Version 241.1 by Mengting Qiu on 2025/06/12 18:01

Show last authors
1 (% style="display:none" %) (%%)
2
3 [[image:image-20250530161803-1.jpeg||data-xwiki-image-style-alignment="center" height="497" width="381"]]
4
5
6
7
8
9
10
11
12 **Table of Contents:**
13
14 {{toc/}}
15
16
17
18
19
20
21
22
23
24 = 1. Introduction =
25
26 == 1.1 Overview ==
27
28
29 The Dragino WSC2-L is the main unit in Dragino Weather Station solution which desianed for (% style="color:blue" %)**measuring atmospheric conditions**(%%) to provide information for weatherforecasts and to study the weather and climate.
30
31 WSC2-L can reads values from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
32
33 WSC2-L supports input and (% style="color:blue" %)**12V recharge power**(%%) and (% style="color:blue" %)**build in 1000mAh rechargeable Li-ion battery**(%%). lf the user needs to connect other sensors, please kindly note the (% style="color:blue" %)**externalpower supply is required**.
34
35 WSC2-L supports connecting 3rd party RS485 multiple sensors. Users can purchase DR-F6C-4M one-to-four cables to connect more sensors according to their needs.
36
37
38 == 1.2 Features & Spec for WSC2-L Transmitter ==
39
40
41 * LoRaWAN 1.0.3 Class A
42 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
43 * Ultra-low power consumption
44 * Support reading the Rain Gauge, Wind Speed/Direction, CO2/PM2.5/PM10, Rain/Snow Detect, Temperature, Humidiity, Iillumiance, Pressure, Total Solar Radiation, PAR
45 * Support WSS09 9 in 1 Sensors: Wind Speed, Wind Direction, Temperature,  Humidity, Air Pressure, Illumination, PM2.5, PM10, Noise & Rain Gauge
46 * RS485 Interface for 3rd party Sensors
47 * Support WSS08 optical Rain Gauge or tipping bucket Rain Gauge
48 * Support Bluetooth v5.1 and LoRaWAN remote configure
49 * Support wireless OTA update firmware
50 * AT Commands to change parameters
51 * Downlink to change configure
52 * IP66 Waterproof Enclosure
53 * 1000mAh Rechargeable Li-ion Battery
54 * Input and Recharge power: 12v
55
56 == 1.3 Specification for WSS-09 9 in 1 weather sensors ==
57
58 **~ Older versions of interfaces**  **New version of the interface**
59
60 [[image:image-20240708092247-1.png||height="264" width="240"]] [[image:image-20250505190455-1.png||height="283" width="226"]]
61
62 More Detail: [[WSS-09 Manual.>>doc:Main.Agriculture & Weather Stations.WebHome||anchor="H1.WSS099in1WeatherStationSensor"]]
63
64
65 (% style="color:blue" %)**Wind Speed:**
66
67 * Range: 0~~60m/s
68 * Accuracy: ±(0.2m/s±0.02*v)(v : the wind speed)
69 * Ultrasonic measurement,no start wind strength needed
70
71 (% style="color:blue" %)**Wind Direction:**
72
73 * Range: 0~~3599
74 * Accuracy: ±3°
75 * Ultrasonic measurement,no start wind strength needed
76 * Built-in electronic compass. No need to consider installation direction
77
78 (% style="color:blue" %)**Temperature:**
79
80 * Range: -40°C ~~ +80°C
81 * Accuracy: ±0.5°C
82
83 (% style="color:blue" %)**Humidity:**
84
85 * Range: 0 ~~ 99% RH
86 * Accuracy Tolerance : Typ ±3% RH
87
88 (% style="color:blue" %)**Air Pressure:**
89
90 * Accuracy: ±0.15kPa@25°C 101kPa
91 * Range: 0~~120kPa
92
93 (% style="color:blue" %)**Noise:**
94
95 * Range: 30dB~~120dB
96 * Accuracy: ±0.5dB
97
98 (% style="color:blue" %)**PM2.5:**
99
100 * Range: 0~~1000ug/m3
101 * Accuracy: ±3%FS
102 * Resolution: 1ug/m3
103
104 (% style="color:blue" %)**PM10:**
105
106 * Range: 0~~1000ug/m3
107 * Accuracy: ±3%FS
108 * Resolution: 1ug/m3
109
110 (% style="color:blue" %)**llumination:**
111
112 * Range: 0~~200k Lux
113 * Accuracy: ±7%(25 °C)
114
115 == 1.4 Specification for WSS-08 Optical Rain Guage ==
