang
on 2024/07/19 15:13
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -37,47 +37,49 @@
37 37  == 1.5 Installation ==
38 38  
39 39  
40 - Do not power on while connect the cables. Double check the wiring before power on.
40 +**Electrode installation form**
41 41  
42 -Installation Photo as reference:
42 +A:Side wall installation
43 43  
44 -**~ Submerged installation:**
44 +B:Top flange installation
45 45  
46 -The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
46 +C:Pipeline bend installation
47 47  
48 -[[image:image-20240715181933-4.png||height="281" width="258"]]
48 +D:Pipeline bend installation
49 49  
50 -**~ Pipeline installation:**
50 +E:Flow-through installation
51 51  
52 -Connect the equipment to the pipeline through the 3/4 thread.
52 +F:Submerged installation
53 53  
54 -[[image:image-20240715182122-6.png||height="291" width="408"]]
54 +[[image:image-20240718190121-1.png||height="350" width="520"]]
55 55  
56 -**Sampling:**
56 +**Several common installation methods of electrodes**
57 57  
58 -Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it.
58 +When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation.
59 59  
60 -**Measure the pH of the water sample:**
60 +A. Several common incorrect installation methods
61 61  
62 -First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable.
62 +[[image:image-20240718190204-2.png||height="262" width="487"]]
63 63  
64 +Error cause: The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error.
64 64  
65 -== 1.6 Maintain ==
66 +[[image:image-20240718190221-3.png||height="292" width="500"]]
66 66  
68 +Error cause: Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes.
67 67  
68 -* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible!
69 -* There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
70 -* Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water.
71 -* The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective.
72 -* Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
73 -* The electrode should be cleaned with deionized water before and after measurement to ensure accuracy.
74 -* After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
75 -* Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant.
76 -* (((
77 -The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
78 -)))
70 +B. Correct installation method
79 79  
72 +[[image:image-20240718190249-4.png||height="287" width="515"]]
80 80  
74 +
75 +== 1.6 Maintain ==
76 +
77 +
78 +* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
79 +* If the electrode is not used for a long time, it can generally be stored in a dry place, but it must be placed (stored) in distilled water for several hours before use to activate the electrode. Electrodes that are frequently used can be placed (stored) in distilled water.
80 +* Cleaning of conductivity electrodes: Organic stains on the electrode can be cleaned with warm water containing detergent, or with alcohol. Calcium and magnesium precipitates are best cleaned with 10% citric acid. The electrode plate or pole can only be cleaned by chemical methods or by shaking in water. Wiping the electrode plate will damage the coating (platinum black) on the electrode surface.
81 +* The equipment should be calibrated before each use. It is recommended to calibrate it every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.).
82 +
81 81  == 1.7 RS485 Commands ==
82 82  
83 83  
... ... @@ -85,8 +85,60 @@
85 85  Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
86 86  
87 87  
88 -=== 1.7.1 Query data ===
90 +=== 1.7.1 Query address ===
89 89  
92 +send
93 +
94 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %)
95 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
96 +|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X50|(% style="width:70px" %)0X00|(% style="width:72px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
97 +
98 +If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
99 +
100 +
101 +response
102 +
103 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
104 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
105 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
106 +
107 +=== 1.7.2 Change address ===
108 +
109 +For example: Change the address of the sensor with address 1 to 2, master → slave
110 +
111 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
112 +|=(% style="width: 69px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 76px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 73px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 73px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 57px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
113 +|(% style="width:69px" %)0X01|(% style="width:76px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X50|(% style="width:73px" %)0X00|(% style="width:73px" %)0X02|(% style="width:57px" %)0X08|(% style="width:56px" %)0X1A
114 +
115 +If the sensor receives correctly, the data is returned along the original path.
116 +Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
117 +
118 +
119 +=== 1.7.3 Modify intercept ===
120 +
121 +
122 +send
123 +
124 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
125 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
126 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)(((
127 +0X07
128 +)))
129 +
130 +Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
131 +
132 +response
133 +
134 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
135 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
136 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
137 +0X02
138 +)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X38|(% style="width:1px" %)(((
139 +0X8F
140 +)))
141 +
142 +=== 1.7.4 Query data ===
143 +
90 90  The address of the EC K10 sensor is 11
91 91  
92 92  The query data command is 11 03 00 00 00 02 C6 9B
... ... @@ -98,10 +98,10 @@
98 98  
99 99  The query data command is 12 03 00 00 00 02 C6 A8
100 100  
101 -For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm.
