Changes for page Water Quality Sensors
Last modified by Karry Zhuang on 2025/07/25 09:38
From version 15.1
edited by Karry Zhuang
on 2024/07/18 16:14
on 2024/07/18 16:14
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 14 added, 0 removed)
- image-20240718190121-1.png
- image-20240718190204-2.png
- image-20240718190221-3.png
- image-20240718190249-4.png
- image-20240718191336-5.png
- image-20240718191348-6.png
- image-20240718195058-7.png
- image-20240718195414-8.png
- image-20240719155308-1.png
- image-20240720172533-1.png
- image-20240720172548-2.png
- image-20240720172620-3.png
- image-20240720172632-4.png
- image-20240720172640-5.png
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. karry1 +XWiki.Xiaoling - Content
-
... ... @@ -3,26 +3,42 @@ 3 3 {{toc/}} 4 4 5 5 6 + 7 + 6 6 = 1. DR-ECK Water EC Probe = 7 7 8 8 == 1.1 Specification: == 9 9 12 + 10 10 * **Power Input**: DC7~~30 14 + 11 11 * **Power Consumption** : < 0.5W 16 + 12 12 * **Interface**: RS485. 9600 Baud Rate 18 + 13 13 * **EC Range & Resolution:** 14 14 ** **ECK0.01** : 0.02 ~~ 20 μS/cm 21 + 15 15 ** **ECK0.1**: 0.2 ~~ 200.0 μS/cm 23 + 16 16 ** **ECK1.0** : 2 ~~ 2,000 μS/cm Resolution: 1 μS/cm 25 + 17 17 ** **ECK10.0** : 20 ~~ 20,000 μS/cm Resolution: 10 μS/cm 27 + 18 18 * **EC Accuracy**: ±1% FS 29 + 19 19 * **Temperature Measure Range**: -20 ~~ 60 °C 31 + 20 20 * **Temperature Accuracy: **±0.5 °C 33 + 21 21 * **IP Rated**: IP68 35 + 22 22 * **Max Pressure**: 0.6MPa 23 23 38 + 24 24 == 1.2 Application for Different Range == 25 25 41 + 26 26 [[image:image-20240714173018-1.png]] 27 27 28 28 ... ... @@ -29,8 +29,12 @@ 29 29 == 1.3 Wiring == 30 30 31 31 48 +[[image:image-20240720172533-1.png||height="347" width="569"]] 49 + 50 + 32 32 == 1.4 Mechinical Drawing == 33 33 53 + 34 34 [[image:image-20240714174241-2.png]] 35 35 36 36 ... ... @@ -37,90 +37,362 @@ 37 37 == 1.5 Installation == 38 38 39 39 40 - ==1.6 Maintain==60 +**Electrode installation form:** 41 41 62 +A: Side wall installation 42 42 64 +B: Top flange installation 65 + 66 +C: Pipeline bend installation 67 + 68 +D: Pipeline bend installation 69 + 70 +E: Flow-through installation 71 + 72 +F: Submerged installation 73 + 74 +[[image:image-20240718190121-1.png||height="350" width="520"]] 75 + 76 +**Several common installation methods of electrodes** 77 + 78 +When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation. 79 + 80 +A. Several common incorrect installation methods 81 + 82 +[[image:image-20240718190204-2.png||height="262" width="487"]] 83 + 84 +**Error cause:** The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error. 85 + 86 +[[image:image-20240718190221-3.png||height="292" width="500"]] 87 + 88 +**Error cause: **Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes. 89 + 90 +B. Correct installation method 91 + 92 +[[image:image-20240718190249-4.png||height="287" width="515"]] 93 + 94 + 95 +== 1.6 Maintenance == 96 + 97 + 98 +* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible. 99 +* If the electrode is not used for a long time, it can generally be stored in a dry place, but it must be placed (stored) in distilled water for several hours before use to activate the electrode. Electrodes that are frequently used can be placed (stored) in distilled water. 100 +* Cleaning of conductivity electrodes: Organic stains on the electrode can be cleaned with warm water containing detergent, or with alcohol. Calcium and magnesium precipitates are best cleaned with 10% citric acid. The electrode plate or pole can only be cleaned by chemical methods or by shaking in water. Wiping the electrode plate will damage the coating (platinum black) on the electrode surface. 101 +* The equipment should be calibrated before each use. It is recommended to calibrate it every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). 102 + 43 43 == 1.7 RS485 Commands == 44 44 45 -=== 1.7.1 Query data === 46 46 106 +RS485 signal (K1 default address 0x12; K10 default address 0x11): 107 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 108 + 109 + 110 +=== 1.7.1 Query address === 111 + 112 + 113 +**send:** 114 + 115 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 116 +|=(% style="width: 74.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 high 117 +|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:50px" %)0X00|(% style="width:42px" %)0X50|(% style="width:42px" %)0X00|(% style="width:42px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4 118 + 119 +If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 120 + 121 + 122 +**response:** 123 + 124 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %) 125 +|=(% style="width: 100px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 110px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 126 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 127 + 128 +=== 1.7.2 Change address === 129 + 130 + 131 +For example: Change the address of the sensor with address 1 to 2, master → slave 132 + 133 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 134 +|=(% style="width: 74.75px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 135 +|(% style="width:67px" %)0X01|(% style="width:76px" %)0X06|(% style="width:60px" %)0X00|(% style="width:50px" %)0X50|(% style="width:50px" %)0X00|(% style="width:50px" %)0X02|(% style="width:57px" %)0X08|(% style="width:56px" %)0X1A 136 + 137 +If the sensor receives correctly, the data is returned along the original path. 138 + 139 +(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.