Version 238.1 by Mengting Qiu on 2025/06/10 18:55

Show last authors
1 (% style="display:none" %) (%%)
2
3 [[image:image-20250530161803-1.jpeg||data-xwiki-image-style-alignment="center" height="497" width="381"]]
4
5
6
7
8
9
10
11
12 **Table of Contents:**
13
14 {{toc/}}
15
16
17
18
19
20
21
22
23
24 = 1. Introduction =
25
26 == 1.1 Overview ==
27
28
29 The Dragino WSC2-L is the main unit in Dragino Weather Station solution which desianed for (% style="color:blue" %)**measuring atmospheric conditions**(%%) to provide information for weatherforecasts and to study the weather and climate.
30
31 WSC2-L can reads values from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
32
33 WSC2-L supports input and (% style="color:blue" %)**12V recharge power**(%%) and (% style="color:blue" %)**build in 1000mAh rechargeable Li-ion battery**(%%). lf the user needs to connect other sensors, please kindly note the (% style="color:blue" %)**externalpower supply is required**.
34
35 WSC2-L supports connecting 3rd party RS485 multiple sensors. Users can purchase DR-F6C-4M one-to-four cables to connect more sensors according to their needs.
36
37
38 == 1.2 Features & Spec for WSC2-L Transmitter ==
39
40
41 * LoRaWAN 1.0.3 Class A
42 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
43 * Ultra-low power consumption
44 * Support reading the Rain Gauge, Wind Speed/Direction, CO2/PM2.5/PM10, Rain/Snow Detect, Temperature, Humidiity, Iillumiance, Pressure, Total Solar Radiation, PAR
45 * Support WSS09 9 in 1 Sensors: Wind Speed, Wind Direction, Temperature,  Humidity, Air Pressure, Illumination, PM2.5, PM10, Noise & Rain Gauge
46 * RS485 Interface for 3rd party Sensors
47 * Support WSS08 optical Rain Gauge or tipping bucket Rain Gauge
48 * Support Bluetooth v5.1 and LoRaWAN remote configure
49 * Support wireless OTA update firmware
50 * AT Commands to change parameters
51 * Downlink to change configure
52 * IP66 Waterproof Enclosure
53 * 1000mAh Rechargeable Li-ion Battery
54 * Input and Recharge power: 12v
55
56 == 1.3 Specification for WSS-09 9 in 1 weather sensors ==
57
58 **~ Older versions of interfaces**  **New version of the interface**
59
60 [[image:image-20240708092247-1.png||height="264" width="240"]] [[image:image-20250505190455-1.png||height="283" width="226"]]
61
62 More Detail: [[WSS-09 Manual.>>doc:Main.Agriculture & Weather Stations.WebHome||anchor="H1.WSS099in1WeatherStationSensor"]]
63
64
65 (% style="color:blue" %)**Wind Speed:**
66
67 * Range: 0~~60m/s
68 * Accuracy: ±(0.2m/s±0.02*v)(v : the wind speed)
69 * Ultrasonic measurement,no start wind strength needed
70
71 (% style="color:blue" %)**Wind Direction:**
72
73 * Range: 0~~3599
74 * Accuracy: ±3°
75 * Ultrasonic measurement,no start wind strength needed
76 * Built-in electronic compass. No need to consider installation direction
77
78 (% style="color:blue" %)**Temperature:**
79
80 * Range: -40°C ~~ +80°C
81 * Accuracy: ±0.5°C
82
83 (% style="color:blue" %)**Humidity:**
84
85 * Range: 0 ~~ 99% RH
86 * Accuracy Tolerance : Typ ±3% RH
87
88 (% style="color:blue" %)**Air Pressure:**
89
90 * Accuracy: ±0.15kPa@25°C 101kPa
91 * Range: 0~~120kPa
92
93 (% style="color:blue" %)**Noise:**
94
95 * Range: 30dB~~120dB
96 * Accuracy: ±0.5dB
97
98 (% style="color:blue" %)**PM2.5:**
99
100 * Range: 0~~1000ug/m3
101 * Accuracy: ±3%FS
102 * Resolution: 1ug/m3
103
104 (% style="color:blue" %)**PM10:**
105
106 * Range: 0~~1000ug/m3
107 * Accuracy: ±3%FS
108 * Resolution: 1ug/m3
109
110 (% style="color:blue" %)**llumination:**
111
112 * Range: 0~~200k Lux
113 * Accuracy: ±7%(25 °C)
114
115 == 1.4 Specification for WSS-08 Optical Rain Guage ==
116
117 **Older versions of interfaces**  **New version of the interface**
118
119 [[image:image-20240707215336-2.png||height="147" width="201"]] [[image:image-20250505190636-2.png||height="158" width="201"]]
120
121 * Input Power: 9~~30 VDC
122 * Sense diameter: 6cm
123 * Pulse Output
124
125 More Detail: [[WSS-08 Manual.>>doc:Main.Agriculture & Weather Stations.WebHome||anchor="H2.WSS08OpticalRangeGuage"]]
126
127 = 2. How to use =
128
129 == 2.1 Installation ==
130
131
132 Below is an installation example for the weather station:
133
134 [[image:image-20240327231510-1.png||height="499" width="1156"]]
135
136
137 (% style="color:blue" %)** Wiring:**
138
139 1. WSC2-L and sensors all powered by solar power via MPPT
140 1. WSC2-L Weather Station Kit already include 9 sensors.