116
117 **Older versions of interfaces**  **New version of the interface**
118
119 [[image:image-20240707215336-2.png||height="147" width="201"]] [[image:image-20250505190636-2.png||height="158" width="201"]]
120
121 * Input Power: 9~~30 VDC
122 * Sense diameter: 6cm
123 * Pulse Output
124
125 More Detail: [[WSS-08 Manual.>>doc:Main.Agriculture & Weather Stations.WebHome||anchor="H2.WSS08OpticalRangeGuage"]]
126
127 = 2. How to use =
128
129 == 2.1 Installation ==
130
131
132 Below is an installation example for the weather station:
133
134 [[image:image-20240327231510-1.png||height="499" width="1156"]]
135
136
137 (% style="color:blue" %)** Wiring:**
138
139 1. WSC2-L and sensors all powered by solar power via MPPT
140 1. WSC2-L Weather Station Kit already include 9 sensors.
141 1. Possible to add optional 3rd sensors to measure more parameter
142
143 (% style="color:red" %)**Notice 1:**
144
145 * All weather sensors and WSC2-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
146 * Weather sensors won't work if solar panel and storage battery fails.
147
148 (% style="color:red" %)**Notice 2:**
149
150 Due to shipment and importation limitation, user is better to purchase below parts locally:
151
152 * Solar Panel
153 * Storage Battery
154 * MPPT Solar Recharger
155 * Cabinet.
156
157 == 2.2 How it works? ==
158
159
160 (((
161 Each WSC2-L is shipped with a worldwide unique set of OTAA keys. To use WSC2-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC2-L in your LoRaWAN server and Power on WSC2-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
162 )))
163
164
165 == 2.3 Example to use for LoRaWAN network ==
166
167
168 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
169
170 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC2-L device in TTN V3:
171
172
173 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC2-L.
174
175 Each WSC2-L is shipped with a sticker with the default device EUI as below:
176
177 [[image:image-20230426084533-1.png||height="231" width="497"]]
178
179
180 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
181
182 The user needs to press and hold the ACT button(Push button) for more than 3s to start the node.
183
184 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png||height="386" width="262"]]
185
186
187 **Create the application.**
188
189 [[image:image-20250530163301-2.jpeg]]
190
191 [[image:image-20250530163311-3.jpeg]]
192
193
194 **Add devices to the created Application.**
195
196 [[image:image-20250530163335-4.jpeg]]
197
198 [[image:image-20250530163350-5.jpeg]]
199
200
201 **Enter end device specifics manually.**
202
203 [[image:image-20250530163411-6.jpeg]]
204
205
206 **Add DevEUI and AppKey.**
207
208 **Customize a platform ID for the device.**
209
210 [[image:image-20250530163435-7.jpeg]]
211
212
213 (% style="color:blue" %)**Step 2**(%%):​​​​​​ Add decoder.
214
215 In TTN, user can add a custom payload so it shows friendly reading.
216
217 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/WSC2-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/WSC2-LB]]
218
219 Below is TTN screen shot:
220
221 [[image:image-20250530163456-8.jpeg]]
222
223 [[image:image-20250530163514-9.jpeg]]
224
225
226 (((
227 (% style="color:blue" %)**Step 3**(%%): Power on WSC2-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
228 )))
229
230 [[image:image-20250530163532-10.jpeg]]
231
232
233 == 2.4 Uplink Payload ==
234
235
236 Uplink payloads include two types: Valid Sensor Value and other status / control command.
237
238 * Valid Sensor Value: Use FPORT=2
239 * Other control command: Use FPORT other than 2.
