Last modified by kai on 2025/07/30 09:45

Show last authors
1 (% style="display:none" %) (%%)
2
3 [[image:1753435580537-536.png||data-xwiki-image-style-alignment="center" height="762" width="1107"]]
4
5
6
7
8
9
10
11
12 **Table of Contents:**
13
14 {{toc/}}
15
16
17
18
19
20
21
22
23
24 = 1. Introduction =
25
26 == 1.1 Overview ==
27
28
29 The Dragino WSC2-L is the main unit in Dragino Weather Station solution which desianed for (% style="color:blue" %)**measuring atmospheric conditions**(%%) to provide information for weatherforecasts and to study the weather and climate.
30
31 WSC2-L can reads values from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
32
33 WSC2-L supports input and (% style="color:blue" %)**12V recharge power**(%%) and (% style="color:blue" %)**build in 1000mAh rechargeable Li-ion battery**(%%). lf the user needs to connect other sensors, please kindly note the (% style="color:blue" %)**externalpower supply is required**.
34
35 WSC2-L supports connecting 3rd party RS485 multiple sensors. Users can purchase DR-F6C-4M one-to-four cables to connect more sensors according to their needs.
36
37
38 == 1.2 Features & Spec for WSC2-L Transmitter ==
39
40
41 * LoRaWAN 1.0.3 Class A
42 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
43 * Ultra-low power consumption
44 * Support reading the Rain Gauge, Wind Speed/Direction, CO2/PM2.5/PM10, Rain/Snow Detect, Temperature, Humidiity, Iillumiance, Pressure, Total Solar Radiation, PAR
45 * Support WSS-09 9 in 1 Sensors: Wind Speed, Wind Direction, Temperature,  Humidity, Air Pressure, Illumination, PM2.5, PM10, Noise
46 * Support WSS-08 optical Rain Gauge or tipping bucket Rain Gauge
47 * RS485 Interface for 3rd party Sensors
48 * Support Bluetooth v5.1 and LoRaWAN remote configure
49 * Support wireless OTA update firmware
50 * AT Commands to change parameters
51 * Downlink to change configure
52 * IP66 Waterproof Enclosure
53 * 1000mAh Rechargeable Li-ion Battery
54 * Input and Recharge power: 12v
55
56 == 1.3 Specification for WSS-09 9 in 1 weather sensors ==
57
58 **~ Older versions of interfaces**  **New version of the interface**
59
60 [[image:image-20240708092247-1.png||height="264" width="240"]] [[image:image-20250505190455-1.png||height="283" width="226"]]
61
62 More Detail: [[WSS-09 Manual.>>doc:Main.Agriculture & Weather Stations.WebHome||anchor="H1.WSS099in1WeatherStationSensor"]]
63
64
65 (% style="color:blue" %)**Wind Speed:**
66
67 * Range: 0~~60m/s
68 * Accuracy: ±(0.2m/s±0.02*v)(v : the wind speed)
69 * Ultrasonic measurement,no start wind strength needed
70
71 (% style="color:blue" %)**Wind Direction:**
72
73 * Range: 0~~3599
74 * Accuracy: ±3°
75 * Ultrasonic measurement,no start wind strength needed
76 * Built-in electronic compass. No need to consider installation direction
77
78 (% style="color:blue" %)**Temperature:**
79
80 * Range: -40°C ~~ +80°C
81 * Accuracy: ±0.5°C
82
83 (% style="color:blue" %)**Humidity:**
84
85 * Range: 0 ~~ 99% RH
86 * Accuracy Tolerance : Typ ±3% RH
87
88 (% style="color:blue" %)**Air Pressure:**
89
90 * Accuracy: ±0.15kPa@25°C 101kPa
91 * Range: 0~~120kPa
92
93 (% style="color:blue" %)**Noise:**
94
95 * Range: 30dB~~120dB
96 * Accuracy: ±0.5dB
97
98 (% style="color:blue" %)**PM2.5:**
99
100 * Range: 0~~1000ug/m3
101 * Accuracy: ±3%FS
102 * Resolution: 1ug/m3
103
104 (% style="color:blue" %)**PM10:**
105
106 * Range: 0~~1000ug/m3
107 * Accuracy: ±3%FS
108 * Resolution: 1ug/m3
109
110 (% style="color:blue" %)**llumination:**
111
112 * Range: 0~~200k Lux
113 * Accuracy: ±7%(25 °C)
114
115 == 1.4 Specification for WSS-08 Optical Rain Guage ==
116
117 **Older versions of interfaces**  **New version of the interface**
118
119 [[image:image-20240707215336-2.png||height="147" width="201"]] [[image:image-20250505190636-2.png||height="158" width="201"]]
120
121 * Input Power: 9~~30 VDC
122 * Sense diameter: 6cm
123 * Pulse Output
124
125 More Detail: [[WSS-08 Manual.>>doc:Main.Agriculture & Weather Stations.WebHome||anchor="H2.WSS08OpticalRangeGuage"]]
126
127 = 2. How to use =
128
129 == 2.1 Installation ==
130
131
132 Below is an installation example for the weather station:
133
134 [[image:image-20240327231510-1.png||height="499" width="1156"]]
135
136
137 (% style="color:blue" %)** Wiring:**
138
139 1. WSC2-L and sensors all powered by solar power via MPPT
140 1. WSC2-L Weather Station Kit already include 9 sensors.
