Wiki source code of Water Quality Sensors

Version 71.9 by Karry Zhuang on 2025/07/16 09:22

Show last authors
1 **Table of Contents:**
2
3 {{toc/}}
4
5
6
7
8 = 1. DR-EC Water EC Probe =
9
10 == 1.1 Specification: ==
11
12
13 * **Power Input**: DC7~~30
14
15 * **Power Consumption** : < 0.5W
16
17 * **Interface**: RS485. 9600 Baud Rate
18
19 * **EC Range & Resolution:**
20 ** **ECK1.0** : 0 ~~ 2,000 μS/cm  Resolution: 1 μS/cm
21 ** **ECK10.0** : 10 ~~ 20,000 μS/cm  Resolution: 10 μS/cm
22 ** **EC200.0** : 1 ~~ 200,000 μS/cm  Resolution: 1 μS/cm
23 * **EC Accuracy**: ±1% FS
24 * **Salinity measurement range**
25 ** **EC200 :**0~~70PSU Resolution: 0.1PSU
26 * **Temperature measurement range**
27 ** **ECK1/ECK10:**-20~~+60℃; Resolution: 0.1℃
28 ** **EC200 :**-5~~+80℃; Resolution: 0.1℃
29 * **Temperature Accuracy: **±0.5 °C
30 * **Temperature compensation range**
31 ** **ECK1/ECK10:**0~~+60℃ (default compensation temperature 25℃)
32 ** **EC200:**-5~~+80℃ (default compensation temperature 25℃)
33 * **Temperature compensation coefficient:**Default 0.2
34 * **Working environment:**
35 ** Ambient Temperature: 0–60°C
36 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
37 ** ECK200.0 Continuous monitoring of cross-section water quality, aquaculture, sewage treatment, environmental protection, pharmaceuticals, food, tap water, seawater and other high conductivity environments
38 * **IP Rated**: IP68
39 * **Max Pressure**: 0.6MPa
40
41 == 1.2 Application for Different Range ==
42
43
44 [[image:image-20240714173018-1.png]]
45
46
47 == 1.3 Wiring ==
48
49
50 [[image:image-20241129142314-1.png||height="352" width="1108"]]
51
52
53 == 1.4 Mechinical Drawing ==
54
55 ECK1 and ECK10  ECK200
56
57
58 [[image:image-20240714174241-2.png]] [[image:1752564223905-283.png||height="399" width="160"]]
59
60
61 == 1.5 Installation ==
62
63
64 **Electrode installation form:**
65
66 A: Side wall installation
67
68 B: Top flange installation
69
70 C: Pipeline bend installation
71
72 D: Pipeline bend installation
73
74 E: Flow-through installation
75
76 F: Submerged installation
77
78 [[image:image-20240718190121-1.png||height="350" width="520"]]
79
80 **Several common installation methods of electrodes**
81
82 When installing the sensor on site, you should strictly follow the correct installation method shown in the following picture. Incorrect installation method will cause data deviation.
83
84 A. Several common incorrect installation methods
85
86 [[image:image-20240718190204-2.png||height="262" width="487"]]
87
88 **Error cause:** The electrode joint is too long, the extension part is too short, the sensor is easy to form a dead cavity, resulting in measurement error.
89
90 [[image:image-20240718190221-3.png||height="292" width="500"]]
91
92 **Error cause: **Measurement error or instability may occur due to water flow not being able to fill the pipe or air accumulation at high altitudes.
93
94 B. Correct installation method
95
96 [[image:image-20240718190249-4.png||height="287" width="515"]]
97
98
99 == 1.6 Maintenance ==
100
101
102 * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
103
104 * If the electrode is not used for a long time, it can generally be stored in a dry place, but it must be placed (stored) in distilled water for several hours before use to activate the electrode. Electrodes that are frequently used can be placed (stored) in distilled water.
105
106 * Cleaning of conductivity electrodes: Organic stains on the electrode can be cleaned with warm water containing detergent, or with alcohol. Calcium and magnesium precipitates are best cleaned with 10% citric acid. The electrode plate or pole can only be cleaned by chemical methods or by shaking in water. Wiping the electrode plate will damage the coating (platinum black) on the electrode surface.
107
108 * The equipment should be calibrated before each use. It is recommended to calibrate it every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.).
109
110 == 1.7 RS485 Commands ==
111
112
113 RS485 signal (K1 default address 0x12; K10 default address 0x11):
114 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
115
116
117 === 1.7.1 Query address ===
118
119
120 **send:**
121
122 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
123 |=(% style="width: 74.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 59.75px;background-color:#4F81BD;color:white" %)CRC16 high
124 |(% style="width:99px" %)0XFE |(% style="width:72px" %)0X03|(% style="width:50px" %)0X00|(% style="width:42px" %)0X50|(% style="width:42px" %)0X00|(% style="width:42px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
125
126 If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
127
128
129 **response:**
130
131 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
132 |=(% style="width: 100px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 110px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 106px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 93px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 104px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
133 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
134
135
136
137 === 1.7.2 Change address ===
138
139
140 For example: Change the address of the sensor with address 1 to 2, master → slave
141
142 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
143 |=(% style="width: 74.75px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
144 |(% style="width:67px" %)0X01|(% style="width:76px" %)0X06|(% style="width:60px" %)0X00|(% style="width:50px" %)0X50|(% style="width:50px" %)0X00|(% style="width:50px" %)0X02|(% style="width:57px" %)0X08|(% style="width:56px" %)0X1A