240
241 === 2.4.1 Uplink FPORT~=5, Device Status ===
242
243
244 Uplink the device configures with FPORT=5. Once WSC2-L Joined the network, it will uplink this message to the server.
245
246 (((
247 User can also use downlink command**(0x2601)** to ask WSC2-L to resend this uplink
248 )))
249
250 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
251 |=(% style="width: 70px;background-color:#4F81BD;color:white" %)**Size(**bytes)|=(% style="width: 85px;background-color:#4F81BD;color:white" %)1|=(% style="width: 105px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 105px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 85px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**
252 |(% style="width:99px" %)Value|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]
253
254 [[image:image-20240415092848-2.png||height="329" width="1045"]]
255
256
257 Example Payload (FPort=5):  [[image:image-20240415091027-1.png||height="16" width="104"]]
258
259
260 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
261
262 For WSC2-L, this value is 0x2E.
263
264
265 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
266
267 0x0100, Means: v1.0.0 version.
268
269
270 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
271
272 0x01: EU868
273
274 0x02: US915
275
276 0x03: IN865
277
278 0x04: AU915
279
280 0x05: KZ865
281
282 0x06: RU864
283
284 0x07: AS923
285
286 0x08: AS923-1
287
288 0x09: AS923-2
289
290 0x0a: AS923-3
291
292
293 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
294
295 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
296
297
298 ==== (% style="color:#037691" %)**BAT:**(%%) ====
299
300 (((
301 shows the battery voltage for WSC2-L MCU.
302 )))
303
304 (((
305 Ex1: 0x0FE4/1000 = 4068/1000=4.068V
306 )))
307
308
309 Users can also use the downlink command (0x2301) to change the uplink port of WSC2-L:
310
311 (% style="color:#037691" %)**Example**(%%) (% style="color:#037691" %)**Downlink:0x23 01(Change to port 1)**
312
313 [[image:image-20240413104831-3.png||height="364" width="934"]]
314
315
316 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
317
318
319 (((
320 WSC2-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
321 )))
322
323 (((
324 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
325 )))
326
327
328 (((
329 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
330 )))
331
332
333 (% style="color:#4472c4" %)** Uplink Payload**:
334
335 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
336 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
337
338 (% style="color:#4472c4" %)** Sensor Segment Define**:
339
340 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:330px" %)
341 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
342
343 (% style="color:#4472c4" %)**Sensor Type Table:**
344
345 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
346 |(% style="background-color:#4f81bd; color:white; width:80px" %)**Sensor Type**|(% style="background-color:#4f81bd; color:white; width:65px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:116px" %)**Range**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Length( Bytes)**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Example**
347 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:116px" %)(((
348 Speed: 0 ~~ 60m/s
349 )))|(% style="width:88px" %)0x02 |(% style="width:181px" %)(((
350 0x0028/100=0.40m/s
351 )))
352 |(% style="width:103px" %)Wind Level|(% style="width:91px" %)0x02|(% style="width:116px" %)Wind Level: (0 ~~18)|(% style="width:88px" %)0x02|(% style="width:181px" %)0x0002=2(Current wind level)
353 |(% style="width:103px" %)(((
354 Wind Direction
355 )))|(% style="width:91px" %)0x03|(% style="width:116px" %)Direction: 0~~7|(% style="width:88px" %)0x02|(% style="width:181px" %)(((
356 0X0004=3(Due north is 0, increasing clockwise, and due east is 2)
357 )))
358 |(% style="width:103px" %)Wind Angle|(% style="width:91px" %)0x04|(% style="width:116px" %)(((
359 Angel: 0 ~~ 359°