155 +For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm
102 102  
103 103  
104 -=== 1.7.2 Calibration Method ===
158 +=== 1.7.5 Calibration Method ===
105 105  
106 106  
107 107  This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution.
... ... @@ -123,13 +123,12 @@
123 123  
124 124  1413*10 gives 0X00003732
125 125  
126 -Return
180 +response
127 127  
128 128  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
129 129  |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
130 130  |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0
131 131  
132 -
133 133  (2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command
134 134  
135 135  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
... ... @@ -146,16 +146,87 @@
146 146  
147 147  12880*10 gives 0X01F720
148 148  
149 -Return
202 +response
150 150  
151 151  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
152 152  |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
153 153  |(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50
154 154  
208 += 2. DR-PH01 Water PH Sensor =
155 155  
156 -=== 1.7.3 Query address ===
157 157  
211 +== 2.1 Specification ==
158 158  
213 +* **Power Input**: DC7~~30
214 +* **Power Consumption** : < 0.5W
215 +* **Interface**: RS485. 9600 Baud Rate
216 +* **pH measurement range**: 0~~14.00pH; resolution: 0.01pH
217 +* **pH measurement error**:±0.15pH
218 +* **Repeatability error**:±0.02pH
219 +* **Temperature measurement range**:0~~60℃; resolution: 0.1℃ (set temperature for manual temperature compensation, default 25℃)
220 +* **Temperature measurement error**: ±0.5℃
221 +* **Temperature Measure Range**: -20 ~~ 60 °C
222 +* **Temperature Accuracy: **±0.5 °C
223 +* **IP Rated**: IP68
224 +* **Max Pressure**: 0.6MPa
225 +
226 +== 2.2 Wiring ==
227 +
228 +
229 +== (% style="color:inherit; font-family:inherit" %)2.3 (% style="color:inherit; font-family:inherit; font-size:26px" %)Mechinical Drawing(%%) ==
230 +
231 +[[image:image-20240714174241-2.png]]
232 +
233 +
234 +== 2.4 Installation Notice ==
235 +
236 +Do not power on while connect the cables. Double check the wiring before power on.
237 +
238 +Installation Photo as reference:
239 +
240 +**~ Submerged installation:**
241 +
242 +The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
243 +
244 +[[image:image-20240718191348-6.png]]
245 +
246 +**~ Pipeline installation:**
247 +
248 +Connect the equipment to the pipeline through the 3/4 thread.
249 +
250 +[[image:image-20240718191336-5.png||height="239" width="326"]]
251 +
252 +**Sampling:**
253 +
254 +Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it.
255 +
256 +**Measure the pH of the water sample:**
257 +
258 +First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable.
259 +
260 +
261 +=== 2.5 Maintenance ===
262 +
263 +
264 +* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible!
265 +* There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
266 +* Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water.
267 +* The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective.
268 +* Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
269 +* The electrode should be cleaned with deionized water before and after measurement to ensure accuracy.
270 +* After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
271 +* Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant.
272 +* (((
273 +The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
274 +)))
275 +
276 +== 2.6 RS485 Commands ==
277 +
278 +RS485 signaldefault address 0x10
279 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
280 +
281 +=== 2.6.1 Query data ===
282 +
159 159  send
160 160  
161 161  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
... ... @@ -162,30 +162,50 @@
162 162  |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
163 163  |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
164 164  
165 -If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
289 +response
166 166  
291 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
292 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
293 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
167 167  
168 -return
295 +=== 2.6.2 Change address ===
169 169  
297 +For example: Change the address of the sensor with address 1 to 2, master → slave
298 +
170 170  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
171 171  |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
172 -|(% style="width:99px" %)0X0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
301 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
173 173  
303 +If the sensor receives correctly, the data is returned along the original path.
304 +Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
174 174  
175 175  
307 +=== 2.6.3 Modify intercept ===
176 176  
177 177  
310 +send
178 178  
312 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
313 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
314 +|(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
315 +0XA5
316 +)))
179 179  
318 +Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
180 180  
320 +response
181 181  
322 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
323 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
324 +|(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
325 +0X00
326 +)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
327 +0XA5
328 +)))
182 182  
330 +=== 2.6.4 Query data ===
183 183  
184 -= 2. DR-PH01 Water PH Sensor =
185 185  
186 -== 2.7 RS485 Commands ==
187 -
188 -
189 189  The address of the pH  sensor is 10
190 190  
191 191  The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned.