145
146 If the sensor receives correctly, the data is returned along the original path.
147
148 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
149
150
151 === 1.7.3 Modify intercept ===
152
153
154 **send:**
155
156 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
157 |=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
158 |(% style="width:64px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X23|(% style="width:85px" %)0X00|(% style="width:1px" %)0X01|(% style="width:1px" %)0XF8|(% style="width:1px" %)(((
159 0X07
160 )))
161
162 Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
163
164 **response:**
165
166 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:512px" %)
167 |=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64px;background-color:#4F81BD;color:white" %)CRC16 high
168 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
169 0X02
170 )))|(% style="width:126px" %)0X00|(% style="width:85px" %)0X00|(% style="width:1px" %)0X0A|(% style="width:1px" %)0X38|(% style="width:1px" %)(((
171 0X8F
172 )))
173
174 === 1.7.4 Query data ===
175
176
177 Query the data (EC,temperature) of the sensor (address 11), host → slave
178
179 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
180 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
181 |(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0X9B
182
183 If the sensor receives correctly, the following data will be returned, slave → host
184
185 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
186 |=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
187 |(% style="width:99px" %)0X11|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0X8B|(% style="width:56px" %)0XD0
188
189 The address of the EC K10 sensor is 11
190
191 The query data command is 11 03 00 00 00 02 C6 9B
192
193 **For example**, the returned data is 11 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 8B D0. 02 AE is converted to decimal 686,  K=10, EC: 6860uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
194
195
196 Query the data (EC,temperature) of the sensor (address 11), host → slave
197
198 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
199 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
200 |(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XA8
201
202 If the sensor receives correctly, the following data will be returned, slave → host
203
204 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
205 |=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
206 |(% style="width:99px" %)0X12|(% style="width:72px" %)0X03|(% style="width:68px" %)0X04|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X01|(% style="width:56px" %)0X64|(% style="width:56px" %)0XB8|(% style="width:56px" %)0XD0
207
208 The address of the EC K1 sensor is 12
209
210 The query data command is 12 03 00 00 00 02 C6 A8
211
212 **For example**, the returned data is 12 03 04 (% style="color:red" %)**02 AE**(%%) 01 64 B8 D0. 02 AE is converted to decimal 686,  K=1, EC: 686uS/cm,temperature: 35.6℃ Convert the returned data to decimal and divide by 10.
213
214
215 ECK200
216
217 === 1.7.5 Calibration Method ===
218
219 ECK1 and ECK10.0
220
221 This device uses one-point calibration, and you need to prepare a known E standard solution. When mileage K=1, 1~~2000 uses 1413μS/cm standard solution, and when mileage K=10, 10~~20000 uses 12.88mS/cm standard solution.
222
223 (% style="color:blue" %)**The calibration steps are as follows:**
224
225 (1) Place the electrode in distilled water and clean it. When mileage 1~~2000 uses 1413μS/cm standard solution, enter the following calibration command after the data is stable.
226
227 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
228 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
229 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
230 0X00
231 0X00
232 0X37
233 0X32
234 )))|(% style="width:1px" %)0XBD|(% style="width:1px" %)0XFC
235
236 1413*10 gives 0X00003732
237
238 **response:**
239
240 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
241 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
242 |(% style="width:99px" %)0X12|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XA2|(% style="width:1px" %)0XA0
243
244 (2) Place the electrode in distilled water to clean it. Use 12.88mS/cm standard solution for the range of 10~~20000. After the data is stable, enter the following calibration command
245
246 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
247 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
248 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X10|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X04|(% style="width:1px" %)(((
249 0X00
250 0X01
251 0XF7
252 0X20
253 )))|(% style="width:1px" %)0X33|(% style="width:1px" %)0X75
254
255 12880*10 gives 0X01F720
256
257 **response:**
258
259 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
260 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
261 |(% style="width:99px" %)0X11|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X26|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0XEB|(% style="width:1px" %)0X50
262
263
264
265 ECK200.0
266
267 For the device with address 01, use 1413uS/cm standard solution to calibrate the first point. Send frame: 1413. Convert hexadecimal to 585. Write 0001, 00 00, 0585 to 0x0120, 0x0121, 0x0122 respectively.
268
269 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
270 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Register contents|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
271 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X20|(% style="width:126px" %)0X00 0X03|(% style="width:85px" %)0X06|(% style="width:1px" %)(((
272 0X00
273 0X01
274 0X00
275 0X00
276 0X05
277 0X85
278 )))|(% style="width:1px" %)0X1c|(% style="width:1px" %)(((
279 (((
280 0X25
281 )))
282 )))
283
284 **response:**
285
286 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
287 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 60px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
288 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X02|(% style="width:126px" %)0X00 0X03|(% style="width:85px" %)0X06|(% style="width:1px" %)(((
289 0X80
290 )))|(% style="width:60px" %)0X3e(((
291
292 )))
293
294 Use 111310uS/cm standard solution to calibrate the second point and send the frame: 111310 is converted into hexadecimal 1b2ce, and 0002, 0001,b2 ce are written to 0x0120, 0x0121, and 0x0122 respectively.