141 1. Possible to add optional 3rd sensors to measure more parameter
142
143 (% style="color:red" %)**Notice 1:**
144
145 * All weather sensors and WSC2-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
146 * Weather sensors won't work if solar panel and storage battery fails.
147
148 (% style="color:red" %)**Notice 2:**
149
150 Due to shipment and importation limitation, user is better to purchase below parts locally:
151
152 * Solar Panel
153 * Storage Battery
154 * MPPT Solar Recharger
155 * Cabinet.
156
157 == 2.2 How it works? ==
158
159
160 (((
161 Each WSC2-L is shipped with a worldwide unique set of OTAA keys. To use WSC2-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC2-L in your LoRaWAN server and Power on WSC2-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
162 )))
163
164
165 == 2.3 Example to use for LoRaWAN network ==
166
167
168 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
169
170 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC2-L device in TTN V3:
171
172
173 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC2-L.
174
175 Each WSC2-L is shipped with a sticker with the default device EUI as below:
176
177 [[image:image-20230426084533-1.png||height="231" width="497"]]
178
179
180 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
181
182 The user needs to press and hold the ACT button(Push button) for more than 3s to start the node.
183
184 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png||height="386" width="262"]]
185
186
187 **Create the application.**
188
189 [[image:image-20250530163301-2.jpeg]]
190
191 [[image:image-20250530163311-3.jpeg]]
192
193
194 **Add devices to the created Application.**
195
196 [[image:image-20250530163335-4.jpeg]]
197
198 [[image:image-20250530163350-5.jpeg]]
199
200
201 **Enter end device specifics manually.**
202
203 [[image:image-20250530163411-6.jpeg]]
204
205
206 **Add DevEUI and AppKey.**
207
208 **Customize a platform ID for the device.**
209
210 [[image:image-20250530163435-7.jpeg]]
211
212
213 (% style="color:blue" %)**Step 2**(%%):​​​​​​ Add decoder.
214
215 In TTN, user can add a custom payload so it shows friendly reading.
216
217 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/WSC2-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/WSC2-LB]]
218
219 Below is TTN screen shot:
220
221 [[image:image-20250530163456-8.jpeg]]
222
223 [[image:image-20250530163514-9.jpeg]]
224
225
226 (((
227 (% style="color:blue" %)**Step 3**(%%): Power on WSC2-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
228 )))
229
230 [[image:image-20250530163532-10.jpeg]]
231
232
233 == 2.4 Uplink Payload ==
234
235
236 Uplink payloads include two types: Valid Sensor Value and other status / control command.
237
238 * Valid Sensor Value: Use FPORT=2
239 * Other control command: Use FPORT other than 2.
240
241 === 2.4.1 Uplink FPORT~=5, Device Status ===
242
243
244 Uplink the device configures with FPORT=5. Once WSC2-L Joined the network, it will uplink this message to the server.
245
246 (((
247 User can also use downlink command**(0x2601)** to ask WSC2-L to resend this uplink
248 )))
249
250 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
251 |=(% style="width: 70px;background-color:#4F81BD;color:white" %)**Size(**bytes)|=(% style="width: 85px;background-color:#4F81BD;color:white" %)1|=(% style="width: 105px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 105px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 85px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**
252 |(% style="width:99px" %)Value|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]
253
254 [[image:image-20240415092848-2.png||height="329" width="1045"]]
255
256
257 Example Payload (FPort=5):  [[image:image-20240415091027-1.png||height="16" width="104"]]
258
259
260 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
261
262 For WSC2-L, this value is 0x2E.
263
264
265 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
266
267 0x0100, Means: v1.0.0 version.
268
269
270 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
271
272 0x01: EU868
273
274 0x02: US915
275
276 0x03: IN865
277
278 0x04: AU915
279
280 0x05: KZ865
281
282 0x06: RU864
283
284 0x07: AS923
285
286 0x08: AS923-1
287
288 0x09: AS923-2
289
290 0x0a: AS923-3
291
292
293 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
294
295 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
296
297
298 ==== (% style="color:#037691" %)**BAT:**(%%) ====
299
300 (((
301 shows the battery voltage for WSC2-L MCU.