... ... @@ -195,11 +195,154 @@
195 195  02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86.
196 196  
197 197  
342 +=== 2.6.5 Calibration Method ===
343 +
344 +
345 +This device uses three-point calibration, and three known pH standard solutions need to be prepared.
346 +The calibration steps are as follows:
347 +(1) Place the electrode in distilled water to clean it, and then place it in 9.18 standard buffer solution. After the data stabilizes, enter the following calibration command, and the 9.18 calibration is completed.
348 +
349 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
350 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
351 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
352 +0X00
353 +)))|(% style="width:68px" %)0X20|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X8A|(% style="width:55px" %)(((
354 +0XF1
355 +)))
356 +
357 +(2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed.
358 +
359 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
360 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
361 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
362 +0X00
363 +)))|(% style="width:68px" %)0X21|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XDB|(% style="width:55px" %)(((
364 +0X31
365 +)))
366 +
367 +(3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed.
368 +
369 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
370 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
371 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
372 +0X00
373 +)))|(% style="width:68px" %)0X22|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X2B|(% style="width:55px" %)(((
374 +0X31
375 +)))
376 +
377 +After the above three steps are completed, the calibration is successful. The advantage of three-point calibration compared to two-point calibration is that the electrode is calibrated separately in the acid and alkali parts, thereby achieving accurate calibration of the full range and making the measurement data more accurate.
378 +
379 +
198 198  = 3. DR-ORP1 Water ORP Sensor =
199 199  
200 -== 3.7 RS485 Commands ==
201 201  
383 +== 3.1 Specification ==
202 202  
385 +* **Power Input**: DC7~~30
386 +* **Measuring range**:** **-1999~~1999mV
387 +**Resolution**: 1mV
388 +* **Interface**: RS485. 9600 Baud Rate
389 +* **Measurement error**: ±3mV
390 +* **Stability**: ≤2mv/24 hours
391 +* **Equipment working conditions**: Ambient temperature: 0-60℃ Relative humidity: <85%RH
392 +* **IP Rated**: IP68
393 +* **Max Pressure**: 0.6MPa
394 +
395 +== 3.2 Wiring ==
396 +
397 +
398 +== 3.3 Mechinical Drawing ==
399 +
400 +[[image:image-20240714174241-2.png]]
401 +
402 +== 3.4 Installation Notice ==
403 +
404 +Do not power on while connect the cables. Double check the wiring before power on.
405 +
406 +Installation Photo as reference:
407 +
408 +**~ Submerged installation:**
409 +
410 +The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
411 +
412 +[[image:image-20240718191348-6.png]]
413 +
414 +**~ Pipeline installation:**
415 +
416 +Connect the equipment to the pipeline through the 3/4 thread.
417 +
418 +[[image:image-20240718191336-5.png||height="239" width="326"]]
419 +
420 +
421 +=== 6.3.5 Maintenance ===
422 +
423 +
424 +(1) The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
425 +(2) In general, ORP electrodes do not need to be calibrated and can be used directly. When there is doubt about the quality and test results of the ORP electrode, the electrode potential can be checked with an ORP standard solution to determine whether the ORP electrode meets the measurement requirements, and the electrode can be recalibrated or replaced with a new ORP electrode. The frequency of calibration or inspection of the measuring electrode depends on different application conditions (the degree of dirt in the application, the deposition of chemical substances, etc.).
426 +(3) There is an appropriate soaking solution in the protective bottle at the front end of the electrode, and the electrode head is soaked in it to ensure the activation of the platinum sheet and the liquid junction. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
427 +(4) Preparation of electrode soaking solution: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water to prepare a 3.3M potassium chloride solution.
428 +(5) Before measuring, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
429 +(6) The electrode should be cleaned with deionized water before and after the measurement to ensure the measurement accuracy.
430 +(7) After long-term use, the ORP electrode will be passivated, which is manifested as a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the platinum sheet at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
431 +(8) Electrode contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. If the platinum of the electrode is severely contaminated and an oxide film is formed, toothpaste can be applied to the platinum surface and then gently scrubbed to restore the platinum's luster.