295
296 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
297 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)Register contents|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 53px;background-color:#4F81BD;color:white" %)CRC16 high
298 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X20|(% style="width:126px" %)0X00 0X03|(% style="width:85px" %)0X06|(% style="width:1px" %)(((
299 0X00
300 0X02
301 0X00
302 0X01
303 0Xb2
304 0Xce
305 )))|(% style="width:1px" %)0X3e|(% style="width:1px" %)(((
306 (((
307 0X22
308 )))
309 )))
310
311 **response:**
312
313 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
314 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Register length|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Data length|=(% style="width: 53px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 60px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
315 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X02|(% style="width:126px" %)0X00 0X03|(% style="width:85px" %)0X06|(% style="width:1px" %)(((
316 0X80
317 )))|(% style="width:60px" %)0X3e
318
319 = 2. DR-PH01 Water PH Sensor =
320
321 == 2.1 Specification ==
322
323
324 * **Power Input**: DC7~~30
325
326 * **Power Consumption** : < 0.5W
327
328 * **Interface**: RS485. 9600 Baud Rate
329
330 * **pH measurement range**: 0~~14.00pH; resolution: 0.01pH
331
332 * **pH measurement error**: ±0.15pH
333
334 * **Repeatability error**: ±0.02pH
335
336 * **Temperature measurement range**:0~~60°C; resolution: 0.1°C (set temperature for manual temperature compensation, default 25°C)
337
338 * **Temperature measurement error**: ±0.5°C
339
340 * **Working environment:**
341 ** Ambient Temperature: 0–60°C
342 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
343
344 * **Temperature Accuracy: **±0.5 °C
345
346 * **IP Rated**: IP68
347
348 * **Max Pressure**: 0.6MPa
349
350 == 2.2 Wiring ==
351
352
353 [[image:image-20240720172548-2.png||height="348" width="571"]]
354
355
356 == 2.3 Mechinical Drawing ==
357
358
359 [[image:image-20240714174241-2.png]]
360
361
362 == 2.4 Installation Notice ==
363
364
365 Do not power on while connect the cables. Double check the wiring before power on.
366
367 Installation Photo as reference:
368
369 (% style="color:blue" %)**Submerged installation:**
370
371 The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
372
373 [[image:image-20240718191348-6.png]]
374
375 (% style="color:blue" %)**Pipeline installation:**
376
377 Connect the equipment to the pipeline through the 3/4 thread.
378
379 [[image:image-20240718191336-5.png||height="239" width="326"]]
380
381 (% style="color:blue" %)**Sampling:**
382
383 Take representative water samples according to sampling requirements. If it is inconvenient to take samples, you can also put the electrode into the solution to be tested and read the output data. After a period of time, take out the electrode and clean it.
384
385 (% style="color:blue" %)**Measure the pH of the water sample:**
386
387 First rinse the electrode with distilled water, then rinse it with the water sample, then immerse the electrode in the sample, carefully shake the test cup or stir it to accelerate the electrode balance, let it stand, and record the pH value when the reading is stable.
388
389
390 == 2.5 Maintenance ==
391
392
393 * The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself. Contact us as soon as possible!
394
395 * There is an appropriate amount of soaking solution in the protective bottle at the front end of the electrode. The electrode head is soaked in it to keep the glass bulb and the liquid junction activated. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
396
397 * Preparation of electrode soaking solution: Take a packet of PH4.00 buffer, dissolve it in 250 ml of pure water, and soak it in 3M potassium chloride solution. The preparation is as follows: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water.
398
399 * The glass bulb at the front end of the electrode cannot come into contact with hard objects. Any damage and scratches will make the electrode ineffective.
400
401 * Before measurement, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
402
403 * The electrode should be cleaned with deionized water before and after measurement to ensure accuracy.
404
405 * After long-term use, the pH electrode will become passivated, which is characterized by a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the bulb at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours. If the pH electrode is seriously passivated and soaking in 0.1M hydrochloric acid has no effect, the pH electrode bulb can be soaked in 4% HF (hydrofluoric acid) for 3-5 seconds, washed with pure water, and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
406
407 * Glass bulb contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant.
408
409 * The equipment should be calibrated before each use. For long-term use, it is recommended to calibrate once every 3 months. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
410
411 == 2.6 RS485 Commands ==
412
413
414 RS485 signaldefault address 0x10
415 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
416
417
418 === 2.6.1 Query address ===
419
420
421 **send:**
422
423 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
424 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
425 |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
426
427 **response:**
428
429 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
430 |=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
431 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
432
433 === 2.6.2 Change address ===
434
435
436 For example: Change the address of the sensor with address 1 to 2, master → slave
437
438 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
439 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
440 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
441
442 If the sensor receives correctly, the data is returned along the original path.
443
444 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
445
446
447 === 2.6.3 Modify intercept ===
448
449
450 **send:**
451
452 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
453 |=(% style="width: 44.75px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 69.75px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
454 |(% style="width:71px" %)0X10|(% style="width:74px" %)0X06|(% style="width:67px" %)0X00|(% style="width:68px" %)0X10|(% style="width:69px" %)0X00|(% style="width:66px" %)0X64|(% style="width:57px" %)0X8A|(% style="width:57px" %)(((
455 0XA5
456 )))
457
458 Change the intercept of the sensor at address 10 to 1 (default is 0). You need to pass the intercept 1*100 =100 into the command 0x006.