302 )))
303
304 (((
305 Ex1: 0x0FE4/1000 = 4068/1000=4.068V
306 )))
307
308
309 Users can also use the downlink command (0x2301) to change the uplink port of WSC2-L:
310
311 (% style="color:#037691" %)**Example**(%%) (% style="color:#037691" %)**Downlink:0x23 01(Change to port 1)**
312
313 [[image:image-20240413104831-3.png||height="364" width="934"]]
314
315
316 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
317
318
319 (((
320 WSC2-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
321 )))
322
323 (((
324 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
325 )))
326
327
328 (((
329 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
330 )))
331
332
333 (% style="color:#4472c4" %)** Uplink Payload**:
334
335 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
336 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
337
338 (% style="color:#4472c4" %)** Sensor Segment Define**:
339
340 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:330px" %)
341 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
342
343 (% style="color:#4472c4" %)**Sensor Type Table:**
344
345 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
346 |(% style="background-color:#4f81bd; color:white; width:80px" %)**Sensor Type**|(% style="background-color:#4f81bd; color:white; width:65px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:116px" %)**Range**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Length( Bytes)**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Example**
347 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:116px" %)(((
348 Speed: 0 ~~ 60m/s
349 )))|(% style="width:88px" %)0x02 |(% style="width:181px" %)(((
350 0x0028/100=0.40m/s
351 )))
352 |(% style="width:103px" %)Wind Level|(% style="width:91px" %)0x02|(% style="width:116px" %)Wind Level: (0 ~~18)|(% style="width:88px" %)0x02|(% style="width:181px" %)0x0002=2(Current wind level)
353 |(% style="width:103px" %)(((
354 Wind Direction
355 )))|(% style="width:91px" %)0x03|(% style="width:116px" %)Direction: 0~~7|(% style="width:88px" %)0x02|(% style="width:181px" %)(((
356 0X0004=3(Due north is 0, increasing clockwise, and due east is 2)
357 )))
358 |(% style="width:103px" %)Wind Angle|(% style="width:91px" %)0x04|(% style="width:116px" %)(((
359 Angel: 0 ~~ 359°
360 )))|(% style="width:88px" %)0x02|(% style="width:181px" %)(((
361 0x02C9/10=66.6°(Due north is 0°, increasing clockwise, due east is 90°)
362 )))
363 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x05|(% style="width:116px" %)Hum: 099%RH|(% style="width:88px" %)0x02|(% style="width:181px" %)0x0164/10=35.6%RH
364 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:116px" %)Temp: -40 ~~ +80°C|(% style="width:88px" %)0x02|(% style="width:181px" %)(((
365 0xFFDD/10=-3.5°C 
366 )))
367 |(% style="width:103px" %)Noise|(% style="width:91px" %)0x07|(% style="width:116px" %)Nosie: 30~~120dB|(% style="width:88px" %)0x02|(% style="width:181px" %)(((
368 0x023e/10=57.4dB
369 )))
370 |(% style="width:103px" %)(((
371 PM2.5 / CO2
372 )))|(% style="width:91px" %)0x08|(% style="width:116px" %)(((
373 PM2.5: 01000μg/m^^3^^
374
375 CO2: 0~~5000ppm
376 )))|(% style="width:88px" %)0x02|(% style="width:181px" %)(((
377 0x0023=35μg/m^^3 ^^
378
379 0x04fb=1275ppm
380 )))
381 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x09|(% style="width:116px" %)(((
382 PM10: 01000μg/m^^3^^
383 )))|(% style="width:88px" %)0x02|(% style="width:181px" %)(((
384 0x002D=45μg/m^^3 ^^
385 )))
386 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x0A|(% style="width:116px" %)0~~120kPa/y|(% style="width:88px" %)0x02|(% style="width:181px" %)(((
387 0x2748/10=1005.6kPa   
388 )))
389 |(% style="width:103px" %)illumination|(% style="width:91px" %)0x0B|(% style="width:116px" %)0200000kLux|(% style="width:88px" %)0x04|(% style="width:181px" %)0x04D2*10=12340kLux 
390
391 (((
392 Below is an example payload:  0FF60100000000012F00280001000400AD025E0117023E0023003203ED0001678390A102FFFF
393 )))
394
395
396
397
398
399 (((
400 When sending this payload to LoRaWAN server. WSC2-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
401 )))
402
403 * (((
404 When WSC2-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
405 )))
406
407 (((
408 Uplink 1:  [[image:image-20240418135453-1.png||height="26" width="202"]](% style="display:none" %)
409 )))
410
411 (((
412 Uplink 2: [[image:image-20240418141234-5.png||height="38" width="352"]](% style="display:none" %)
413 )))
414
415
416
417
418
419 * (((
420 When WSC2-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
421 )))
422
423 (((
424 Uplink 1:  [[image:image-20240418141304-6.png||height="39" width="408"]]
425 )))
426
427 Uplink 2:  [[image:image-20240418141312-7.png||height="24" width="74"]]
428
429
430 === 2.4.3 Decoder in TTN V3 ===
431
432
433 (((
434 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
435 )))
436
437 (((
438 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
439 )))
440
441 (((
442 and put as below:
443 )))
444
445 [[image:image-20240413140757-2.png||height="423" width="892"]]