** 140 + 141 + 142 +=== 1.7.3 Modify intercept === 143 + 144 + 145 +**send:** 146 + 147 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %) 148 +|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high 149 +|(% style="width:64px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)((( 150 +0X07 151 +))) 152 + 153 +Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command. 154 + 155 +**response:** 156 + 157 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %) 158 +|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high 159 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 160 +0X02 161 +)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X38|(% style="width:1px" %)((( 162 +0X8F 163 +))) 164 + 165 +=== 1.7.4 Query data === 166 + 167 + 168 +Query the data (EC,temperature) of the sensor (address 11), host → slave 169 + 170 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 171 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 172 +|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0X9B 173 + 174 +If the sensor receives correctly, the following data will be returned, slave → host 175 + 176 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 177 +|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 178 +|(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0X8B|(% style="width:56px" %)0XD0 179 + 47 47 The address of the EC K10 sensor is 11 48 48 49 49 The query data command is 11 03 00 00 00 02 C6 9B 50 50 51 -For example, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686, K=10, EC: 6860uS/cm 184 +**For example**, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686, K=10, EC: 6860uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10. 52 52 53 53 187 +Query the data (EC,temperature) of the sensor (address 11), host → slave 188 + 189 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 190 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 191 +|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XA8 192 + 193 +If the sensor receives correctly, the following data will be returned, slave → host 194 + 195 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 196 +|=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 197 +|(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0XB8|(% style="width:56px" %)0XD0 198 + 54 54 The address of the EC K1 sensor is 12 55 55 56 56 The query data command is 12 03 00 00 00 02 C6 A8 57 57 58 -For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686, K=1, EC: 686uS/cm. 203 +**For example**, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686, K=1, EC: 686uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10. 59 59 60 60 61 -=== 1.7. 2Calibration Method ===206 +=== 1.7.5 Calibration Method === 62 62 63 63 64 64 This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution. 65 65 66 -The calibration steps are as follows: 211 +(% style="color:blue" %)**The calibration steps are as follows:** 212 + 67 67 (1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable. 68 68 69 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 676.25px" %)70 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high215 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 216 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high 71 71 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 72 72 0X00 73 - 74 74 0X00 75 - 76 76 0X37 77 - 78 78 0X32 79 79 )))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC 80 80 81 81 1413*10 gives 0X00003732 82 82 83 - Return226 +**response:** 84 84 85 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 676.25px" %)86 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width:50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width:50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 high228 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 229 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high 87 87 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0 88 88 89 - 90 - 91 91 (2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command 92 92 93 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 676.25px" %)94 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high234 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 235 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high 95 95 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)((( 96 96 0X00 97 - 98 98 0X01 99 - 100 100 0XF7 101 - 102 102 0X20 103 103 )))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75 104 104 105 105 12880*10 gives 0X01F720 106 106 107 - Return245 +**response:** 108 108 109 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width: 676.25px" %)110 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width:50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width:50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width:50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width:50px;background-color:#4F81BD;color:white" %)CRC16 high247 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 248 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high 111 111 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50 112 112 251 += 2. DR-PH01 Water PH Sensor = 113 113 253 +== 2.1 Specification == 114 114 115 115 256 +* **Power Input**: DC7~~30 116 116 117 - =2. DR-PH01 WaterPH Sensor=258 +* **Power Consumption** : < 0.5W 118 118 119 - ==2.7RS485Commands==260 +* **Interface**: RS485. 