459
460 **response:**
461
462 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
463 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
464 |(% style="width:99px" %)0X10|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
465 0X00
466 )))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
467 0XA5
468 )))
469
470 === 2.6.4 Query data ===
471
472
473 Query the data (PH) of the sensor (address 10), host → slave
474
475 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
476 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 74px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 75px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
477 |(% style="width:99px" %)0X10|(% style="width:74px" %)0X03|(% style="width:75px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X4B
478
479 If the sensor receives correctly, the following data will be returned, slave → host
480
481 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
482 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
483 |(% style="width:99px" %)0X10|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0XC4|(% style="width:56px" %)0X9B
484
485 The query data command is 10 03 00 00 00 01 87 4B. After the query, 7 bytes will be returned.
486
487 For example, the returned data is 10 03 02 (% style="color:red" %)**02 AE**(%%) C4 9B.
488
489 02 AE is the pH value, which is converted into decimal to get 686, and then two decimal places are added to get the actual value. 02 AE means the current pH value is 6.86.
490
491
492 === 2.6.5 Calibration Method ===
493
494
495 This device uses three-point calibration, and three known pH standard solutions need to be prepared.
496
497 (% style="color:blue" %)**The calibration steps are as follows:**
498
499 (1) Place the electrode in distilled water to clean it, and then place it in 9.18 standard buffer solution. After the data stabilizes, enter the following calibration command, and the 9.18 calibration is completed.
500
501 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
502 |=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
503 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
504 0X00
505 )))|(% style="width:68px" %)0X20|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X8A|(% style="width:55px" %)(((
506 0XF1
507 )))
508
509 (2) Wash the electrode in distilled water and place it in 6.86 standard buffer. After the data stabilizes, enter the following calibration command. The 6.86 calibration is completed.
510
511 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
512 |=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
513 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
514 0X00
515 )))|(% style="width:68px" %)0X21|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XDB|(% style="width:55px" %)(((
516 0X31
517 )))
518
519 (3) Wash the electrode in distilled water and place it in 4.01 standard buffer. After the data stabilizes, enter the following calibration command, and the 4.00 calibration is completed.
520
521 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
522 |=(% style="width: 61px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 66px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 70px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 55px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
523 |(% style="width:64px" %)0X10|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
524 0X00
525 )))|(% style="width:68px" %)0X22|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X2B|(% style="width:55px" %)(((
526 0X31
527 )))
528
529 After the above three steps are completed, the calibration is successful. The advantage of three-point calibration compared to two-point calibration is that the electrode is calibrated separately in the acid and alkali parts, thereby achieving accurate calibration of the full range and making the measurement data more accurate.
530
531
532 = 3. DR-ORP1 Water ORP Sensor =
533
534 == 3.1 Specification ==
535
536
537 * **Power Input**: DC7~~30
538
539 * **Measuring range**:** **-1999~~1999mV
540
541 * **Resolution**: 1mV
542
543 * **Interface**: RS485. 9600 Baud Rate
544
545 * **Measurement error**: ±3mV
546
547 * **Stability**: ≤2mv/24 hours
548
549 * **Working environment:**
550 ** Ambient Temperature: 0–60°C
551 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
552
553 * **IP Rated**: IP68
554
555 * **Max Pressure**: 0.6MPa
556
557 == 3.2 Wiring ==
558
559
560 [[image:image-20240720172620-3.png||height="378" width="620"]]
561
562
563 == 3.3 Mechinical Drawing ==
564
565
566 [[image:image-20240714174241-2.png]]
567
568
569 == 3.4 Installation Notice ==
570
571
572 Do not power on while connect the cables. Double check the wiring before power on.
573
574 **Installation Photo as reference:**
575
576 (% style="color:blue" %)** Submerged installation:**
577
578 The lead wire of the equipment passes through the waterproof pipe, and the 3/4 thread on the top of the equipment is connected to the 3/4 thread of the waterproof pipe with raw tape. Ensure that the top of the equipment and the equipment wire are not flooded.
579
580 [[image:image-20240718191348-6.png]]
581
582 (% style="color:blue" %)** Pipeline installation:**
583
584 Connect the equipment to the pipeline through the 3/4 thread.
585
586 [[image:image-20240718191336-5.png||height="239" width="326"]]
587
588
589 == 3.5 Maintenance ==
590
591
592 (1) The equipment itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible.
593
594 (2) In general, ORP electrodes do not need to be calibrated and can be used directly. When there is doubt about the quality and test results of the ORP electrode, the electrode potential can be checked with an ORP standard solution to determine whether the ORP electrode meets the measurement requirements, and the electrode can be recalibrated or replaced with a new ORP electrode. The frequency of calibration or inspection of the measuring electrode depends on different application conditions (the degree of dirt in the application, the deposition of chemical substances, etc.).
595
596 (3) There is an appropriate soaking solution in the protective bottle at the front end of the electrode, and the electrode head is soaked in it to ensure the activation of the platinum sheet and the liquid junction. When measuring, loosen the bottle cap, pull out the electrode, and rinse it with pure water before use.
597
598 (4) Preparation of electrode soaking solution: Take 25 grams of analytical pure potassium chloride and dissolve it in 100 ml of pure water to prepare a 3.3M potassium chloride solution.
599
600 (5) Before measuring, the bubbles in the electrode glass bulb should be shaken off, otherwise it will affect the measurement. When measuring, the electrode should be stirred in the measured solution and then placed still to accelerate the response.
601
602 (6) The electrode should be cleaned with deionized water before and after the measurement to ensure the measurement accuracy.