446
447
448 == 2.5 Show data on Application Server ==
449
450
451 (((
452 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
453 )))
454
455 (((
456 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
457 )))
458
459 (((
460 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
461 )))
462
463 [[image:1656051197172-131.png]]
464
465
466
467 **Add TagoIO:**
468
469 [[image:1656051223585-631.png]]
470
471
472
473 **Authorization:**
474
475 [[image:1656051248318-368.png]]
476
477
478 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC2-L:
479
480
481 [[image:1656051277767-168.png]]
482
483
484 == 2.6 Frequency Plans ==
485
486
487 The WSC2-L uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
488
489 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
490
491
492 = 3. Configure WSC2-L =
493
494 == 3.1 Configure Methods ==
495
496
497 WSC2-L supports below configure method:
498
499 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
500
501 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
502
503 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
504
505 == 3.2 General Commands ==
506
507
508 These commands are to configure:
509
510 * General system settings like: uplink interval.
511 * LoRaWAN protocol & radio related command.
512
513 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
514
515 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
516
517
518 == 3.3 Commands special design for WSC2-L ==
519
520
521 These commands only valid for WSC2-L, as below:
522
523
524 === 3.3.1 Set Transmit Interval Time ===
525
526
527 Feature: Change LoRaWAN End Node Transmit Interval.
528
529 (% style="color:#037691" %)**AT Command: AT+TDC**
530
531 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
532 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
533 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
534 30000
535 OK
536 the interval is 30000ms = 30s
537 )))
538 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
539 OK
540 Set transmit interval to 60000ms = 60 seconds
541 )))
542
543 (% style="color:#037691" %)**Downlink Command: 0x01**
544
545 Format: Command Code (0x01) followed by 3 bytes time value.
546
547 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
548
549 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
550 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
551
552 === 3.3.2 Set the CO2 or PM mode ===
553
554
555 (% style="color:red" %)**Note: Default shipment is CO2 sensor, optional CO2 or PM sensor is available at the time of purchase, which needs to be modified according to the sensor selected at the time of purchase.**
556
557 Feature: Set the CO2/PM mode, and the user can set the corresponding mode according to the purchased sensor.
558
559 (% style="color:#037691" %)**AT Command:**
560
561 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:466px" %)
562 |(% style="background-color:#4f81bd; color:white; width:156px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:225px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:85px" %)**Response**
563 |(% style="width:155px" %)AT+PMMOD=1|(% style="width:224px" %)The working sensors are PM2.5 and PM10|(% style="width:84px" %)(((
564 OK
565
566 )))
567 |(% style="width:155px" %)AT+PMMOD=0|(% style="width:224px" %)The working sensors are CO2|(% style="width:84px" %)(((
568 OK
569 )))
570
571 (% style="color:#037691" %)**Downlink Command:**
572
573 * 0xE101     Same as: AT+PMMOD=1
574 * 0xE100     Same as: AT+PMMOD=0
575
576 === 3.3.3 Add or Delete RS485 Sensor ===
577
578
579 (((
580 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 4800.Maximum can add 4 sensors.
581 )))
582
583 (((
584 (% style="color:#037691" %)**AT Command: **
585 )))
586
587 (((
588 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
589 )))
590
591 * (((
592 Type_Code range:  A1 ~~ A4
593 )))
594 * (((
595 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
596 )))
597 * (((
598 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
599 )))
600 * (((
601 Read_Length:  RS485 response frame length supposed to receive. Max can receive
602 )))
603 * (((
604 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
605 )))
606 * (((
607 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
608 )))
609 * (((
610 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
611 )))
612
613 (((
614 **Example:**
615 )))
616
617 (((
618 User need to change external sensor use the type code as address code.
619 )))
620
621 (((
622 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
623 )))
624
625 [[image:image-20220624143553-10.png]]
626
627
628 The response frame of the sensor is as follows:
629
630 [[image:image-20220624143618-11.png]]
631
632
633 **Then the following parameters should be:**
634
635 * Address_Code range: A1
636 * Query_Length: 8
637 * Query_Command: A103000000019CAA
638 * Read_Length: 8
639 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
640 * has_CRC: 1
641 * timeout: 1500 (Fill in the test according to the actual situation)