141 1. Possible to add optional 3rd sensors to measure more parameter
142
143 (% style="color:red" %)**Notice 1:**
144
145 * All weather sensors and WSC2-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
146 * Weather sensors won't work if solar panel and storage battery fails.
147
148 (% style="color:red" %)**Notice 2:**
149
150 Due to shipment and importation limitation, user is better to purchase below parts locally:
151
152 * Solar Panel
153 * Storage Battery
154 * MPPT Solar Recharger
155 * Cabinet.
156
157 == 2.2 How it works? ==
158
159
160 (((
161 Each WSC2-L is shipped with a worldwide unique set of OTAA keys. To use WSC2-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC2-L in your LoRaWAN server and Power on WSC2-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
162 )))
163
164
165 == 2.3 Example to use for LoRaWAN network ==
166
167
168 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
169
170 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC2-L device in TTN V3:
171
172
173 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC2-L.
174
175 Each WSC2-L is shipped with a sticker with the default device EUI as below:
176
177 [[image:image-20230426084533-1.png||height="231" width="497"]]
178
179
180 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
181
182 The user needs to press and hold the ACT button(Push button) for more than 3s to start the node.
183
184 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png||height="386" width="262"]]
185
186
187 **Create the application.**
188
189 [[image:image-20250530163301-2.jpeg]]
190
191 [[image:image-20250530163311-3.jpeg]]
192
193
194 **Add devices to the created Application.**
195
196 [[image:image-20250530163335-4.jpeg]]
197
198 [[image:image-20250530163350-5.jpeg]]
199
200
201 **Enter end device specifics manually.**
202
203 [[image:image-20250530163411-6.jpeg]]
204
205
206 **Add DevEUI and AppKey.**
207
208 **Customize a platform ID for the device.**
209
210 [[image:image-20250530163435-7.jpeg]]
211
212
213 (% style="color:blue" %)**Step 2**(%%):​​​​​​ Add decoder.
214
215 In TTN, user can add a custom payload so it shows friendly reading.
216
217 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/WSC2-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/WSC2-LB]]
218
219 Below is TTN screen shot:
220
221 [[image:image-20250530163456-8.jpeg]]
222
223 [[image:image-20250530163514-9.jpeg]]
224
225
226 (((
227 (% style="color:blue" %)**Step 3**(%%): Power on WSC2-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
228 )))
229
230 [[image:image-20250530163532-10.jpeg]]
231
232
233 == 2.4 Uplink Payload ==
234
235
236 Uplink payloads include two types: Valid Sensor Value and other status / control command.
237
238 * Valid Sensor Value: Use FPORT=2
239 * Other control command: Use FPORT other than 2.
240
241 === 2.4.1 Uplink FPORT~=5, Device Status ===
242
243
244 Uplink the device configures with FPORT=5. Once WSC2-L Joined the network, it will uplink this message to the server.
245
246 (((
247 User can also use downlink command**(0x2601)** to ask WSC2-L to resend this uplink
248 )))
249
250 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
251 |=(% style="width: 70px;background-color:#4F81BD;color:white" %)**Size(**bytes)|=(% style="width: 85px;background-color:#4F81BD;color:white" %)1|=(% style="width: 105px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 105px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 85px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**
252 |(% style="width:99px" %)Value|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]
253
254 [[image:image-20240415092848-2.png||height="329" width="1045"]]
255
256
257 Example Payload (FPort=5):  [[image:image-20240415091027-1.png||height="16" width="104"]]
258
259
260 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
261
262 For WSC2-L, this value is 0x2E.
263
264
265 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
266
267 0x0100, Means: v1.0.0 version.
268
269
270 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
271
272 0x01: EU868
273
274 0x02: US915
275
276 0x03: IN865
277
278 0x04: AU915
279
280 0x05: KZ865
281
282 0x06: RU864
283
284 0x07: AS923
285
286 0x08: AS923-1
287
288 0x09: AS923-2
289
290 0x0a: AS923-3
291
292
293 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
294
295 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
296
297
298 ==== (% style="color:#037691" %)**BAT:**(%%) ====
299
300 (((
301 shows the battery voltage for WSC2-L MCU.