9600 Baud Rate 120 120 262 +* **pH measurement range**: 0~~14.00pH; resolution: 0.01pH 121 121 122 - Theaddress of thepHsoris 10264 +* **pH measurement error**: ±0.15pH 123 123 266 +* **Repeatability error**: ±0.02pH 267 + 268 +* **Temperature measurement range**:0~~60°C; resolution: 0.1°C (set temperature for manual temperature compensation, default 25°C) 269 + 270 +* **Temperature measurement error**: ±0.5°C 271 + 272 +* **Temperature Measure Range**: -20 ~~ 60 °C 273 + 274 +* **Temperature Accuracy: **±0.5 °C 275 + 276 +* **IP Rated**: IP68 277 + 278 +* **Max Pressure**: 0.6MPa 279 + 280 +== 2.2 Wiring == 281 + 282 + 283 +[[image:image-20240720172548-2.png||height="348" width="571"]] 284 + 285 + 286 +== 2.3 Mechinical Drawing == 287 + 288 + 289 +[[image:image-20240714174241-2.png]] 290 + 291 + 292 +== 2.4 Installation Notice == 293 + 294 + 295 +Do not power on while connect the cables. Double check the wiring before power on. 296 + 297 +Installation Photo as reference: 298 + 299 +(% style="color:blue" %)**Submerged installation:** 300 + 301 +The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded. 302 + 303 +[[image:image-20240718191348-6.png]] 304 + 305 +(% style="color:blue" %)**Pipeline installation:** 306 + 307 +Connect the equipment to the pipeline through the 3/4 thread. 308 + 309 +[[image:image-20240718191336-5.png||height="239" width="326"]] 310 + 311 +(% style="color:blue" %)**Sampling:** 312 + 313 +Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it. 314 + 315 +(% style="color:blue" %)**Measure the pH of the water sample:** 316 + 317 +First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable. 318 + 319 + 320 +== 2.5 Maintenance == 321 + 322 + 323 +* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible! 324 + 325 +* There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use. 326 + 327 +* Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water. 328 + 329 +* The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective. 330 + 331 +* Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response. 332 + 333 +* The electrode should be cleaned with deionized water before and after measurement to ensure accuracy. 334 + 335 +* After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance. 336 + 337 +* Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. 338 + 339 +* The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 340 + 341 + 342 +== 2.6 RS485 Commands == 343 + 344 + 345 +RS485 signaldefault address 0x10 346 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 347 + 348 + 349 +=== 2.6.1 Query address === 350 + 351 + 352 +**send:** 353 + 354 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 355 +|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high 356 +|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4 357 + 358 +**response:** 359 + 360 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 361 +|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 362 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 363 + 364 +=== 2.6.2 Change address === 365 + 366 + 367 +For example: Change the address of the sensor with address 1 to 2, master → slave 368 + 369 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 370 +|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high 371 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 372 + 373 +If the sensor receives correctly, the data is returned along the original path. 374 + 375 +(% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.** 376 + 377 + 378 +=== 2.6.3 Modify intercept === 379 + 380 + 381 +**send:** 382 + 383 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 384 +|=(% style="width: 44.75px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 385 +|(% style="width:71px" %)0X10|(% style="width:74px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X10|(% style="width:69px" %)0X00|(% style="width:66px" %)0X64|(% style="width:57px" %)0X8A|(% style="width:57px" %)((( 386 +0XA5 387 +))) 388 + 389 +Change the intercept of the sensor at address 10 to 1 (default is 0). You need to pass the intercept 1*100 =100 into the command 0x006. 