360 )))|(% style="width:88px" %)0x02|(% style="width:181px" %)(((
361 0x02C9/10=66.6°(Due north is 0°, increasing clockwise, due east is 90°)
362 )))
363 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x05|(% style="width:116px" %)Hum: 099%RH|(% style="width:88px" %)0x02|(% style="width:181px" %)0x0164/10=35.6%RH
364 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:116px" %)Temp: -40 ~~ +80°C|(% style="width:88px" %)0x02|(% style="width:181px" %)(((
365 0xFFDD/10=-3.5°C 
366 )))
367 |(% style="width:103px" %)Noise|(% style="width:91px" %)0x07|(% style="width:116px" %)Nosie: 30~~120dB|(% style="width:88px" %)0x02|(% style="width:181px" %)(((
368 0x023e/10=57.4dB
369 )))
370 |(% style="width:103px" %)(((
371 PM2.5 / CO2
372 )))|(% style="width:91px" %)0x08|(% style="width:116px" %)(((
373 PM2.5: 01000μg/m^^3^^
374
375 CO2: 0~~5000ppm
376 )))|(% style="width:88px" %)0x02|(% style="width:181px" %)(((
377 0x0023=35μg/m^^3 ^^
378
379 0x04fb=1275ppm
380 )))
381 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x09|(% style="width:116px" %)(((
382 PM10: 01000μg/m^^3^^
383 )))|(% style="width:88px" %)0x02|(% style="width:181px" %)(((
384 0x002D=45μg/m^^3 ^^
385 )))
386 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x0A|(% style="width:116px" %)0~~120kPa/y|(% style="width:88px" %)0x02|(% style="width:181px" %)(((
387 0x2748/10=1005.6kPa   
388 )))
389 |(% style="width:103px" %)illumination|(% style="width:91px" %)0x0B|(% style="width:116px" %)0200000kLux|(% style="width:88px" %)0x04|(% style="width:181px" %)0x04D2*10=12340kLux 
390
391 (((
392 Below is an example payload:  0FF60100000000012F00280001000400AD025E0117023E0023003203ED0001678390A102FFFF
393 )))
394
395
396
397
398
399
400
401
402 (((
403 When sending this payload to LoRaWAN server. WSC2-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
404 )))
405
406 * (((
407 When WSC2-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
408 )))
409
410 (((
411 Uplink 1:  [[image:image-20240418135453-1.png||height="26" width="202"]](% style="display:none" %)
412 )))
413
414 (((
415 Uplink 2: [[image:image-20240418141234-5.png||height="38" width="352"]](% style="display:none" %)
416 )))
417
418
419
420
421
422
423
424
425 * (((
426 When WSC2-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
427 )))
428
429 (((
430 Uplink 1:  [[image:image-20240418141304-6.png||height="39" width="408"]]
431 )))
432
433 Uplink 2:  [[image:image-20240418141312-7.png||height="24" width="74"]]
434
435
436 === 2.4.3 Decoder in TTN V3 ===
437
438
439 (((
440 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
441 )))
442
443 (((
444 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
445 )))
446
447 (((
448 and put as below:
449 )))
450
451 [[image:image-20240413140757-2.png||height="423" width="892"]]
452
453
454 == 2.5 Show data on Application Server ==
455
456
457 (((
458 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
459 )))
460
461 (((
462 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
463 )))
464
465 (((
466 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
467 )))
468
469 [[image:1656051197172-131.png]]
470
471
472
473 **Add TagoIO:**
474
475 [[image:1656051223585-631.png]]
476
477
478
479 **Authorization:**
480
481 [[image:1656051248318-368.png]]
482
483
484 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC2-L:
485
486
487 [[image:1656051277767-168.png]]
488
489
490 == 2.6 Frequency Plans ==
491
492
493 The WSC2-L uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
494
495 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
496
497
498 = 3. Configure WSC2-L =
499
500 == 3.1 Configure Methods ==
501
502
503 WSC2-L supports below configure method:
504
505 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
506
507 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
508
509 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
510
511 == 3.2 General Commands ==
512
513
514 These commands are to configure:
515
516 * General system settings like: uplink interval.