302 )))
303
304 (((
305 Ex1: 0x0FE4/1000 = 4068/1000=4.068V
306 )))
307
308
309 Users can also use the downlink command (0x2301) to change the uplink port of WSC2-L:
310
311 (% style="color:#037691" %)**Example**(%%) (% style="color:#037691" %)**Downlink:0x23 01(Change to port 1)**
312
313 [[image:image-20240413104831-3.png||height="364" width="934"]]
314
315
316 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
317
318 (% style="color:red" %)**Note: Since firmware V1.1.5, [[MSP mode>>||anchor="H3.6A0MSPmode28Sinceversion1.1.529"]] has been added for WSS-22&WSS-09. Thus the wind speed paylaod length increases(Add 4 bytes for maximum wind speed and average wind speed).**
319
320 (((
321 WSC2-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
322 )))
323
324 (((
325 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
326 )))
327
328
329 (((
330 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
331 )))
332
333
334 (% style="color:#4472c4" %)** Uplink Payload**:
335
336 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
337 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
338
339 (% style="color:#4472c4" %)** Sensor Segment Define**:
340
341 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:330px" %)
342 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
343
344 (% style="color:#4472c4" %)**Sensor Type Table:**
345
346 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
347 |(% style="background-color:#4f81bd; color:white; width:85px" %)**Sensor Type**|(% style="background-color:#4f81bd; color:white; width:69px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:144px" %)**Range**|(% style="background-color:#4f81bd; color:white; width:31px" %)**Length( Bytes)**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Example**
348 |(% style="width:85px" %)Wind Speed|(% style="width:69px" %)0x01|(% style="width:144px" %)(((
349 ①Speed: 0 ~~ 60m/s
350
351 ②(% style="color:#4472c4" %)**Maximum wind speed: **(%%)0 ~~ 60m/s
352
353 ③(% style="color:#4472c4" %)**Average wind speed:**(%%) 0 ~~ 60m/s
354 ④Level: 0 ~~ 17
355 )))|(% style="width:31px" %)0x07 |(% style="width:181px" %)(((
356 (((
357 ①0x0015/10=2.1m/s (0x02FE: No Sensor, 0x02EE: Value Error)
358 )))
359
360 (((
361 ②0x0024/10=3.6m/s
362
363 ③0x000E/10=1.4m/s
364
365 ④0x02=2 (0x14: No Sensor, 0x15: Value Error)
366 )))
367 )))
368 |(% style="width:85px" %)Wind Level|(% style="width:69px" %)0x02|(% style="width:144px" %)Wind Level: (0 ~~18)|(% style="width:31px" %)0x02|(% style="width:181px" %)0x0002=2(Current wind level)
369 |(% style="width:85px" %)(((
370 Wind Direction
371 )))|(% style="width:69px" %)0x03|(% style="width:144px" %)Direction: 0~~7|(% style="width:31px" %)0x02|(% style="width:181px" %)(((
372 0X0004=3(Due north is 0, increasing clockwise, and due east is 2)
373 )))
374 |(% style="width:85px" %)Wind Angle|(% style="width:69px" %)0x04|(% style="width:144px" %)(((
375 Angel: 0 ~~ 359°
376 )))|(% style="width:31px" %)0x02|(% style="width:181px" %)(((
377 0x02C9/10=66.6°(Due north is 0°, increasing clockwise, due east is 90°)
378 )))
379 |(% style="width:85px" %)Humidity|(% style="width:69px" %)0x05|(% style="width:144px" %)Hum: 099%RH|(% style="width:31px" %)0x02|(% style="width:181px" %)0x0164/10=35.6%RH
380 |(% style="width:85px" %)Temperature|(% style="width:69px" %)0x06|(% style="width:144px" %)Temp: -40 ~~ +80°C|(% style="width:31px" %)0x02|(% style="width:181px" %)(((
381 0xFFDD/10=-3.5°C 
382 )))
383 |(% style="width:85px" %)Noise|(% style="width:69px" %)0x07|(% style="width:144px" %)Nosie: 30~~120dB|(% style="width:31px" %)0x02|(% style="width:181px" %)(((
384 0x023e/10=57.4dB
385 )))
386 |(% style="width:85px" %)(((
387 PM2.5 / CO2
388 )))|(% style="width:69px" %)0x08|(% style="width:144px" %)(((
389 PM2.5: 01000μg/m^^3^^
390
391 CO2: 0~~5000ppm
392 )))|(% style="width:31px" %)0x02|(% style="width:181px" %)(((
393 0x0023=35μg/m^^3 ^^
394
395 0x04fb=1275ppm
396 )))
397 |(% style="width:85px" %)PM10|(% style="width:69px" %)0x09|(% style="width:144px" %)(((
398 PM10: 01000μg/m^^3^^
399 )))|(% style="width:31px" %)0x02|(% style="width:181px" %)(((
400 0x002D=45μg/m^^3 ^^
401 )))
402 |(% style="width:85px" %)Pressure|(% style="width:69px" %)0x0A|(% style="width:144px" %)0~~120kPa/y|(% style="width:31px" %)0x02|(% style="width:181px" %)(((
403 0x2748/10=1005.6kPa   
404 )))
405 |(% style="width:85px" %)illumination|(% style="width:69px" %)0x0B|(% style="width:144px" %)0200000kLux|(% style="width:31px" %)0x04|(% style="width:181px" %)0x04D2*10=12340kLux 
406
407 (((
408 Below is an example payload:  0FF60100000000012F00280001000400AD025E0117023E0023003203ED0001678390A102FFFF
409 )))
410
411 (((
