Changes for page Water Quality Sensors

Last modified by Karry Zhuang on 2025/02/18 15:43

From version 10.1
edited by Karry Zhuang
on 2024/07/18 12:01
Change comment: There is no comment for this version
To version 16.2
edited by Karry Zhuang
on 2024/07/18 18:57
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -37,16 +37,113 @@
37 37  == 1.5 Installation ==
38 38  
39 39  
40 + Do not power on while connect the cables. Double check the wiring before power on.
41 +
42 +Installation Photo as reference:
43 +
44 +**~ Submerged installation:**
45 +
46 +The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
47 +
48 +[[image:image-20240715181933-4.png||height="281" width="258"]]
49 +
50 +**~ Pipeline installation:**
51 +
52 +Connect the equipment to the pipeline through the 3/4 thread.
53 +
54 +[[image:image-20240715182122-6.png||height="291" width="408"]]
55 +
56 +**Sampling:**
57 +
58 +Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it.
59 +
60 +**Measure the pH of the water sample:**
61 +
62 +First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable.
63 +
64 +
40 40  == 1.6 Maintain ==
41 41  
42 42  
68 +* The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible!
69 +* There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
70 +* Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water.
71 +* The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective.
72 +* Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
73 +* The electrode should be cleaned with deionized water before and after measurement to ensure accuracy.
74 +* After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
75 +* Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant.
76 +* (((
77 +The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
78 +)))
79 +
43 43  == 1.7 RS485 Commands ==
44 44  
45 -The address of the EC K1 sensor is 11
46 46  
83 +RS485 signal (K1 default address 0x12; K10 default address 0x11):
84 +Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
85 +
86 +
87 +=== 1.7.1 Query address ===
88 +
89 +send
90 +
91 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
92 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
93 +|(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
94 +
95 +If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
96 +
97 +
98 +response
99 +
100 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:561.333px" %)
101 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
102 +|(% style="width:99px" %)0X1|(% style="width:112px" %)0X3|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
103 +
104 +=== 1.7.2 Change address ===
105 +
106 +For example: Change the address of the sensor with address 1 to 2, master → slave
107 +
108 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
109 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
110 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
111 +
112 +If the sensor receives correctly, the data is returned along the original path.
113 +Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.
114 +
115 +
116 +=== 1.7.3 Modify intercept ===
117 +
118 +
119 +send
120 +
121 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
122 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
123 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XFA|(% style="width:1px" %)(((
124 +0X97
125 +)))
126 +
127 +Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
128 +
129 +response
130 +
131 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
132 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
133 +|(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
134 +0X02
135 +)))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X0A|(% style="width:1px" %)(((
136 +0XE5
137 +)))
138 +
139 +
140 +=== 1.7.4 Query data ===
141 +
142 +The address of the EC K10 sensor is
143 +
47 47  The query data command is 11 03 00 00 00 02 C6 9B
48 48  
49 -For example, the returned data is 11 03 04 02 AE 01 64 8B D0, 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm
146 +For example, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm
50 50  
51 51  
52 52  The address of the EC K1 sensor is 12
... ... @@ -53,39 +53,105 @@
53 53  
54 54  The query data command is 12 03 00 00 00 02 C6 A8
55 55  
56 -~; when K=10, EC: 6860uS/cm.
153 +For example, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm
57 57  
155 +
156 +=== 1.7.5 Calibration Method ===
157 +
158 +
159 +This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution.
160 +
161 +The calibration steps are as follows:
162 +(1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable.
163 +
164 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
165 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
166 +|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
167 +0X00
168 +
169 +0X00
170 +
171 +0X37
172 +
173 +0X32
174 +)))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC
175 +
176 +1413*10 gives 0X00003732
177 +
178 +response
179 +
180 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
181 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
182 +|(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0
183 +
184 +(2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command
185 +
186 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
187 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 139.083px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
188 +|(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
189 +0X00
190 +
191 +0X01
192 +
193 +0XF7
194 +
195 +0X20
196 +)))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75
197 +
198 +12880*10 gives 0X01F720
199 +
200 +response
201 +
202 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:676.25px" %)
203 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 1px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 50px;background-color:#4F81BD;color:white" %)CRC16 high
204 +|(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50
205 +
206 +
207 +
208 +
209 +
58 58  = 2. DR-PH01 Water PH Sensor =
59 59  
60 60  == 2.7 RS485 Commands ==
61 61  
62 -The address of the dissolved oxygen sensor is 12
63 63  
64 -The query data command is 14 03 00 14 00 01 C6 CB
215 +The address of the pH  sensor is 10
65 65  
217 +The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned.
66 66  
219 +For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B.
220 +
221 +02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86.
222 +
223 +
67 67  = 3. DR-ORP1 Water ORP Sensor =
68 68  
69 69  == 3.7 RS485 Commands ==
70 70  
71 71  
72 -The address of the dissolved oxygen sensor is 13
229 +The address of the ORP sensor is 13
73 73  
74 -The query data command is 14 03 00 14 00 01 C6 CB
231 +The query data command is 13 03 00 00 00 01 87 78
75 75  
233 +For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B.
76 76  
235 +02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV
236 +
237 +
77 77  = 4. DR-DO1 Dissolved Oxygen Sensor =
78 78  
79 79  == 4.7 RS485 Commands ==
80 80  
242 +
81 81  The address of the dissolved oxygen sensor is 14
82 82  
83 83  The query data command is 14 03 00 14 00 01 C6 CB
84 84  
85 -After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 03 78 B5 55. 03 78 is the value of dissolved oxygen.
247 +After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen.
86 86  
87 87  Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L
88 88  
251 +
89 89  = 5. DR-TS1 Water Turbidity Sensor =
90 90  
91 91  == 5.7 RS485 Commands ==
... ... @@ -93,6 +93,10 @@
93 93  
94 94  The address of the dissolved oxygen sensor is 15
95 95  
96 -The query data command is 15 03 00 14 00 01 C6 CB
259 +The query data command is 15 03 00 00 00 01 87 1E
97 97  
261 +For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C
262 +
263 +02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU
264 +
98 98