517 * LoRaWAN protocol & radio related command.
518
519 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
520
521 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
522
523
524 == 3.3 Commands special design for WSC2-L ==
525
526
527 These commands only valid for WSC2-L, as below:
528
529
530 === 3.3.1 Set Transmit Interval Time ===
531
532
533 Feature: Change LoRaWAN End Node Transmit Interval.
534
535 (% style="color:#037691" %)**AT Command: AT+TDC**
536
537 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
538 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
539 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
540 30000
541 OK
542 the interval is 30000ms = 30s
543 )))
544 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
545 OK
546 Set transmit interval to 60000ms = 60 seconds
547 )))
548
549 (% style="color:#037691" %)**Downlink Command: 0x01**
550
551 Format: Command Code (0x01) followed by 3 bytes time value.
552
553 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
554
555 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
556 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
557
558 === 3.3.2 Set the CO2 or PM mode ===
559
560
561 (% style="color:red" %)**Note: Default shipment is PM sensor, optional CO2 or PM sensor is available at the time of purchase, which needs to be modified according to the sensor selected at the time of purchase.**
562
563 Feature: Set the CO2/PM mode, and the user can set the corresponding mode according to the purchased sensor.
564
565 (% style="color:#037691" %)**AT Command:**
566
567 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:466px" %)
568 |(% style="background-color:#4f81bd; color:white; width:156px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:225px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:85px" %)**Response**
569 |(% style="width:155px" %)AT+PMMOD=1|(% style="width:224px" %)The working sensors are PM2.5 and PM10|(% style="width:84px" %)(((
570 OK
571
572 )))
573 |(% style="width:155px" %)AT+PMMOD=0|(% style="width:224px" %)The working sensors are CO2|(% style="width:84px" %)(((
574 OK
575 )))
576
577 (% style="color:#037691" %)**Downlink Command:**
578
579 * 0xE101     Same as: AT+PMMOD=1
580 * 0xE100     Same as: AT+PMMOD=0
581
582 === 3.3.3 Add or Delete RS485 Sensor ===
583
584
585 (((
586 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 4800.Maximum can add 4 sensors.
587 )))
588
589 (((
590 (% style="color:#037691" %)**AT Command: **
591 )))
592
593 (((
594 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
595 )))
596
597 * (((
598 Type_Code range:  A1 ~~ A4
599 )))
600 * (((
601 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
602 )))
603 * (((
604 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
605 )))
606 * (((
607 Read_Length:  RS485 response frame length supposed to receive. Max can receive
608 )))
609 * (((
610 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
611 )))
612 * (((
613 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
614 )))
615 * (((
616 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
617 )))
618
619 (((
620 **Example:**
621 )))
622
623 (((
624 User need to change external sensor use the type code as address code.
625 )))
626
627 (((
628 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
629 )))
630
631 [[image:image-20220624143553-10.png]]
632
633
634 The response frame of the sensor is as follows:
635
636 [[image:image-20220624143618-11.png]]
637
638
639 **Then the following parameters should be:**
640
641 * Address_Code range: A1
642 * Query_Length: 8
643 * Query_Command: A103000000019CAA
644 * Read_Length: 8
645 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
646 * has_CRC: 1
647 * timeout: 1500 (Fill in the test according to the actual situation)