412 When sending this payload to LoRaWAN server. WSC2-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
413 )))
414
415 * (((
416 When WSC2-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
417 )))
418
419 (((
420 Uplink 1:  [[image:image-20240418135453-1.png||height="26" width="202"]](% style="display:none" %)
421 )))
422
423 (((
424 Uplink 2: [[image:image-20240418141234-5.png||height="38" width="352"]](% style="display:none" %)
425 )))
426
427 * (((
428 When WSC2-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
429 )))
430
431 (((
432 Uplink 1:  [[image:image-20240418141304-6.png||height="39" width="408"]]
433 )))
434
435 Uplink 2:  [[image:image-20240418141312-7.png||height="24" width="74"]]
436
437
438 === 2.4.3 Decoder in TTN V3 ===
439
440
441 (((
442 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
443 )))
444
445 (((
446 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
447 )))
448
449 (((
450 and put as below:
451 )))
452
453 [[image:image-20240413140757-2.png||height="423" width="892"]]
454
455
456 == 2.5 Show data on Application Server ==
457
458
459 (((
460 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
461 )))
462
463 (((
464 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
465 )))
466
467 (((
468 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
469 )))
470
471 [[image:1656051197172-131.png]]
472
473
474
475 **Add TagoIO:**
476
477 [[image:1656051223585-631.png]]
478
479
480
481 **Authorization:**
482
483 [[image:1656051248318-368.png]]
484
485
486 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC2-L:
487
488
489 [[image:1656051277767-168.png]]
490
491
492 == 2.6 Frequency Plans ==
493
494
495 The WSC2-L uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
496
497 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
498
499
500 = 3. Configure WSC2-L =
501
502 == 3.1 Configure Methods ==
503
504
505 WSC2-L supports below configure method:
506
507 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
508
509 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
510
511 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
512
513 == 3.2 General Commands ==
514
515
516 These commands are to configure:
517
518 * General system settings like: uplink interval.
519 * LoRaWAN protocol & radio related command.
520
521 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
522
523 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
524
525
526 == 3.3 Commands special design for WSC2-L ==
527
528
529 These commands only valid for WSC2-L, as below:
530
531
532 === 3.3.1 Set Transmit Interval Time ===
533
534
535 Feature: Change LoRaWAN End Node Transmit Interval.
536
537 (% style="color:#037691" %)**AT Command: AT+TDC**
538
539 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
540 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
541 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
542 30000
543 OK
544 the interval is 30000ms = 30s
545 )))
546 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
547 OK
548 Set transmit interval to 60000ms = 60 seconds
549 )))
550
551 (% style="color:#037691" %)**Downlink Command: 0x01**
552
553 Format: Command Code (0x01) followed by 3 bytes time value.
554
555 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
556
557 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
558 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
559
560 === 3.3.2 Set the CO2 or PM mode ===
561
562
563 (% style="color:red" %)**Note: Default shipment is PM sensor, optional CO2 or PM sensor is available at the time of purchase, which needs to be modified according to the sensor selected at the time of purchase.**
564
565 Feature: Set the CO2/PM mode, and the user can set the corresponding mode according to the purchased sensor.
566
567 (% style="color:#037691" %)**AT Command:**
568
569 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:466px" %)
570 |(% style="background-color:#4f81bd; color:white; width:156px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:225px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:85px" %)**Response**
571 |(% style="width:155px" %)AT+PMMOD=1|(% style="width:224px" %)The working sensors are PM2.5 and PM10|(% style="width:84px" %)(((
572 OK
573
574 )))
575 |(% style="width:155px" %)AT+PMMOD=0|(% style="width:224px" %)The working sensors are CO2|(% style="width:84px" %)(((
576 OK
577 )))
578
579 (% style="color:#037691" %)**Downlink Command:**
580
581 * 0xE101     Same as: AT+PMMOD=1
582 * 0xE100     Same as: AT+PMMOD=0
583
584 === 3.3.3 Add or Delete RS485 Sensor ===
585
586
587 (((
588 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 4800.Maximum can add 4 sensors.