390 + 391 +**response:** 392 + 393 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 394 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high 395 +|(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 396 +0X00 397 +)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)((( 398 +0XA5 399 +))) 400 + 401 +=== 2.6.4 Query data === 402 + 403 + 404 +Query the data (PH) of the sensor (address 10), host → slave 405 + 406 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 407 +|=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 408 +|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X4B 409 + 410 +If the sensor receives correctly, the following data will be returned, slave → host 411 + 412 +(% border="1" cellspacing="3" style="background-color:#f2f2f2;width:518px" %) 413 +|=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 414 +|(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0XC4|(% style="width:56px" %)0X9B 415 + 124 124 The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned. 125 125 126 126 For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B. ... ... @@ -128,13 +128,178 @@ 128 128 02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86. 129 129 130 130 423 +=== 2.6.5 Calibration Method === 424 + 425 + 426 +This device uses three-point calibration, and three known pH standard solutions need to be prepared. 427 + 428 +(% style="color:blue" %)**The calibration steps are as follows:** 429 + 430 +(1) Place the electrode in distilled water to clean it, and then place it in 9.18 standard buffer solution. After the data stabilizes, enter the following calibration command, and the 9.18 calibration is completed. 431 + 432 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 433 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 434 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 435 +0X00 436 +)))|(% style="width:68px" %)0X20|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X8A|(% style="width:55px" %)((( 437 +0XF1 438 +))) 439 + 440 +(2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed. 441 + 442 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 443 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 444 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 445 +0X00 446 +)))|(% style="width:68px" %)0X21|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XDB|(% style="width:55px" %)((( 447 +0X31 448 +))) 449 + 450 +(3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed. 451 + 452 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %) 453 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 454 +|(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 455 +0X00 456 +)))|(% style="width:68px" %)0X22|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X2B|(% style="width:55px" %)((( 457 +0X31 458 +))) 459 + 460 +After the above three steps are completed, the calibration is successful. The advantage of three-point calibration compared to two-point calibration is that the electrode is calibrated separately in the acid and alkali parts, thereby achieving accurate calibration of the full range and making the measurement data more accurate. 461 + 462 + 131 131 = 3. DR-ORP1 Water ORP Sensor = 132 132 133 -== 3. 7RS485 Commands==465 +== 3.1 Specification == 134 134 467 +* **Power Input**: DC7~~30 468 +* **Measuring range**:** **-1999~~1999mV 469 +**Resolution**: 1mV 470 +* **Interface**: RS485. 9600 Baud Rate 471 +* **Measurement error**: ±3mV 472 +* **Stability**: ≤2mv/24 hours 473 +* **Equipment working conditions**: Ambient temperature: 0-60℃ Relative humidity: <85%RH 474 +* **IP Rated**: IP68 475 +* **Max Pressure**: 0.6MPa 135 135 136 - Theaddressof the ORP sensors13477 +== 3.2 Wiring == 137 137 479 +[[image:image-20240720172620-3.png||height="378" width="620"]] 480 + 481 + 482 +== 3.3 Mechinical Drawing == 483 + 484 +[[image:image-20240714174241-2.png]] 485 + 486 +== 3.4 Installation Notice == 487 + 488 +Do not power on while connect the cables. Double check the wiring before power on. 489 + 490 +Installation Photo as reference: 491 + 492 +**~ Submerged installation:** 493 + 494 +The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded. 495 + 496 +[[image:image-20240718191348-6.png]] 497 + 498 +**~ Pipeline installation:** 499 + 500 +Connect the equipment to the pipeline through the 3/4 thread. 501 + 502 +[[image:image-20240718191336-5.png||height="239" width="326"]] 503 + 504 + 505 +== 3.5 Maintenance == 506 + 507 + 508 +(1) The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible. 509 + 510 +(2) In general, ORP electrodes do not need to be calibrated and can be used directly. When there is doubt about the quality and test results of the ORP electrode, the electrode potential can be checked with an ORP standard solution to determine whether the ORP electrode meets the measurement requirements, and the electrode can be recalibrated or replaced with a new ORP electrode. The frequency of calibration or inspection of the measuring electrode depends on different application conditions (the degree of dirt in the application, the deposition of chemical substances, etc.). 511 + 512 +(3) There is an appropriate soaking solution in the protective bottle at the front end of the electrode, and the electrode head is soaked in it to ensure the activation of the platinum sheet and the liquid junction. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use. 513 + 514 +(4) Preparation of electrode soaking solution: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water to prepare a 3.3M potassium chloride solution. 515 + 516 +(5) Before measuring, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response. 517 + 518 +(6) The electrode should be cleaned with deionized water before and after the measurement to ensure the measurement accuracy. 519 + 520 +(7) After long-term use, the ORP electrode will be passivated, which is manifested as a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the platinum sheet at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance. 521 + 522 +(8) Electrode contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. If the platinum of the electrode is severely contaminated and an oxide film is formed, toothpaste can be applied to the platinum surface and then gently scrubbed to restore the platinum's luster. 523 + 524 +(9) The equipment should be calibrated before each use. It is recommended to calibrate once every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time. 525 + 526 +== 3.6 RS485 Commands == 527 + 528 + 529 +RS485 signaldefault address 0x13 530 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 531 + 532 +=== 3.6.1 Query address === 533 + 534 +send 535 + 536 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 537 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 538 +|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4 539 + 540 +response 541 + 542 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %) 543 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 544 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 545 + 546 +=== 3.6.2 Change address === 547 + 548 +For example: Change the address of the sensor with address 1 to 2, master → slave 549 + 550 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 551 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 552 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 553 + 554 +If the sensor receives correctly, the data is returned along the original path. 555 +Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query. 556 + 557 + 558 +=== 3.6.3 Modify intercept === 559 + 560 +send 561 + 562 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 563 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 69px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 564 +|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)((( 565 +0X96 566 +))) 567 + 568 +Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command. 569 + 570 +response 571 + 572 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 573 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 574 +|(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)((( 575 +0X00 576 +)))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)((( 577 +0X96 578 +))) 579 + 580 +=== 3.6.4 Query data === 581 + 582 + 583 +Query the data (ORP) of the sensor (address 13), host → slave 584 + 585 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 586 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 587 +|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X78 588 + 589 +If the sensor receives correctly, the following data will be returned, slave → host 590 + 591 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 592 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 593 +|(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X80|(% style="width:56px" %)0X9B 594 + 138 138 The query data command is 13 03 00 00 00 01 87 78 139 139 140 140 For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B. ... ... @@ -142,31 +142,229 @@ 142 142 02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV 143 143 144 144 602 +=== 3.6.5 Calibration Method === 603 + 604 +This device uses two-point calibration, and two known ORP standard solutions need to be prepared. The calibration steps are as follows: 605 +(1) Place the electrode in distilled water to clean it, and then place it in 86mV standard buffer solution. After the data stabilizes, 606 +enter the following calibration command, and the 86mV point calibration is completed; 607 + 608 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %) 609 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 610 +|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 611 +0X00 612 +)))|(% style="width:68px" %)0X24|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XCB|(% style="width:55px" %)((( 613 +0X03 614 +))) 615 + 616 +Wash the electrode in distilled water and place it in 256mV standard buffer. After the data is stable, enter the following calibration command to complete the 256mV point calibration. 