648
649 **So the input command is:**
650
651 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
652
653
654 In every sampling. WSC2-L will auto append the sensor segment as per this structure and uplink.
655
656 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:351px" %)
657 |=(% style="width: 95px;background-color:#4F81BD;color:white" %)Type Code|=(% style="width: 122px;background-color:#4F81BD;color:white" %)Length (Bytes)|=(% style="width: 134px;background-color:#4F81BD;color:white" %)Measured Value
658 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
659
660 **Related commands:**
661
662 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
663
664 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
665
666
667 (% style="color:#037691" %)**Downlink Command:  **
668
669 **delete custom sensor A1:**
670
671 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
672
673 **Remove all custom sensors**
674
675 * 0xE5FF  
676
677 === 3.3.4 RS485 Test Command ===
678
679
680 (% style="color:#037691" %)**AT Command:**
681
682 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:494px" %)
683 |=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 248px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
684 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
685 Send command to 485 sensor. Range : no more than 10 bytes
686 )))|(% style="width:85px" %)OK
687
688 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
689
690 AT+RSWRITE=0103000001840A
691
692
693 (% style="color:#037691" %)**Downlink Command:**
694
695 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
696
697 === 3.3.5 RS485 response timeout ===
698
699
700 Feature: Set or get extended time to receive 485 sensor data.
701
702 (% style="color:#037691" %)**AT Command:**
703
704 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
705 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
706 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
707 Set response timeout to: Range : 0~~10000
708 )))|(% style="width:85px" %)OK
709
710 (% style="color:#037691" %)**Downlink Command:**
711
712 Format: Command Code (0xE0) followed by 3 bytes time value.
713
714 If the downlink payload=E0000005, it means set the END Node's Transmit Interval to 0x000005=5(S), while type code is E0.
715
716 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
717 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
718
719 === 3.3.6 Set or get the total count value(only applicable to WSS-08) ===
720
721
722 Feature: The user can set the counting to start from the set value according to the requirements. (only available in counting mode).
723
724 (% style="color:#037691" %)**AT Command:**
725
726 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
727 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
728 |(% style="width:157px" %)AT+SETCNT=1000|(% style="width:188px" %)Set the total count to start from 1000|(% style="width:85px" %)OK
729
730 (% style="color:#037691" %)**Downlink Command:**
731
732 Format: Command Code (0x09) followed by 4 bytes time value.
733
734 If the downlink payload=09000003E8, This means that the count of the END node will start counting from setting 0x000003E8=1000 (times). while type code is 09.
735
736 * Example 1: Downlink Payload: 09000003E8  ~/~/  Set the value to start counting from 1000 = 1000 (times)
737
738 === 3.3.7  Set interrupt or counting mode ===
739
740
741 Feature: Users can set the trigger mode to counting mode or interrupt mode as needed.
742
743 (% style="color:#037691" %)**AT Command:**
744
745 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
746 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
747 |(% style="width:157px" %)AT+COUNTMOD=0|(% style="width:188px" %)set to interrupt mode|(% style="width:85px" %)OK
748 |(% style="width:157px" %)AT+COUNTMOD=1|(% style="width:188px" %)(((
749 set to counting mode
750 )))|(% style="width:85px" %)OK
751
752 (% style="color:#037691" %)**Downlink Command:**
753
754 Format: Command Code (0x10) followed by 1 bytes time value.
755
756 If the downlink payload=10 00, Set the trigger mode to interrupt mode, while type code is 10.
757
758 * Example 1: Downlink Payload: 10 00  ~/~/  Same as: AT+COUNTMOD=0  set to interrupt mode
759
760 == 3.4 Add 3rd RS485 / Modbus Sensor ==
761
762 === 3.4.1 Hardware Connection ===
763
764
765 WSC2-L has a 1 to 3 cables. All the three connectors has same defination as below. It include Five Pins: VCC, GND, RS485-A, RS485-B, Count.
766
767 (% style="color:red" %)**Notice: RS485-A,RS485-B can be used to connect multiply sensors. but the COUNT can be only use for one sensor. Which means if you already add a Pulse output Rain Guage in the system, you are not able to add another Pulse Output device.**
768
769 [[image:image-20240707220859-4.png||height="313" width="366"]]
770
771
772 === 3.4.2 Software Setup ===
773
774
775 Send AT+DYSENSOR to activate the RS485 sensor for collecting 3rd RS485 sensor. You can refer to the instructions in section 3.3.3 of the manual.