589 )))
590
591 (((
592 (% style="color:#037691" %)**AT Command: **
593 )))
594
595 (((
596 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
597 )))
598
599 * (((
600 Type_Code range:  A1 ~~ A4
601 )))
602 * (((
603 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
604 )))
605 * (((
606 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
607 )))
608 * (((
609 Read_Length:  RS485 response frame length supposed to receive. Max can receive
610 )))
611 * (((
612 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
613 )))
614 * (((
615 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
616 )))
617 * (((
618 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
619 )))
620
621 (((
622 **Example:**
623 )))
624
625 (((
626 User need to change external sensor use the type code as address code.
627 )))
628
629 (((
630 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
631 )))
632
633 [[image:image-20220624143553-10.png]]
634
635
636 The response frame of the sensor is as follows:
637
638 [[image:image-20220624143618-11.png]]
639
640
641 **Then the following parameters should be:**
642
643 * Address_Code range: A1
644 * Query_Length: 8
645 * Query_Command: A103000000019CAA
646 * Read_Length: 8
647 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
648 * has_CRC: 1
649 * timeout: 1500 (Fill in the test according to the actual situation)
650
651 **So the input command is:**
652
653 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
654
655
656 In every sampling. WSC2-L will auto append the sensor segment as per this structure and uplink.
657
658 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:351px" %)
659 |=(% style="width: 95px;background-color:#4F81BD;color:white" %)Type Code|=(% style="width: 122px;background-color:#4F81BD;color:white" %)Length (Bytes)|=(% style="width: 134px;background-color:#4F81BD;color:white" %)Measured Value
660 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
661
662 **Related commands:**
663
664 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
665
666 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
667
668
669 (% style="color:#037691" %)**Downlink Command:  **
670
671 **delete custom sensor A1:**
672
673 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
674
675 **Remove all custom sensors**
676
677 * 0xE5FF  
678
679 === 3.3.4 RS485 Test Command ===
680
681
682 (% style="color:#037691" %)**AT Command:**
683
684 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:494px" %)
685 |=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 248px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
686 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
687 Send command to 485 sensor. Range : no more than 10 bytes
688 )))|(% style="width:85px" %)OK
689
690 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
691
692 AT+RSWRITE=0103000001840A
693
694
695 (% style="color:#037691" %)**Downlink Command:**
696
697 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
698
699 === 3.3.5 RS485 response timeout ===
700
701
702 Feature: Set or get extended time to receive 485 sensor data.
703
704 (% style="color:#037691" %)**AT Command:**
705
706 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
707 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
708 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
709 Set response timeout to: Range : 0~~10000
710 )))|(% style="width:85px" %)OK
711
712 (% style="color:#037691" %)**Downlink Command:**
713
714 Format: Command Code (0xE0) followed by 3 bytes time value.
715
716 If the downlink payload=E0000005, it means set the END Node's Transmit Interval to 0x000005=5(S), while type code is E0.
717
718 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
719 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
720
721 === 3.3.6 Set or get the total count value(only applicable to WSS-08) ===
722
723
724 Feature: The user can set the counting to start from the set value according to the requirements. (only available in counting mode).
725
726 (% style="color:#037691" %)**AT Command:**
727
728 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
729 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
730 |(% style="width:157px" %)AT+SETCNT=1000|(% style="width:188px" %)Set the total count to start from 1000|(% style="width:85px" %)OK
731
732 (% style="color:#037691" %)**Downlink Command:**
733
734 Format: Command Code (0x09) followed by 4 bytes time value.
735
736 If the downlink payload=09000003E8, This means that the count of the END node will start counting from setting 0x000003E8=1000 (times). while type code is 09.
737
738 * Example 1: Downlink Payload: 09000003E8  ~/~/  Set the value to start counting from 1000 = 1000 (times)
739
740 === 3.3.7  Set interrupt or counting mode ===
741
742
743 Feature: Users can set the trigger mode to counting mode or interrupt mode as needed.
744
745 The WSS-08 Rain Gauge requires the counting mode to be on in order to accumulate pulse counts.
746
747 (% style="color:#037691" %)**AT Command:**
748
749 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
750 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
751 |(% style="width:157px" %)AT+COUNTMOD=0|(% style="width:188px" %)set to interrupt mode|(% style="width:85px" %)OK
752 |(% style="width:157px" %)AT+COUNTMOD=1|(% style="width:188px" %)(((
753 set to counting mode
754 )))|(% style="width:85px" %)OK
755
756 (% style="color:#037691" %)**Downlink Command:**
757
758 Format: Command Code (0x10) followed by 1 bytes time value.
759
760 If the downlink payload=10 00, Set the trigger mode to interrupt mode, while type code is 10.
761
762 * Example 1: Downlink Payload: 10 00  ~/~/  Same as: AT+COUNTMOD=0  set to interrupt mode
763
764 == 3.4 Add 3rd RS485 / Modbus Sensor ==
765
766 === 3.4.1 Hardware Connection ===
767
768
769 WSC2-L has a 1 to 3 cables. All the three connectors has same defination as below. It include Five Pins: VCC, GND, RS485-A, RS485-B, Count.
770
771 (% style="color:red" %)**Notice: RS485-A,RS485-B can be used to connect multiply sensors. but the COUNT can be only use for one sensor. Which means if you already add a Pulse output Rain Guage in the system, you are not able to add another Pulse Output device.**
772
773 [[image:image-20240707220859-4.png||height="313" width="366"]]
774
775
776 === 3.4.2 Software Setup ===
777
778
779 Send AT+DYSENSOR to activate the RS485 sensor for collecting 3rd RS485 sensor. You can refer to the instructions in section 3.3.3 of the manual.