642
643 **So the input command is:**
644
645 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
646
647
648 In every sampling. WSC2-L will auto append the sensor segment as per this structure and uplink.
649
650 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:351px" %)
651 |=(% style="width: 95px;background-color:#4F81BD;color:white" %)Type Code|=(% style="width: 122px;background-color:#4F81BD;color:white" %)Length (Bytes)|=(% style="width: 134px;background-color:#4F81BD;color:white" %)Measured Value
652 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
653
654 **Related commands:**
655
656 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
657
658 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
659
660
661 (% style="color:#037691" %)**Downlink Command:  **
662
663 **delete custom sensor A1:**
664
665 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
666
667 **Remove all custom sensors**
668
669 * 0xE5FF  
670
671 === 3.3.4 RS485 Test Command ===
672
673
674 (% style="color:#037691" %)**AT Command:**
675
676 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:494px" %)
677 |=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 248px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
678 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
679 Send command to 485 sensor. Range : no more than 10 bytes
680 )))|(% style="width:85px" %)OK
681
682 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
683
684 AT+RSWRITE=0103000001840A
685
686
687 (% style="color:#037691" %)**Downlink Command:**
688
689 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
690
691 === 3.3.5 RS485 response timeout ===
692
693
694 Feature: Set or get extended time to receive 485 sensor data.
695
696 (% style="color:#037691" %)**AT Command:**
697
698 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
699 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
700 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
701 Set response timeout to: Range : 0~~10000
702 )))|(% style="width:85px" %)OK
703
704 (% style="color:#037691" %)**Downlink Command:**
705
706 Format: Command Code (0xE0) followed by 3 bytes time value.
707
708 If the downlink payload=E0000005, it means set the END Node's Transmit Interval to 0x000005=5(S), while type code is E0.
709
710 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
711 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
712
713 === 3.3.6 Set or get the total count value ===
714
715
716 Feature: The user can set the counting to start from the set value according to the requirements. (only available in counting mode).
717
718 (% style="color:#037691" %)**AT Command:**
719
720 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
721 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
722 |(% style="width:157px" %)AT+SETCNT=1000|(% style="width:188px" %)Set the total count to start from 1000|(% style="width:85px" %)OK
723
724 (% style="color:#037691" %)**Downlink Command:**
725
726 Format: Command Code (0x09) followed by 4 bytes time value.
727
728 If the downlink payload=09000003E8, This means that the count of the END node will start counting from setting 0x000003E8=1000 (times). while type code is 09.
729
730 * Example 1: Downlink Payload: 09000003E8  ~/~/  Set the value to start counting from 1000 = 1000 (times)
731
732 === 3.3.7  Set interrupt or counting mode ===
733
734
735 Feature: Users can set the trigger mode to counting mode or interrupt mode as needed.
736
737 (% style="color:#037691" %)**AT Command:**
738
739 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
740 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
741 |(% style="width:157px" %)AT+COUNTMOD=0|(% style="width:188px" %)set to interrupt mode|(% style="width:85px" %)OK
742 |(% style="width:157px" %)AT+COUNTMOD=1|(% style="width:188px" %)(((
743 set to counting mode
744 )))|(% style="width:85px" %)OK
745
746 (% style="color:#037691" %)**Downlink Command:**
747
748 Format: Command Code (0x10) followed by 1 bytes time value.
749
750 If the downlink payload=10 00, Set the trigger mode to interrupt mode, while type code is 10.
751
752 * Example 1: Downlink Payload: 10 00  ~/~/  Same as: AT+COUNTMOD=0  set to interrupt mode
753
754 == 3.4 Add 3rd RS485 / Modbus Sensor ==
755
756 === 3.4.1 Hardware Connection ===
757
758
759 WSC2-L has a 1 to 3 cables. All the three connectors has same defination as below. It include Five Pins: VCC, GND, RS485-A, RS485-B, Count.
760
761 (% style="color:red" %)**Notice: RS485-A,RS485-B can be used to connect multiply sensors. but the COUNT can be only use for one sensor. Which means if you already add a Pulse output Rain Guage in the system, you are not able to add another Pulse Output device.**
762
763 [[image:image-20240707220859-4.png||height="313" width="366"]]
764
765
766 === 3.4.2 Software Setup ===
767
768
769 Send AT+DYSENSOR to activate the RS485 sensor for collecting 3rd RS485 sensor. You can refer to the instructions in section 3.3.3 of the manual.
770
771 For example: AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
772
773
774 === 3.4.3 Payload ===
775
776 [[image:image-20240416163658-1.png]]
777
778 For example: A1 02 00 00
779
780 A1 : A1 register data acquisition instruction
781
782 02 : The valid data returned is 2 bytes in total.