617 + 618 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:575.333px" %) 619 +|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 620 +|(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)((( 621 +0X00 622 +)))|(% style="width:68px" %)0X25|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X9A|(% style="width:55px" %)((( 623 +0XC3 624 +))) 625 + 145 145 = 4. DR-DO1 Dissolved Oxygen Sensor = 146 146 147 -== 4.7 RS485 Commands == 148 148 149 149 150 - Theaddressofhe dissolved oxygensensor is 14630 +== 4.1 Specification == 151 151 152 -The query data command is 14 03 00 14 00 01 C6 CB 153 153 633 +* **Measuring range**: 0-20mg/L, 0-50℃ 634 +* **Accuracy**: 3%, ±0.5℃ 635 +* **Resolution**: 0.01 mg/L, 0.01℃ 636 +* **Maximum operating pressure**: 6 bar 637 +* **Output signal**: A: 4-20mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01) 638 +* **Power supply voltage**: 5-24V DC 639 +* **Working environment**: temperature 0-60℃; humidity <95%RH 640 +* **Power consumption**: ≤0.5W 641 + 642 +== 4.2 wiring == 643 + 644 +[[image:image-20240720172632-4.png||height="390" width="640"]] 645 + 646 + 647 +== (% id="cke_bm_224234S" style="display:none" %) (%%)4.3 Impedance requirements for current signals == 648 + 649 +[[image:image-20240718195414-8.png||height="100" width="575"]] 650 + 651 + 652 +== 4.4 Mechinical Drawing == 653 + 654 + 655 +[[image:image-20240719155308-1.png||height="226" width="527"]] 656 + 657 + 658 +== 4.5 Instructions for use and maintenance == 659 + 660 +* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor. 661 +* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently. 662 + 663 +== 4.6 RS485 Commands == 664 + 665 +RS485 signaldefault address 0x14 666 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 667 + 668 +=== 4.6.1 Query address === 669 + 670 +send 671 + 672 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 673 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 674 +|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XF1|(% style="width:56px" %)0XD7 675 + 676 +If you forget the original address of the sensor, you can use the broadcast address 0XFF instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 677 + 678 + 679 +response 680 + 681 +Register 0 data high and register 0 data low indicate the actual address of the sensor: 1 682 +Register 1 data high and register 1 data low indicate the sensor version 683 + 684 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 685 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 686 +|(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X04|(% style="width:68px" %)0X00|(% style="width:70px" %)0X01|(% style="width:72px" %)0X00|(% style="width:56px" %)0X00|(% style="width:56px" %)0XB4|(% style="width:56px" %)0X3C 687 + 688 +=== 4.6.2 Change address === 689 + 690 +For example: Change the address of the sensor with address 1 to 2(address range: 1-119), master → slave 691 + 692 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:907.333px" %) 693 +|=(% style="width: 67px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 71px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 65px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Start address low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low 694 +|(% style="width:67px" %)0X01|(% style="width:71px" %)0X10|(% style="width:65px" %)0X00|(% style="width:65px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X04|(% style="width:53px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X00|(% style="width:53px" %)0X00|(% style="width:56px" %)0XD2|(% style="width:53px" %)0X10 695 + 696 +response 697 + 698 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 699 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 700 +|(% style="width:99px" %)0X01|(% style="width:72px" %)0X10|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0X61|(% style="width:56px" %)0XCA 701 + 702 +=== 4.6.3 Query data === 703 + 704 + 705 +Query the data (dissolved oxygen) of the sensor (address 14), host → slave 706 + 707 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 708 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 709 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X14|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XCB 710 + 711 +If the sensor receives correctly, the following data will be returned, slave → host 712 + 713 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 714 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 715 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X03|(% style="width:72px" %)0X78|(% style="width:56px" %)0XB5|(% style="width:56px" %)0X55 716 + 154 154 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen. 155 155 156 156 Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L 157 157 158 158 722 +Query the data (temperature) of the sensor (address 14), host → slave 723 + 724 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 725 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 726 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X11|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XD6|(% style="width:56px" %)0XCA 727 + 728 +If the sensor receives correctly, the following data will be returned, slave → host 729 + 730 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 731 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 732 +|(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X09|(% style="width:72px" %)0XA4|(% style="width:56px" %)0XB2|(% style="width:56px" %)0X6C 733 + 734 +After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**09 A4**(%%) B2 6C. 03 78 is the value of dissolved oxygen temperature. 