780
781 For example: AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
782
783
784 === 3.4.3 Payload ===
785
786 [[image:image-20240416163658-1.png]]
787
788 For example: A1 02 00 00
789
790 A1 : A1 register data acquisition instruction
791
792 02 : The valid data returned is 2 bytes in total.
793
794 00 00 : Return valid data
795
796
797 == 3.5 Add tipping bucket total solar radiation sensor ==
798
799 === 3.5.1 Hardware Connection ===
800
801
802 The following is an example of connecting a total solar radiation sensor to a matching interface cable, and then using the interface to connect the WSC2-L.
803
804 Users can also choose to connect the sensor directly to the WSC2-L via the cable and pin instructions below.
805
806 The following is an explanation of the [[pins>>||anchor="H5.7PinMapping"]] required for WSC2-L:
807
808 **A:** RS485-A  (Connect the RS485 sensor)
809
810 **B:** RS485-B  (Connect the RS485 sensor)
811
812 **GPIO_EXTI:** Interrupt pin  (Can be used to connect an additionally added pulsed rain gauge)
813
814
815 * Total Solar Radiation Sensor Cable Descripti
816
817 [[image:image-20240906174635-2.jpeg||height="430" width="813"]]
818
819
820
821 * Mating Interface Cable Description
822
823 [[image:image-20240906173843-1.jpeg||height="404" width="815"]]
824
825 * Connect to WSC2-L
826
827 The Total solar radiation sensor does not need to connect the interrupt pin, so the white cable is not wired.
828
829 [[image:image-20240906182250-3.jpeg||height="442" width="820"]]
830
831
832 === 3.5.2 Calculating & Decode ===
833
834
835 0FC6 01 00000000 00EB 000F 0000 0003 008E 0251 00CE 0213 0017 001B 03EC 000000DE 90 A1020000 A2020032
836
837 For example:  A2 02 00 32
838
839 A2 : A2 register data acquisition instruction
840
841 02 : The valid data returned is 2 bytes in total.
842
843 00 32(HEX) : Return valid data = 50(DEC)W/m2
844
845
846 == 3.6 MSP mode(Since version 1.1.5) ==
847
848 This function is used for the continuous collection of wind speed.
849
850 When MSP mode is turned on (AT+MSP=1), WSC2-L will collect real-time wind speed **every 10 seconds**. Then it will judge the maximum wind speed in this period according to the wind speed collected in TDC time, and calculate the average wind speed according to the wind speed data collected in TDC time and the number of data groups.
851
852 (% style="color:#037691" %)**AT Command:**
853
854 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
855 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
856 |(% style="width:157px" %)AT+MSP=1|(% style="width:188px" %)Enable MSP mode|(% style="width:85px" %)OK
857 |(% style="width:157px" %)AT+MSP=0|(% style="width:188px" %)Disable MSP mode|(% style="width:85px" %)OK
858
859 (% style="color:#037691" %)**Downlink Command:**
860
861 Format: Command Code (0x34) followed by 1 bytes time value.
862
863 If the downlink payload=3400, then set the MSP mode to enable and the type code is 34.
864
865 * Example 1: Downlink Payload: 34 01  ~/~/  Same as: AT+MSP=1  set to enable MSP mode.
866 * Example 1: Downlink Payload: 34 00  ~/~/  Same as: AT+MSP=1  set to disable MSP mode.
867
868 (% style="color:red" %)**Note**(%%):
869
870 ~1. When MSP mode is enabled, the uplink payload is increased by 4 bytes, the average wind speed from the last uplink to this one (2 bytes) and the maximum wind speed from the last uplink to this one (2 bytes).
871
872 2. If WSS-09 and WSS-22 are connected at the same time, the uplink payload will prioritize WSS-09 as follows:
873
874
875 == 3.7  Set the registers read by the rain gauge(Since firmware V1.1.1, only applicable to WSS-21) ==
876
877
878 (% style="color:#037691" %)**AT Command:**
879
880 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
881 |=(% style="width: 192px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 209px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 107px; background-color: rgb(79, 129, 189); color: white;" %)**Response**
882 |(% style="width:192px" %)(((
883 AT+RAINFALLSWITCH=?
884 )))|(% style="width:209px" %)Query the current register read by the rain gauge|(% style="width:107px" %)OK
885 |(% style="width:192px" %)AT+RAINFALLSWITCH=10|(% style="width:209px" %)Set to read the rainfall within 24 hours|(% style="width:107px" %)(((
886 OK
887 )))
888
889 (% style="color:#037691" %)**Downlink Command:**
890
891 * 0xE703  Same as: AT+RAINFALLSWITCH=3
892
893 Value Definition:
894
895 * **3**: The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
896 * **4**: Hourly rainfall: 0.2mm
897 * **5**: Rainfall in last hour: 0.2mm
898 * **6**: 24-hour maximum rainfall 10.0mm
899 * **8**: 24-hour minimum rainfall:0.0mm
900 * **10**: Rainfall in 24 hours: 8.0mm (Rainfall in the last 24 hours)
901
902 = 4. Power consumption and battery =
903
904 == 4.1 Total Power Consumption ==
905
906
907 Dragino Weather Station serial products include the main process unit (WSC2-L) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC2-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
908
909
910 == 4.2 Reduce power consumption ==
911
912
913 The main process unit WSC2-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC2-L will not be to get real-time downlink command from IoT Server.