783
784 00 00 : Return valid data
785
786
787 == 3.5 Add tipping bucket total solar radiation sensor ==
788
789 === 3.5.1 Hardware Connection ===
790
791
792 The following is an example of connecting a total solar radiation sensor to a matching interface cable, and then using the interface to connect the WSC2-L.
793
794 Users can also choose to connect the sensor directly to the WSC2-L via the cable and pin instructions below.
795
796 The following is an explanation of the [[pins>>||anchor="H5.7PinMapping"]] required for WSC2-L:
797
798 **A:** RS485-A  (Connect the RS485 sensor)
799
800 **B:** RS485-B  (Connect the RS485 sensor)
801
802 **GPIO_EXTI:** Interrupt pin  (Can be used to connect an additionally added pulsed rain gauge)
803
804
805 * Total Solar Radiation Sensor Cable Descripti
806
807 [[image:image-20240906174635-2.jpeg||height="430" width="813"]]
808
809
810
811 * Mating Interface Cable Description
812
813 [[image:image-20240906173843-1.jpeg||height="404" width="815"]]
814
815 * Connect to WSC2-L
816
817 The Total solar radiation sensor does not need to connect the interrupt pin, so the white cable is not wired.
818
819 [[image:image-20240906182250-3.jpeg||height="442" width="820"]]
820
821
822 === 3.5.2 Calculating & Decode ===
823
824
825 0FC6 01 00000000 00EB 000F 0000 0003 008E 0251 00CE 0213 0017 001B 03EC 000000DE 90 A1020000 A2020032
826
827 For example:  A2 02 00 32
828
829 A2 : A2 register data acquisition instruction
830
831 02 : The valid data returned is 2 bytes in total.
832
833 00 32(HEX) : Return valid data = 50(DEC)W/m2
834
835
836 == 3.6 MSP mode(Since version 1.1.5) ==
837
838 (% style="color:red" %)**Note:This feature is available for WSS-02.**
839
840 This function is used for the continuous collection of wind speed.
841
842 When MSP mode is turned on (AT+MSP=1), WSC1-L will collect real-time wind speed **every 10 seconds**. Then it will judge the maximum wind speed in this period according to the wind speed collected in TDC time, and calculate the average wind speed according to the wind speed data collected in TDC time and the number of data groups.
843
844 (% style="color:#037691" %)**AT Command:**
845
846 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
847 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
848 |(% style="width:157px" %)AT+MSP=1|(% style="width:188px" %)Enable MSP mode|(% style="width:85px" %)OK
849 |(% style="width:157px" %)AT+MSP=0|(% style="width:188px" %)Disable MSP mode|(% style="width:85px" %)OK
850
851 (% style="color:#037691" %)**Downlink Command:**
852
853 Format: Command Code (0x34) followed by 1 bytes time value.
854
855 If the downlink payload=3400, then set the MSP mode to enable and the type code is 34.
856
857 * Example 1: Downlink Payload: 34 01  ~/~/  Same as: AT+MSP=1  set to enable MSP mode.
858 * Example 1: Downlink Payload: 34 00  ~/~/  Same as: AT+MSP=1  set to disable MSP mode.
859
860 (% style="color:red" %)**Note**(%%):
861
862 ~1. When MSP mode is enabled, the uplink payload is increased by 4 bytes, the average wind speed from the last uplink to this one (2 bytes) and the maximum wind speed from the last uplink to this one (2 bytes).
863
864 2. If WSS-09 and WSS-22 are connected at the same time, the uplink payload will prioritize WSS-09 as follows:
865
866
867 == 3.7  Set the registers read by the rain gauge(Since firmware V1.1.1, only applicable to WSS-21) ==
868
869
870 (% style="color:#037691" %)**AT Command:**
871
872 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
873 |=(% style="width: 192px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 209px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 107px; background-color: rgb(79, 129, 189); color: white;" %)**Response**
874 |(% style="width:192px" %)(((
875 AT+RAINFALLSWITCH=?
876 )))|(% style="width:209px" %)Query the current register read by the rain gauge|(% style="width:107px" %)OK
877 |(% style="width:192px" %)AT+RAINFALLSWITCH=10|(% style="width:209px" %)Set to read the rainfall within 24 hours|(% style="width:107px" %)(((
878 OK
879 )))
880
881 (% style="color:#037691" %)**Downlink Command:**
882
883 * 0xE703  Same as: AT+RAINFALLSWITCH=3
884
885 Value Definition:
886
887 * **3**: The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
888 * **4**: Hourly rainfall: 0.2mm
889 * **5**: Rainfall in last hour: 0.2mm
890 * **6**: 24-hour maximum rainfall 10.0mm
891 * **8**: 24-hour minimum rainfall:0.0mm
892 * **10**: Rainfall in 24 hours: 8.0mm (Rainfall in the last 24 hours)
893
894 = 4. Power consumption and battery =
895
896 == 4.1 Total Power Consumption ==
897
898
899 Dragino Weather Station serial products include the main process unit (WSC2-L) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC2-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
900
901
902 == 4.2 Reduce power consumption ==
903
904
905 The main process unit WSC2-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC2-L will not be to get real-time downlink command from IoT Server.