603
604 (7) After long-term use, the ORP electrode will be passivated, which is manifested as a decrease in sensitivity gradient, slow response, and inaccurate readings. At this time, the platinum sheet at the bottom of the electrode can be soaked in 0.1M dilute hydrochloric acid for 24 hours (0.1M dilute hydrochloric acid preparation: 9 ml of hydrochloric acid is diluted to 1000 ml with distilled water), and then soaked in 3.3M potassium chloride solution for 24 hours to restore its performance.
605
606 (8) Electrode contamination or liquid junction blockage can also cause electrode passivation. At this time, it should be cleaned with an appropriate solution according to the nature of the contaminant. If the platinum of the electrode is severely contaminated and an oxide film is formed, toothpaste can be applied to the platinum surface and then gently scrubbed to restore the platinum's luster.
607
608 (9) The equipment should be calibrated before each use. It is recommended to calibrate once every 3 months for long-term use. The calibration frequency should be adjusted appropriately according to different application conditions (degree of dirt in the application, deposition of chemical substances, etc.). After aging, the electrodes should be replaced in time.
609
610
611 == 3.6 RS485 Commands ==
612
613
614 RS485 signaldefault address 0x13
615 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
616
617
618 === 3.6.1 Query address ===
619
620
621 **send:**
622
623 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
624 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
625 |(% style="width:99px" %)0XFE |(% style="width:112px" %)0X03|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X00|(% style="width:1px" %)0X51|(% style="width:1px" %)0XD4
626
627 **response:**
628
629 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
630 |=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
631 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
632
633 === 3.6.2 Change address ===
634
635
636 For example: Change the address of the sensor with address 1 to 2, master → slave
637
638 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
639 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)CRC16 high
640 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
641
642 If the sensor receives correctly, the data is returned along the original path.
643
644 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
645
646
647 === 3.6.3 Modify intercept ===
648
649
650 **send:**
651
652 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
653 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address  low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register Length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register Length low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
654 |(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
655 0X96
656 )))
657
658 Change the intercept of the sensor with address 1 to 10 (default 0), which is 0X000A in the command.
659
660 **response:**
661
662 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
663 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width:68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 68px;background-color:#4F81BD;color:white" %)CRC16 high
664 |(% style="width:99px" %)0X13|(% style="width:112px" %)0X06|(% style="width:135px" %)(((
665 0X00
666 )))|(% style="width:126px" %)0X10|(% style="width:85px" %)0X00|(% style="width:1px" %)0X64|(% style="width:1px" %)0X8A|(% style="width:1px" %)(((
667 0X96
668 )))
669
670 === 3.6.4 Query data ===
671
672
673 Query the data (ORP) of the sensor (address 13), host → slave
674
675 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
676 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
677 |(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X78
678
679 If the sensor receives correctly, the following data will be returned, slave → host
680
681 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
682 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
683 |(% style="width:99px" %)0X13|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0XAE|(% style="width:56px" %)0X80|(% style="width:56px" %)0X9B
684
685 The query data command is 13 03 00 00 00 01 87 78
686
687 For example, the returned data is 13 03 02 (% style="color:red" %)**02 AE**(%%) 80 9B.
688
689 02 AE is the ORP value, converted to decimal, the actual value is 686, 02 AE means the current ORP value is 686mV
690
691
692 === 3.6.5 Calibration Method ===
693
694
695 This device uses two-point calibration, and two known ORP standard solutions need to be prepared. The calibration steps are as follows:
696 (1) Place the electrode in distilled water to clean it, and then place it in 86mV standard buffer solution. After the data stabilizes,
697 enter the following calibration command, and the 86mV point calibration is completed;
698
699 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
700 |=(% style="width: 42px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
701 |(% style="width:64px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
702 0X00
703 )))|(% style="width:68px" %)0X24|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0XCB|(% style="width:55px" %)(((
704 0X03
705 )))
706
707 Wash the electrode in distilled water and place it in 256mV standard buffer. After the data is stable, enter the following calibration command to complete the 256mV point calibration.