914
915
916 == 4.3 Battery ==
917
918
919 (((
920 All sensors are only power by external power source. If external power source is off. All sensor won't work.
921 )))
922
923 (((
924 Main Process Unit WSC2-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC2-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
925 )))
926
927
928 = 5. Main Process Unit WSC2-L =
929
930
931 WSC2-L is the main process unit in Dragino Weather Station solution. WSC2-L is an an outdoor LoRaWAN RS485 end node. It is powered by external 12v solar power and have a built-in Li-ion backup battery.
932
933 WSC2-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
934
935 WSC2-L is full compatible with LoRaWAN Class A protocol, it can work with standard LoRaWAN gateway.
936
937 WSC2-L Supports BLE configure and wireless OTA update which make user easy to use.
938
939 Each WSC2-L is pre-load with a set of unique keys for LoRaWAN registration, register these keys to local LoRaWAN server and it will auto connect after power on.
940
941
942 == 5.1 Features ==
943
944
945 * LoRaWAN v1.0.3 Class A protocol.
946 * RS485 / Modbus protocol
947 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
948 * AT Commands to change parameters
949 * Downlink to change configure
950 * Powered by external 12v battery
951 * Back up rechargeable 1000mAh battery
952 * IP Rating: IP65
953 * Support default sensors or 3rd party RS485 sensors
954 * Support Bluetooth v5.1 and LoRaWAN remote configure
955 * Support wireless OTA update firmware
956 * Wall Attachable.
957
958 == 5.2 Power Consumption ==
959
960
961 WSC2-L (without external sensor): Idle: 4mA, Transmit: max 40mA
962
963
964 == 5.3 Storage & Operation Temperature ==
965
966
967 -20°C to +60°C
968
969
970 == 5.4 Sleep mode and working mode ==
971
972
973 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
974
975 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
976
977
978 == 5.5 Button & LEDs ==
979
980
981 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
982
983 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
984 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
985 |[[image:1749524241393-180.png]] 1~~3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
986 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
987 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
988 )))
989 |[[image:1749524243713-196.png]] >3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
990 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
991 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
992 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
993 )))
994 |[[image:1749524287726-592.png]] x5|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
995
996 == 5.6 BLE connection ==
997
998
999 WSC2-L supports BLE remote configure.
1000
1001 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
1002
1003 * Press button to send an uplink
1004 * Press button to active device.
1005 * Device Power on or reset.
1006
1007 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
1008
1009
1010 == 5.7 Pin definitions of the WSC2-L motherboard ==
1011
1012
1013 [[image:image-20240412165523-2.png]]
1014
1015
1016 == 5.8 Pin definitions of the matching cables ==
1017
1018 === 5.8.1 Wiring configuration between the 1-to-4 splitter main cable and the WSC2-L motherboard ===
1019
1020 [[image:image-20250529090933-1.jpeg||height="553" width="872"]]
1021
1022
1023 * Black line  <~-~-~-~-~-~->  GND of battery charging motherboard (-)
1024 * Red line  <~-~-~-~-~-~->  GND of battery charging motherboard (+)
1025 * White line  <~-~-~-~-~-~->  A pin of WSC2-L motherboard
1026 * Green line  <~-~-~-~-~-~->  B pin of WSC2-L motherboard
1027 * Yellow line  <~-~-~-~-~-~->  GPIO_EXIT pin of WSC2-L motherboard
1028
1029 === 5.8.2 The internal cable definition of single-interface wires ===
1030
1031 [[image:image-20250529100822-2.jpeg||height="505" width="854"]]
1032
1033
1034 * Black line  <~-~-~-~-~-~->  Power (-) pin
1035 * Red line  <~-~-~-~-~-~->  Power (+) pin
1036 * White line  <~-~-~-~-~-~->  RS485-A pin
1037 * Green line  <~-~-~-~-~-~->  RS485-B pin
1038 * Yellow line  <~-~-~-~-~-~->  Pulse interrupt pin
1039 * Orange line  <~-~-~-~-~-~->  Not used (can be cut off)
1040
1041 == 5.9  Mechanical ==
1042
1043
1044 Refer LSn50v3 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/ADY2192VNMFoMmryPGdwkRk/LoRaWAN%20End%20Node/SN50v3-LB/Mechinical?dl=0&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1>>https://www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/ADY2192VNMFoMmryPGdwkRk/LoRaWAN%20End%20Node/SN50v3-LB/Mechinical?dl=0&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1]]
1045
1046
1047 = 6. OTA Firmware update =
1048
1049
1050 (% class="wikigeneratedid" %)
1051 **User can change firmware WSC2-L to:**
1052
1053 * Change Frequency band/ region.