432 +(9) The equipment should be calibrated before each use. It is recommended to calibrate once every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
433 +
434 +== 3.6 RS485 Commands ==
435 +
436 +
437 +RS485 signaldefault address 0x13
438 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
439 +
440 +=== 3.6.1 Query data ===
441 +
442 +send
443 +
444 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
445 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
446 +|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
447 +
448 +response
449 +
450 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
451 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
452 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
453 +
454 +=== 3.6.2 Change address ===
455 +
456 +For example: Change the address of the sensor with address 1 to 2, master → slave
457 +
458 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
459 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
460 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
461 +
462 +If the sensor receives correctly, the data is returned along the original path.
463 +Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
464 +
465 +
466 +=== 3.6.3 Modify intercept ===
467 +
468 +send
469 +
470 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
471 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
472 +|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
473 +0X96
474 +)))
475 +
476 +Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
477 +
478 +response
479 +
480 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
481 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
482 +|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
483 +0X00
484 +)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
485 +0X96
486 +)))
487 +
488 +=== 3.6.4 Query data ===
489 +
203 203  The address of the ORP sensor is 13
204 204  
205 205  The query data command is 13 03 00 00 00 01 87 78
... ... @@ -209,11 +209,66 @@
209 209  02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV
210 210  
211 211  
499 +=== 3.6.5 Calibration Method ===
500 +
501 +This device uses two-point calibration, and two known ORP standard solutions need to be prepared. The calibration steps are as follows:
502 +(1) Place the electrode in distilled water to clean it, and then place it in 86mV standard buffer solution. After the data stabilizes,
503 +enter the following calibration command, and the 86mV point calibration is completed;
504 +
505 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
506 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
507 +|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
508 +0X00
509 +)))|(% style="width:68px" %)0X24|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XCB|(% style="width:55px" %)(((
510 +0X03
511 +)))
512 +
513 +Wash the electrode in distilled water and place it in 256mV standard buffer. After the data is stable, enter the following calibration command to complete the 256mV point calibration.
514 +
515 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %)
516 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
517 +|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
518 +0X00
519 +)))|(% style="width:68px" %)0X25|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X9A|(% style="width:55px" %)(((
520 +0XC3
521 +)))
522 +
212 212  = 4. DR-DO1 Dissolved Oxygen Sensor =
213 213  
214 -== 4.7 RS485 Commands ==
215 215  
216 216  
527 +== 4.1 Specification ==
528 +
529 +* **Measuring range**: 0.1~1000.0NTU
530 +* **Accuracy**: ±5%
531 +* **Resolution**: 0.1NTU
532 +* **Stability**: ≤3mV/24 hours
533 +* **Output signal**: A: 4~20 mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01)
534 +* **Power supply voltage**: 5~24V DC (when output signal is RS485)12~24V DC (when output signal is 4~20mA)
535 +* **Working environment**: temperature 0~60℃; humidity ≤95%RH
536 +* **Power consumption**: ≤0.5W
537 +
538 +== 4.2 Impedance requirements for current signals ==
539 +
540 +[[image:image-20240718195414-8.png||height="100" width="575"]]
541 +
542 +
543 +== 4.3 wiring ==
544 +
545 +== 4.4 Mechinical Drawing ==
546 +
547 +[[image:image-20240718195058-7.png||height="305" width="593"]]
548 +
549 +
550 +=== 4.5 Instructions for use and maintenance ===
551 +
552 +* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
553 +* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
554 +
555 +== 4.6 RS485 Commands ==
556 +
557 +4.6.1
558 +
217 217  The address of the dissolved oxygen sensor is 14
218 218  
219 219  The query data command is 14 03 00 14 00 01 C6 CB
... ... @@ -235,5 +235,3 @@
235 235  For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C
236 236  
237 237  02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU
238 -
239 -
image-20240718190121-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +281.1 KB
Content
image-20240718190204-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +111.8 KB
Content
image-20240718190221-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +140.2 KB
Content
image-20240718190249-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +111.6 KB
Content
image-20240718191336-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240718191348-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +91.2 KB
Content
image-20240718195058-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +97.6 KB
Content
image-20240718195414-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +13.5 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0