<
From version < 13.1 >
edited by Karry Zhuang
on 2024/07/18 15:59
To version < 21.1 >
edited by Karry Zhuang
on 2024/07/18 19:02
>
Change comment: Uploaded new attachment "image-20240718190221-3.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -37,13 +37,118 @@
37 37  == 1.5 Installation ==
38 38  
39 39  
40 +**Electrode installation form**
41 +
42 +A:Side wall installation
43 +
44 +B:Top flange installation
45 +
46 +C:Pipeline bend installation
47 +
48 +D:Pipeline bend installation
49 +
50 +E:Flow-through installation
51 +
52 +F:Submerged installation
53 +
54 +[[image:image-20240716104537-2.png||height="475" width="706"]]
55 +
56 +**Several common installation methods of electrodes**
57 +
58 +When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation.
59 +
60 +A. Several common incorrect installation methods
61 +
62 +[[image:image-20240717103452-1.png||height="320" width="610"]]
63 +
64 +Error cause: The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error.
65 +
66 +
67 +[[image:image-20240716105124-4.png||height="326" width="569"]]
68 +
69 +Error cause: Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes.
70 +
71 +B. Correct installation method
72 +
73 +[[image:image-20240716105318-5.png||height="330" width="594"]]
74 +
75 +
40 40  == 1.6 Maintain ==
41 41  
42 42  
79 +* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible!
80 +* There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
81 +* Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water.
82 +* The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective.
83 +* Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
84 +* The electrode should be cleaned with deionized water before and after measurement to ensure accuracy.
85 +* After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
86 +* Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant.
87 +* (((
88 +The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
89 +)))
90 +
43 43  == 1.7 RS485 Commands ==
44 44  
45 -=== 1.7.1 Query data ===
46 46  
94 +RS485 signal (K1 default address 0x12; K10 default address 0x11):
95 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
96 +
97 +
98 +=== 1.7.1 Query address ===
99 +
100 +send
101 +
102 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
103 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
104 +|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
105 +
106 +If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
107 +
108 +
109 +response
110 +
111 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
112 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
113 +|(% style="width:99px" %)0X1|(% style="width:112px" %)0X3|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
114 +
115 +=== 1.7.2 Change address ===
116 +
117 +For example: Change the address of the sensor with address 1 to 2, master → slave
118 +
119 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
120 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
121 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
122 +
123 +If the sensor receives correctly, the data is returned along the original path.
124 +Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
125 +
126 +
127 +=== 1.7.3 Modify intercept ===
128 +
129 +
130 +send
131 +
132 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
133 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
134 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XFA|(% style="width:1px" %)(((
135 +0X97
136 +)))
137 +
138 +Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
139 +
140 +response
141 +
142 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
143 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
144 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
145 +0X02
146 +)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X0A|(% style="width:1px" %)(((
147 +0XE5
148 +)))
149 +
150 +=== 1.7.4 Query data ===
151 +
47 47  The address of the EC K10 sensor is 11
48 48  
49 49  The query data command is 11 03 00 00 00 02 C6 9B
... ... @@ -55,20 +55,60 @@
55 55  
56 56  The query data command is 12 03 00 00 00 02 C6 A8
57 57  
58 -For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm.
163 +For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm
59 59  
60 60  
61 -=== 1.7.2 Calibration Method ===
166 +=== 1.7.5 Calibration Method ===
62 62  
63 63  
64 -This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413uS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution. The calibration steps are as follows:
65 -(1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413HS/cm standard solution, enter the following calibration command after the data is stable.
169 +This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution.
66 66  
171 +The calibration steps are as follows:
172 +(1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable.
67 67  
68 68  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
69 69  |=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
70 -|(% style="width:99px" %) |(% style="width:112px" %) |(% style="width:135px" %) |(% style="width:126px" %) |(% style="width:85px" %) |(% style="width:1px" %) |(% style="width:1px" %) |(% style="width:1px" %) |(% style="width:1px" %) |(% style="width:1px" %)
176 +|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
177 +0X00
71 71  
179 +0X00
180 +
181 +0X37
182 +
183 +0X32
184 +)))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC
185 +
186 +1413*10 gives 0X00003732
187 +
188 +response
189 +
190 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
191 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
192 +|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0
193 +
194 +(2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command
195 +
196 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
197 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
198 +|(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
199 +0X00
200 +
201 +0X01
202 +
203 +0XF7
204 +
205 +0X20
206 +)))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75
207 +
208 +12880*10 gives 0X01F720
209 +
210 +response
211 +
212 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
213 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
214 +|(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50
215 +
216 +
72 72  = 2. DR-PH01 Water PH Sensor =
73 73  
74 74  == 2.7 RS485 Commands ==
image-20240718190121-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +281.1 KB
Content
image-20240718190204-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +111.8 KB
Content
image-20240718190221-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.karry
Size
... ... @@ -1,0 +1,1 @@
1 +140.2 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0