776
777 For example: AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
778
779
780 === 3.4.3 Payload ===
781
782 [[image:image-20240416163658-1.png]]
783
784 For example: A1 02 00 00
785
786 A1 : A1 register data acquisition instruction
787
788 02 : The valid data returned is 2 bytes in total.
789
790 00 00 : Return valid data
791
792
793 == 3.5 Add tipping bucket total solar radiation sensor ==
794
795 === 3.5.1 Hardware Connection ===
796
797
798 The following is an example of connecting a total solar radiation sensor to a matching interface cable, and then using the interface to connect the WSC2-L.
799
800 Users can also choose to connect the sensor directly to the WSC2-L via the cable and pin instructions below.
801
802 The following is an explanation of the [[pins>>||anchor="H5.7PinMapping"]] required for WSC2-L:
803
804 **A:** RS485-A  (Connect the RS485 sensor)
805
806 **B:** RS485-B  (Connect the RS485 sensor)
807
808 **GPIO_EXTI:** Interrupt pin  (Can be used to connect an additionally added pulsed rain gauge)
809
810
811 * Total Solar Radiation Sensor Cable Descripti
812
813 [[image:image-20240906174635-2.jpeg||height="430" width="813"]]
814
815
816
817 * Mating Interface Cable Description
818
819 [[image:image-20240906173843-1.jpeg||height="404" width="815"]]
820
821 * Connect to WSC2-L
822
823 The Total solar radiation sensor does not need to connect the interrupt pin, so the white cable is not wired.
824
825 [[image:image-20240906182250-3.jpeg||height="442" width="820"]]
826
827
828 === 3.5.2 Calculating & Decode ===
829
830
831 0FC6 01 00000000 00EB 000F 0000 0003 008E 0251 00CE 0213 0017 001B 03EC 000000DE 90 A1020000 A2020032
832
833 For example:  A2 02 00 32
834
835 A2 : A2 register data acquisition instruction
836
837 02 : The valid data returned is 2 bytes in total.
838
839 00 32(HEX) : Return valid data = 50(DEC)W/m2
840
841
842 == 3.6 MSP mode(Since version 1.1.5) ==
843
844 (% style="color:red" %)**Note:This feature is available for WSS-02.**
845
846 This function is used for the continuous collection of wind speed.
847
848 When MSP mode is turned on (AT+MSP=1), WSC1-L will collect real-time wind speed **every 10 seconds**. Then it will judge the maximum wind speed in this period according to the wind speed collected in TDC time, and calculate the average wind speed according to the wind speed data collected in TDC time and the number of data groups.
849
850 (% style="color:#037691" %)**AT Command:**
851
852 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
853 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
854 |(% style="width:157px" %)AT+MSP=1|(% style="width:188px" %)Enable MSP mode|(% style="width:85px" %)OK
855 |(% style="width:157px" %)AT+MSP=0|(% style="width:188px" %)Disable MSP mode|(% style="width:85px" %)OK
856
857 (% style="color:#037691" %)**Downlink Command:**
858
859 Format: Command Code (0x34) followed by 1 bytes time value.
860
861 If the downlink payload=3400, then set the MSP mode to enable and the type code is 34.
862
863 * Example 1: Downlink Payload: 34 01  ~/~/  Same as: AT+MSP=1  set to enable MSP mode.
864 * Example 1: Downlink Payload: 34 00  ~/~/  Same as: AT+MSP=1  set to disable MSP mode.
865
866 (% style="color:red" %)**Note**(%%):
867
868 ~1. When MSP mode is enabled, the uplink payload is increased by 4 bytes, the average wind speed from the last uplink to this one (2 bytes) and the maximum wind speed from the last uplink to this one (2 bytes).