735 + 736 +Converted to decimal, it is 2468. Add two decimal places to get the actual value. 09 A4 means the current dissolved oxygen temperature is 24.68℃ 737 + 738 + 159 159 = 5. DR-TS1 Water Turbidity Sensor = 160 160 161 -== 5.7 RS485 Commands == 162 162 163 163 164 - Theaddressofthesolved oxygensensoris15743 +== (% id="cke_bm_81470S" style="display:none" %) (%%)5.1 Specification == 165 165 745 +* **Measuring range**: 0.1~1000.0NTU 746 +* **Accuracy**: ±5% 747 +* **Resolution**: 0.1NTU 748 +* **Stability**: ≤3mV/24 hours 749 +* **Output signal**: A: 4~20 mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01) 750 +* **Power supply voltage**: 5~24V DC (when output signal is RS485)12~24V DC (when output signal is 4~20mA) 751 +* **Working environment**: temperature 0~60℃; humidity ≤95%RH 752 +* **Power consumption**: ≤0.5W 753 + 754 +== 5.2 wiring == 755 + 756 +[[image:image-20240720172640-5.png||height="387" width="635"]] 757 + 758 + 759 +== 5.3 Impedance requirements for current signals == 760 + 761 +[[image:image-20240718195414-8.png||height="100" width="575"]] 762 + 763 + 764 +== 5.4 Mechinical Drawing == 765 + 766 +[[image:image-20240718195058-7.png||height="305" width="593"]] 767 + 768 + 769 +== 5.5 Instructions for use and maintenance == 770 + 771 +* It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor. 772 +* If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently. 773 + 774 +== 5.6 RS485 Commands == 775 + 776 + 777 +RS485 signaldefault address 0x15 778 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1 779 + 780 +=== 5.6.1 Query address === 781 + 782 +send 783 + 784 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 785 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 786 +|(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X50|(% style="width:70px" %)0X00|(% style="width:72px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4 787 + 788 +If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query. 789 + 790 + 791 +response 792 + 793 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %) 794 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 795 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0 796 + 797 +=== 5.6.2 Change address === 798 + 799 +For example: Change the address of the sensor with address 1 to 2, master → slave 800 + 801 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %) 802 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high 803 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A 804 + 805 +If the sensor receives correctly, the data is returned along the original path. 806 +Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query. 807 + 808 +=== 5.6.3 Query data === 809 + 810 + 811 +Query the data (turbidity) of the sensor (address 15), host → slave 812 + 813 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 814 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 815 +|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X1E 816 + 817 +If the sensor receives correctly, the following data will be returned, slave → host 818 + 819 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:599.333px" %) 820 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 56px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high 821 +|(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0X9A|(% style="width:56px" %)0X09|(% style="width:56px" %)0X4C 822 + 166 166 The query data command is 15 03 00 00 00 01 87 1E 167 167 168 168 For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C 169 169 170 170 02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU 171 - 172 -
- image-20240718190121-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +281.1 KB - Content
- image-20240718190204-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +111.8 KB - Content
- image-20240718190221-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +140.2 KB - Content
- image-20240718190249-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +111.6 KB - Content
- image-20240718191336-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.6 KB - Content
- image-20240718191348-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +91.2 KB - Content
- image-20240718195058-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +97.6 KB - Content
- image-20240718195414-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +13.5 KB - Content
- image-20240719155308-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +57.4 KB - Content
- image-20240720172533-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20240720172548-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20240720172620-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20240720172632-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20240720172640-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.karry - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content