708
709 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
710 |=(% style="width: 42px; background-color: rgb(79, 129, 189); color: white;" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
711 |(% style="width:68px" %)0X13|(% style="width:72px" %)0X06|(% style="width:66px" %)(((
712 0X00
713 )))|(% style="width:68px" %)0X25|(% style="width:72px" %)0XFF|(% style="width:70px" %)0XFF|(% style="width:55px" %)0X9A|(% style="width:55px" %)(((
714 0XC3
715 )))
716
717 = 4. DR-DO1 Dissolved Oxygen Sensor =
718
719 == 4.1 Specification ==
720
721
722 * **Measuring range**: 0-20mg/L, 0–50℃
723
724 * **Accuracy**: 3%, ±0.5℃
725
726 * **Resolution**: 0.01 mg/L, 0.01℃
727
728 * **Maximum operating pressure**: 6 bar
729
730 * **Output signal**: A: 4-20mA (current loop)B: RS485 (standard Modbus-RTU protocol, device default address: 01)
731
732 * **Power supply voltage**: 5-24V DC
733
734 * **Working environment:**
735 ** Ambient Temperature: 0–60°C
736 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
737
738 * **Power consumption**: ≤0.5W
739
740 == 4.2 wiring ==
741
742
743 [[image:image-20240720172632-4.png||height="390" width="640"]]
744
745
746 == 4.3 Impedance requirements for current signals ==
747
748
749 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:400px" %)
750 |(% style="width:132px" %)**Supply Voltage**|(% style="width:67px" %)**9V**|(% style="width:67px" %)**12V**|(% style="width:67px" %)**20V**|(% style="width:67px" %)**24V**
751 |(% style="width:132px" %)**Max Impedance**|(% style="width:65px" %)**<250Ω**|(% style="width:67px" %)**<400Ω**|(% style="width:67px" %)**<500Ω**|(% style="width:65px" %)**<900Ω**
752
753 == 4.4 Mechinical Drawing ==
754
755
756 [[image:image-20240719155308-1.png||height="226" width="527"]]
757
758
759 == 4.5 Instructions for use and maintenance ==
760
761
762 * It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
763
764 * If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
765
766 == 4.6 RS485 Commands ==
767
768
769 RS485 signaldefault address 0x14
770 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
771
772
773 === 4.6.1 Query address ===
774
775
776 **send:**
777
778 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
779 |=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
780 |(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0XF1|(% style="width:56px" %)0XD7
781
782 If you forget the original address of the sensor, you can use the broadcast address 0XFF instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
783
784
785 **response:**
786
787 Register 0 data high and register 0 data low indicate the actual address of the sensor: 1
788 Register 1 data high and register 1 data low indicate the sensor version
789
790 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
791 |=(% style="width: 40px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data high|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)Register 1 Data low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 59.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
792 |(% style="width:99px" %)0XFF|(% style="width:72px" %)0X03|(% style="width:64px" %)0X04|(% style="width:68px" %)0X00|(% style="width:70px" %)0X01|(% style="width:72px" %)0X00|(% style="width:56px" %)0X00|(% style="width:56px" %)0XB4|(% style="width:56px" %)0X3C
793
794 === 4.6.2 Change address ===
795
796
797 For example: Change the address of the sensor with address 1 to 2(address range: 1-119), master → slave
798
799 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
800 |=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Original address|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Start address high|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Start address low|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 40px; background-color: rgb(79, 129, 189); color: white;" %)Sensor version|=(% style="width: 39px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high|=(% style="width: 39px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low
801 |(% style="width:67px" %)0X01|(% style="width:71px" %)0X10|(% style="width:65px" %)0X00|(% style="width:65px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X04|(% style="width:53px" %)0X00|(% style="width:72px" %)0X02|(% style="width:53px" %)0X00|(% style="width:53px" %)0X00|(% style="width:56px" %)0XD2|(% style="width:53px" %)0X10
802
803 **response:**
804
805 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
806 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
807 |(% style="width:99px" %)0X01|(% style="width:72px" %)0X10|(% style="width:64px" %)0X00|(% style="width:68px" %)0X0A|(% style="width:70px" %)0X00|(% style="width:72px" %)0X02|(% style="width:56px" %)0X61|(% style="width:56px" %)0XCA
808
809 === 4.6.3 Query data ===
810
811
812 Query the data (dissolved oxygen) of the sensor (address 14), host → slave
813
814 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
815 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
816 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X14|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XC6|(% style="width:56px" %)0XCB
817
818 If the sensor receives correctly, the following data will be returned, slave → host
819
820 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
821 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
822 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X03|(% style="width:72px" %)0X78|(% style="width:56px" %)0XB5|(% style="width:56px" %)0X55
823
824 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**03 78**(%%) B5 55. 03 78 is the value of dissolved oxygen.
825
826 Converted to decimal, it is 888. Add two decimal places to get the actual value. 03 78 means the current dissolved oxygen is 8.88mg/L
827
828
829 Query the data (temperature) of the sensor (address 14), host → slave
830
831 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
832 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
833 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X11|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0XD6|(% style="width:56px" %)0XCA
834
835 If the sensor receives correctly, the following data will be returned, slave → host
836
837 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
838 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
839 |(% style="width:99px" %)0X14|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X09|(% style="width:72px" %)0XA4|(% style="width:56px" %)0XB2|(% style="width:56px" %)0X6C
840
841 After the query, 7 bytes will be returned. For example, the returned data is 14 03 02 (% style="color:red" %)**09 A4**(%%) B2 6C. 03 78 is the value of dissolved oxygen temperature.
842
843 Converted to decimal, it is 2468. Add two decimal places to get the actual value. 09 A4 means the current dissolved oxygen temperature is 24.68°C
844
845
846 = 5. DR-TS1 Water Turbidity Sensor =
847
848 == 5.1 Specification ==
849
850
851 * **Measuring range**: 0.1~~1000.0NTU
852
853 * **Accuracy**: ±5%
854
855 * **Resolution**: 0.1NTU
856
857 * **Stability**: ≤3mV/24 hours
858
859 * **Output signal**: RS485 (standard Modbus-RTU protocol, device default address: 01)
860
861 * **Power supply voltage**: 5~~24V DC (when output signal is RS485), 12~~24V DC (when output signal is 4~~20mA)
862
863 * **Working environment:**
864 ** Ambient Temperature: 0–60°C
865 ** Relative Humidity: <85% RH(Specifically refers to the cable male and female)
866
867 * **Power consumption**: ≤ 0.5W
868
869 == 5.2 wiring ==
870
871
872 [[image:image-20240720172640-5.png||height="387" width="635"]]
873
874
875 == 5.3 Impedance requirements for current signals ==
876
877
878 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:400px" %)
879 |(% style="width:132px" %)**Supply Voltage**|(% style="width:67px" %)**9V**|(% style="width:67px" %)**12V**|(% style="width:67px" %)**20V**|(% style="width:67px" %)**24V**
880 |(% style="width:132px" %)**Max Impedance**|(% style="width:65px" %)**<250Ω**|(% style="width:67px" %)**<400Ω**|(% style="width:67px" %)**<500Ω**|(% style="width:65px" %)**<900Ω**
881
882 == 5.4 Mechinical Drawing ==
883
884
885 [[image:image-20240718195058-7.png||height="305" width="593"]]
886
887
888 == 5.5 Instructions for use and maintenance ==
889
890
891 * It can be directly put into water without adding a protective tube, ensuring the long-term stability, reliability and accuracy of the sensor.