906
907
908 == 4.3 Battery ==
909
910
911 (((
912 All sensors are only power by external power source. If external power source is off. All sensor won't work.
913 )))
914
915 (((
916 Main Process Unit WSC2-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC2-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
917 )))
918
919
920 = 5. Main Process Unit WSC2-L =
921
922
923 WSC2-L is the main process unit in Dragino Weather Station solution. WSC2-L is an an outdoor LoRaWAN RS485 end node. It is powered by external 12v solar power and have a built-in Li-ion backup battery.
924
925 WSC2-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
926
927 WSC2-L is full compatible with LoRaWAN Class A protocol, it can work with standard LoRaWAN gateway.
928
929 WSC2-L Supports BLE configure and wireless OTA update which make user easy to use.
930
931 Each WSC2-L is pre-load with a set of unique keys for LoRaWAN registration, register these keys to local LoRaWAN server and it will auto connect after power on.
932
933
934 == 5.1 Features ==
935
936
937 * LoRaWAN v1.0.3 Class A protocol.
938 * RS485 / Modbus protocol
939 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
940 * AT Commands to change parameters
941 * Downlink to change configure
942 * Powered by external 12v battery
943 * Back up rechargeable 1000mAh battery
944 * IP Rating: IP65
945 * Support default sensors or 3rd party RS485 sensors
946 * Support Bluetooth v5.1 and LoRaWAN remote configure
947 * Support wireless OTA update firmware
948 * Wall Attachable.
949
950 == 5.2 Power Consumption ==
951
952
953 WSC2-L (without external sensor): Idle: 4mA, Transmit: max 40mA
954
955
956 == 5.3 Storage & Operation Temperature ==
957
958
959 -20°C to +60°C
960
961
962 == 5.4 Sleep mode and working mode ==
963
964
965 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
966
967 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
968
969
970 == 5.5 Button & LEDs ==
971
972
973 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
974
975 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
976 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
977 |[[image:1749524241393-180.png]] 1~~3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
978 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
979 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
980 )))
981 |[[image:1749524243713-196.png]] >3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
982 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
983 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
984 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
985 )))
986 |[[image:1749524287726-592.png]] x5|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
987
988 == 5.6 BLE connection ==
989
990
991 WSC2-L supports BLE remote configure.
992
993 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
994
995 * Press button to send an uplink
996 * Press button to active device.
997 * Device Power on or reset.
998
999 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
1000
1001
1002 == 5.7 Pin Mapping ==
1003
1004
1005 [[image:image-20240412165523-2.png]]
1006
1007
1008 == 5.8 Pin Mapping ==
1009
1010 === 5.8.1 One tow four main wires ===
1011
1012 [[image:image-20250529090933-1.jpeg||height="553" width="872"]]
1013
1014
1015 * Black line  <~-~-~-~-~-~->  GND of battery charging motherboard (-)
1016 * Red line  <~-~-~-~-~-~->  GND of battery charging motherboard (+)
1017 * White line  <~-~-~-~-~-~->  A pin of WSC2-L motherboard
1018 * Green line  <~-~-~-~-~-~->  B pin of WSC2-L motherboard
1019 * Yellow line  <~-~-~-~-~-~->  GPIO_EXIT pin of WSC2-L motherboard
1020
1021 === 5.8.2 Single line: ===
1022
1023 [[image:image-20250529100822-2.jpeg||height="505" width="854"]]
1024
1025
1026 * Black line  <~-~-~-~-~-~->  Power (-) pin
1027 * Red line  <~-~-~-~-~-~->  Power (+) pin
1028 * White line  <~-~-~-~-~-~->  RS485-A pin
1029 * Green line  <~-~-~-~-~-~->  RS485-B pin
1030 * Yellow line  <~-~-~-~-~-~->  Pulse interrupt pin
1031 * Orange line  <~-~-~-~-~-~->  Not used (can be cut off)
1032
1033 == 5.9  Mechanical ==
1034
1035
1036 Refer LSn50v3 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/ADY2192VNMFoMmryPGdwkRk/LoRaWAN%20End%20Node/SN50v3-LB/Mechinical?dl=0&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1>>https://www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/ADY2192VNMFoMmryPGdwkRk/LoRaWAN%20End%20Node/SN50v3-LB/Mechinical?dl=0&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1]]
1037
1038
1039 = 6. OTA Firmware update =
1040
1041
1042 (% class="wikigeneratedid" %)
1043 **User can change firmware WSC2-L to:**
1044
1045 * Change Frequency band/ region.