1054 * Update with new features.
1055 * Fix bugs.
1056
1057 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/8j3ioji411ni9gu/AADnOw3ErB1REsthKilfaq_Pa?dl=0]]**
1058
1059 **Methods to Update Firmware:**
1060
1061 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1062
1063 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1064
1065 = 7. FAQ =
1066
1067 == 7.1 What else do I need to purchase to build Weather Station? ==
1068
1069
1070 Below is the installation photo and structure:
1071
1072 [[image:image-20240413172530-3.png]]
1073
1074 == 7.2 Where can i find the modbus command for the WSS-09 sensor? ==
1075
1076 See this link for the [[modbus command set>>https://www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/AK7twfUnkB4qKMvtU4XcEss/LoRaWAN%20End%20Node/WSC2-L%20Combine%20Weather%20Station%20Kit?dl=0&e=2&preview=Weather_Sensors_Modbus_Command_List.xlsx&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1]].
1077
1078
1079 = 8. Trouble Shooting =
1080
1081 == 8.1 What should I do when the RS485 sensor cannot collect data? ==
1082
1083
1084 ~1. Recheck whether the sensor's power supply voltage is 12V at maximum.
1085
1086 2. Recheck whether the A and B signal lines of the sensor are connected reversely.
1087
1088 3. Check whether the sensor's transmission baud rate is 4800. If not, please change it to 4800 and try reading again.
1089
1090
1091 == 8.2 Why does the weather station make electric current sounds during operation? ==
1092
1093
1094 ~1. Because a certain amount of sound will be produced during long-term power supply operation. This is a normal phenomenon and does not affect use.
1095
1096
1097 == 8.3 How to solve the problem of temperature difference in weather stations? ==
1098
1099
1100 You can use AT+RSWRITE (downlink: E2 xx xx xx xx xx xx xx ) to modify the temperature compensation function in the weather station.
1101
1102 **For example:**
1103
1104 When the temperature of the weather station is 3°C different from the right value, you can use AT+RSWRITE=01 06 00 50 00 1E 09 D3 (downlink: E2 01 06 00 50 00 1E 09 D3) to modify the temperature compensation value of the weather station to +3°C .
1105
1106
1107 == 8.4 Why does the rain gauge have no data? ==
1108
1109
1110 The default mode of the rain gauge is trigger mode.
1111 When it rains, it will trigger an uplink, and the data does not include rainfall data.
1112 If you want to query rainfall data, please change to counting mode
1113
1114 Feature: Users can set the trigger mode to counting mode or interrupt mode as needed.
1115
1116 (% style="color:#037691" %)**AT Command:**
1117
1118 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1119 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
1120 |(% style="width:157px" %)AT+COUNTMOD=0|(% style="width:188px" %)set to interrupt mode|(% style="width:85px" %)OK
1121 |(% style="width:157px" %)AT+COUNTMOD=1|(% style="width:188px" %)(((
1122 set to counting mode
1123 )))|(% style="width:85px" %)OK
1124
1125 (% style="color:#037691" %)**Downlink Command:**
1126
1127 Format: Command Code (0x10) followed by 1 bytes time value.
1128
1129 If the downlink payload=10 00, Set the trigger mode to interrupt mode, while type code is 10.
1130
1131 * Example 1: Downlink Payload: 10 00  ~/~/  Same as: AT+COUNTMOD=0  set to interrupt mode
1132
1133 = 9. Order Info =
1134
1135
1136 (% style="color:red" %)**Please note that the WSC2-L only includes the wireless transmitter, and the WSS-08, WSS-09, WSS-21, WSS-22, WSS-23, WSS-24, WSS-25, WSS-26, WSS-27 sensor need to be purchased separately. If you need to connect more than 3 sensors, please purchase an additional one to four adapter cable (DR-F6C-4M).**
1137
1138
1139 **Part Number:**
1140
1141 (% style="color:blue" %)**Wireless Transmitter :**(%%)** WSC2-L-XX **
1142
1143 **XX**: the default frequency band
1144
1145 * **AS923**: LoRaWAN AS923 band
1146 * **AU915**: LoRaWAN AU915 band
1147 * **EU433**: LoRaWAN EU433 band
1148 * **EU868**: LoRaWAN EU868 band
1149 * **KR920**: LoRaWAN KR920 band
1150 * **S915**: LoRaWAN US915 band
1151 * **IN865**: LoRaWAN IN865 band
1152 * **CN470**: LoRaWAN CN470 band
1153
1154 (% style="color:green" %)**Sensors Option :**(%%)** WSS-08, WSS-09, WSS-21, WSS-22, WSS-23, WSS-24, WSS-25, WSS-26, WSS-27**
1155
1156
1157 = 10. Support =
1158
1159
1160 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1161
1162 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].