892
893 * If the water conditions are complex and you want accurate data, you need to wipe the sensor probe frequently.
894
895 == 5.6 RS485 Commands ==
896
897
898 RS485 signaldefault address 0x15
899 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
900
901
902 === 5.6.1 Query address ===
903
904
905 **send:**
906
907 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
908 |=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Address low|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 54.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 58.75px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
909 |(% style="width:99px" %)0XFE |(% style="width:64.75px" %)0X03|(% style="width:64px" %)0X00|(% style="width:64.75px" %)0X50|(% style="width:70px" %)0X00|(% style="width:72px" %)0X00|(% style="width:56px" %)0X51|(% style="width:56px" %)0XD4
910
911 If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, which can be used as a method of address query.
912
913
914 **response:**
915
916 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
917 |=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)New address|=(% style="width: 103.6px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 103.6px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
918 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:106px" %)0X00|(% style="width:93px" %)0X20|(% style="width:104px" %)0XF0
919
920 === 5.6.2 Change address ===
921
922
923 For example: Change the address of the sensor with address 1 to 2, master → slave
924
925 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
926 |=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address high|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Address low|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Quantity high|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Quantity low|=(% style="width: 54.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 58.75px;background-color:#4F81BD;color:white" %)CRC16 high
927 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X06|(% style="width:135px" %)0X00|(% style="width:126px" %)0X50|(% style="width:85px" %)0X00|(% style="width:1px" %)0X02|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
928
929 If the sensor receives correctly, the data is returned along the original path.
930
931 (% style="color:red" %)**Note: If you forget the original address of the sensor, you can use the broadcast address 0XFE instead. When using 0XFE, the host can only connect to one slave, and the return address is still the original address, which can be used as a method of address query.**
932
933
934 === 5.6.3 Query data ===
935
936
937 Query the data (turbidity) of the sensor (address 15), host → slave
938
939 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
940 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Starting register address low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length high|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)Register length low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 68px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
941 |(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:64px" %)0X00|(% style="width:68px" %)0X00|(% style="width:70px" %)0X00|(% style="width:72px" %)0X01|(% style="width:56px" %)0X87|(% style="width:56px" %)0X1E
942
943 If the sensor receives correctly, the following data will be returned, slave → host
944
945 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
946 |=(% style="width: 44px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Data length|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data high|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)Register 0 Data low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 79px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
947 |(% style="width:99px" %)0X15|(% style="width:72px" %)0X03|(% style="width:68px" %)0X02|(% style="width:70px" %)0X02|(% style="width:72px" %)0X9A|(% style="width:56px" %)0X09|(% style="width:56px" %)0X4C
948
949 The query data command is 15 03 00 00 00 01 87 1E
950
951 For example, the returned data is 15 03 02 (% style="color:red" %)**02 9A**(%%) 09 4C
952
953 02 9A is the turbidity value, converted to decimal, it is 666, and then divided by 10, the actual value is 66.6, 02 9A means the current turbidity value is 66.6 NTU
954
955
956 = 6. DR-CL Water CL Probe =
957
958 == 6.1 Specification: ==
959
960 * **Power Input**: DC7~~30
961
962 * **Power Consumption** : 0.19W
963
964 * **Interface**: RS485. 9600 Baud Rate
965
966 * **CL Range & Resolution:**
967 ** **CL2ML:**0-2mg/L
968 ** **CL10ML:**0-10mg/L
969 ** **Resolution:**0.01mg/L
970
971 * **CL Accuracy**: ±5% FS
972 * **Temperature Accuracy: **±0.5 °C
973 * **Working environment:**
974 ** Ambient Temperature: 0–50°C
975 ** pH:4-9
976 ** Flow rate: 30L/h~~60L/h (flow tank installation)
977 * **IP Rated**: IP68
978
979 * **Max Pressure**: 0.6MPa
980
981 == 6.2 Wiring ==
982
983 [[image:image-20240720172548-2.png||height="348" width="571"]]
984
985 == 6.3 Mechinical Drawing ==
986
987 [[image:1752573238705-910.png||height="694" width="278"]]
988
989 == 6.4 Installation ==
990
991 Flow-through installation: Use the matching flow slot for installation. The device and the flow slot are installed tightly.
992
993 The measuring end is completely immersed in the measured liquid to ensure a steady flow rate without bubbles.
994
995 It is recommended that the flow rate be controlled at 30-60Lh to ensure the accuracy of the test.
996
997 [[image:1752573643879-991.png||height="360" width="343"]]
998
999 == 6.5 Maintenance ==
1000
1001 * The device itself generally does not require daily maintenance. When an obvious fault occurs, please do not open it and repair it yourself, and contact us as soon as possible!
1002 * After using the electrode, please clean the electrode head with clean water and cover it with a protective cover.