1046 * Update with new features.
1047 * Fix bugs.
1048
1049 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/8j3ioji411ni9gu/AADnOw3ErB1REsthKilfaq_Pa?dl=0]]**
1050
1051 **Methods to Update Firmware:**
1052
1053 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1054
1055 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1056
1057 = 7. FAQ =
1058
1059 == 7.1 What else do I need to purchase to build Weather Station? ==
1060
1061
1062 Below is the installation photo and structure:
1063
1064 [[image:image-20240413172530-3.png]]
1065
1066 == 7.2 Where can i find the modbus command for the WSS-09 sensor? ==
1067
1068 See this link for the [[modbus command set>>https://www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/AK7twfUnkB4qKMvtU4XcEss/LoRaWAN%20End%20Node/WSC2-L%20Combine%20Weather%20Station%20Kit?dl=0&e=2&preview=Weather_Sensors_Modbus_Command_List.xlsx&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1]].
1069
1070
1071 = 8. Trouble Shooting =
1072
1073 == 8.1 What should I do when the RS485 sensor cannot collect data? ==
1074
1075
1076 ~1. Recheck whether the sensor's power supply voltage is 12V at maximum.
1077
1078 2. Recheck whether the A and B signal lines of the sensor are connected reversely.
1079
1080 3. Check whether the sensor's transmission baud rate is 4800. If not, please change it to 4800 and try reading again.
1081
1082
1083 == 8.2 Why does the weather station make electric current sounds during operation? ==
1084
1085
1086 ~1. Because a certain amount of sound will be produced during long-term power supply operation. This is a normal phenomenon and does not affect use.
1087
1088
1089 == 8.3 How to solve the problem of temperature difference in weather stations? ==
1090
1091
1092 You can use AT+RSWRITE (downlink: E2 xx xx xx xx xx xx xx ) to modify the temperature compensation function in the weather station.
1093
1094 **For example:**
1095
1096 When the temperature of the weather station is 3°C different from the right value, you can use AT+RSWRITE=01 06 00 50 00 1E 09 D3 (downlink: E2 01 06 00 50 00 1E 09 D3) to modify the temperature compensation value of the weather station to +3°C .
1097
1098
1099 == 8.4 Why does the rain gauge have no data? ==
1100
1101
1102 The default mode of the rain gauge is trigger mode.
1103 When it rains, it will trigger an uplink, and the data does not include rainfall data.
1104 If you want to query rainfall data, please change to counting mode
1105
1106 Feature: Users can set the trigger mode to counting mode or interrupt mode as needed.
1107
1108 (% style="color:#037691" %)**AT Command:**
1109
1110 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1111 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
1112 |(% style="width:157px" %)AT+COUNTMOD=0|(% style="width:188px" %)set to interrupt mode|(% style="width:85px" %)OK
1113 |(% style="width:157px" %)AT+COUNTMOD=1|(% style="width:188px" %)(((
1114 set to counting mode
1115 )))|(% style="width:85px" %)OK
1116
1117 (% style="color:#037691" %)**Downlink Command:**
1118
1119 Format: Command Code (0x10) followed by 1 bytes time value.
1120
1121 If the downlink payload=10 00, Set the trigger mode to interrupt mode, while type code is 10.
1122
1123 * Example 1: Downlink Payload: 10 00  ~/~/  Same as: AT+COUNTMOD=0  set to interrupt mode
1124
1125 = 9. Order Info =
1126
1127
1128 (% style="color:red" %)**Please note that the WSC2-L only includes the wireless transmitter, and the WSS-08, WSS-09, WSS-21, WSS-22, WSS-23, WSS-24, WSS-25, WSS-26, WSS-27 sensor need to be purchased separately. If you need to connect more than 3 sensors, please purchase an additional one to four adapter cable (DR-F6C-4M).**
1129
1130
1131 **Part Number:**
1132
1133 (% style="color:blue" %)**Wireless Transmitter :**(%%)** WSC2-L-XX **
1134
1135 **XX**: the default frequency band
1136
1137 * **AS923**: LoRaWAN AS923 band
1138 * **AU915**: LoRaWAN AU915 band
1139 * **EU433**: LoRaWAN EU433 band
1140 * **EU868**: LoRaWAN EU868 band
1141 * **KR920**: LoRaWAN KR920 band
1142 * **S915**: LoRaWAN US915 band
1143 * **IN865**: LoRaWAN IN865 band
1144 * **CN470**: LoRaWAN CN470 band
1145
1146 (% style="color:green" %)**Sensors Option :**(%%)** WSS-08, WSS-09, WSS-21, WSS-22, WSS-23, WSS-24, WSS-25, WSS-26, WSS-27**
1147
1148
1149 = 10. Support =
1150
1151
1152 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1153
1154 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].