1003 * When measuring the device, the measured liquid should flow and the flow rate should be uniform, and there should be no bubbles attached to the measuring end of the device.
1004 * If the electrode diaphragm is attached with dirt and mineral components, the sensitivity will be reduced, and it may not be possible to perform sufficient measurement. Please ensure that the platinum ring is clean.
1005 * The platinum induction ring of a good residual chlorine electrode should always be kept clean and bright. If the platinum ring of the electrode becomes rough or covered with pollutants after measurement, please clean it according to the following method: (For reference) Inorganic pollution: immerse the electrode in 0.1mol/L dilute hydrochloric acid for 15 minutes, gently wipe the platinum ring of the residual chlorine electrode with a cotton swab, and then wash it with tap water.
1006 * Organic or oil pollution: immerse the electrode in tap water with a small amount of detergent, such as dishwashing liquid, and thoroughly clean the sensing surface of the electrode sensor. Gently wipe the platinum ring of the electrode with a cotton swab, then rinse with tap water, and the cleaning is complete. If the platinum ring of the electrode has formed an oxide film, please use toothpaste or 1000-grit fine sandpaper to properly polish the sensing surface, and then clean it with tap water. The platinum ring is connected to the glass, so please handle it carefully when polishing.
1007 The electrode has a service life of about one year, and a new electrode should be replaced in time after aging.
1008 * Before the cable plug and the device plug are locked, do not put the plug part into water.
1009
1010
1011
1012 == 6.6 RS485 Commands ==
1013
1014 RS485 signal 
1015 Standard Modbus-RTU protocol, baud rate: 9600; check bit: none; data bit: 8; stop bit: 1
1016
1017
1018 == 6.7 Query data ==
1019
1020 Example 1: Read the current residual chlorine concentration of the device with address 01
1021
1022 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
1023 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 53px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 74px; background-color: rgb(79, 129, 189); color: white;" %)Register Address|=(% style="width: 94px; background-color: rgb(79, 129, 189); color: white;" %)Register length|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 77px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
1024 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X03|(% style="width:74px" %)0X00 0X00|(% style="width:94px" %)0X00 0X01|(% style="width:72px" %)(((
1025 0X84
1026 )))|(% style="width:77px" %)0X0A
1027
1028 **response:**
1029
1030 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
1031 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 83px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)Valid Bytes|=(% style="width: 94px; background-color: rgb(79, 129, 189); color: white;" %)Register contents|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 77px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
1032 |(% style="width:99px" %)0X01|(% style="width:83px" %)0X03|(% style="width:110px" %)0X02|(% style="width:94px" %)0X03 0X16|(% style="width:72px" %)(((
1033 0X39
1034 )))|(% style="width:77px" %)0X7A
1035
1036 Calculation of residual chlorine concentration: 316H (hexadecimal) = 790 => residual chlorine = 7.90
1037
1038
1039 Example 2: Set the deviation value for the current residual chlorine value of the device with address 01 to correct the value and send the frame: (If the current residual gas value output by the device is 7.90, the value needs to be corrected to 8.00, the difference is 8.00-7.90-0.100.1*100=10=>41200000 (floating point number), write 41200000 to the contents of the two registers)
1040
1041 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:518px" %)
1042 |=(% style="width: 80.75px;background-color:#4F81BD;color:white" %)Original address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Function code|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Register address|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Register number|=(% style="width: 64.75px;background-color:#4F81BD;color:white" %)Byte number|=(% style="width: 64.75px; background-color: rgb(79, 129, 189); color: white;" %)Register content|=(% style="width: 54.75px;background-color:#4F81BD;color:white" %)CRC16 low|=(% style="width: 58.75px;background-color:#4F81BD;color:white" %)CRC16 high
1043 |(% style="width:99px" %)0X01|(% style="width:112px" %)0X10|(% style="width:135px" %)0X01 0X12|(% style="width:126px" %)0X00 0X02|(% style="width:85px" %)0X04|(% style="width:1px" %)0X4120 0X0000|(% style="width:1px" %)0X08|(% style="width:1px" %)0X1A
1044
1045 **response:**
1046
1047 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:534.333px" %)
1048 |=(% style="width: 42px;background-color:#4F81BD;color:white" %)Address|=(% style="width: 83px; background-color: rgb(79, 129, 189); color: white;" %)Function code|=(% style="width: 110px; background-color: rgb(79, 129, 189); color: white;" %)Register address|=(% style="width: 94px; background-color: rgb(79, 129, 189); color: white;" %)Register number|=(% style="width: 72px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 low|=(% style="width: 77px; background-color: rgb(79, 129, 189); color: white;" %)CRC16 high
1049 |(% style="width:99px" %)0X01|(% style="width:83px" %)0X10|(% style="width:110px" %)0X01 0X12|(% style="width:94px" %)0X00 0X02|(% style="width:72px" %)(((
1050 0XE5
1051 )))|(% style="width:77px" %)0X0D
1052
1053
1054
1055 = 7.  Water Quality Sensor Datasheet =
1056
1057 * **[[Water Quality Sensor Transmitter Datasheet>>https://www.dropbox.com/scl/fi/9tofocmgapkbddshznumn/Datasheet_WQS-xB-WQS-xS_Water-Quality-Sensor-Transmitter.pdf?rlkey=wxua12ur9swk30rkqnh2boo9z&st=axga6epf&dl=0]]**