869
870 2. If WSS-09 and WSS-22 are connected at the same time, the uplink payload will prioritize WSS-09 as follows:
871
872
873 == 3.7  Set the registers read by the rain gauge(Since firmware V1.1.1, only applicable to WSS-21) ==
874
875
876 (% style="color:#037691" %)**AT Command:**
877
878 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
879 |=(% style="width: 192px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 209px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 107px; background-color: rgb(79, 129, 189); color: white;" %)**Response**
880 |(% style="width:192px" %)(((
881 AT+RAINFALLSWITCH=?
882 )))|(% style="width:209px" %)Query the current register read by the rain gauge|(% style="width:107px" %)OK
883 |(% style="width:192px" %)AT+RAINFALLSWITCH=10|(% style="width:209px" %)Set to read the rainfall within 24 hours|(% style="width:107px" %)(((
884 OK
885 )))
886
887 (% style="color:#037691" %)**Downlink Command:**
888
889 * 0xE703  Same as: AT+RAINFALLSWITCH=3
890
891 Value Definition:
892
893 * **3**: The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
894 * **4**: Hourly rainfall: 0.2mm
895 * **5**: Rainfall in last hour: 0.2mm
896 * **6**: 24-hour maximum rainfall 10.0mm
897 * **8**: 24-hour minimum rainfall:0.0mm
898 * **10**: Rainfall in 24 hours: 8.0mm (Rainfall in the last 24 hours)
899
900 = 4. Power consumption and battery =
901
902 == 4.1 Total Power Consumption ==
903
904
905 Dragino Weather Station serial products include the main process unit (WSC2-L) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC2-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
906
907
908 == 4.2 Reduce power consumption ==
909
910
911 The main process unit WSC2-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC2-L will not be to get real-time downlink command from IoT Server.
912
913
914 == 4.3 Battery ==
915
916
917 (((
918 All sensors are only power by external power source. If external power source is off. All sensor won't work.
919 )))
920
921 (((
922 Main Process Unit WSC2-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC2-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
923 )))
924
925
926 = 5. Main Process Unit WSC2-L =
927
928
929 WSC2-L is the main process unit in Dragino Weather Station solution. WSC2-L is an an outdoor LoRaWAN RS485 end node. It is powered by external 12v solar power and have a built-in Li-ion backup battery.
930
931 WSC2-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
932
933 WSC2-L is full compatible with LoRaWAN Class A protocol, it can work with standard LoRaWAN gateway.
934
935 WSC2-L Supports BLE configure and wireless OTA update which make user easy to use.
936
937 Each WSC2-L is pre-load with a set of unique keys for LoRaWAN registration, register these keys to local LoRaWAN server and it will auto connect after power on.
938
939
940 == 5.1 Features ==
941
942
943 * LoRaWAN v1.0.3 Class A protocol.
944 * RS485 / Modbus protocol
945 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
946 * AT Commands to change parameters
947 * Downlink to change configure
948 * Powered by external 12v battery
949 * Back up rechargeable 1000mAh battery
950 * IP Rating: IP65
951 * Support default sensors or 3rd party RS485 sensors
952 * Support Bluetooth v5.1 and LoRaWAN remote configure
953 * Support wireless OTA update firmware
954 * Wall Attachable.
955
956 == 5.2 Power Consumption ==
957
958
959 WSC2-L (without external sensor): Idle: 4mA, Transmit: max 40mA
960
961
962 == 5.3 Storage & Operation Temperature ==
963
964
965 -20°C to +60°C
966
967
968 == 5.4 Sleep mode and working mode ==
969
970
971 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
972
973 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
974
975
976 == 5.5 Button & LEDs ==
977
978
979 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
980
981 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
982 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
983 |[[image:1749524241393-180.png]] 1~~3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
984 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
985 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
986 )))
987 |[[image:1749524243713-196.png]] >3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
988 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
989 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
990 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
991 )))
992 |[[image:1749524287726-592.png]] x5|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
993
994 == 5.6 BLE connection ==
995
996
997 WSC2-L supports BLE remote configure.
998
999 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
1000
1001 * Press button to send an uplink
1002 * Press button to active device.
1003 * Device Power on or reset.
1004
1005 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
1006
1007
1008 == 5.7 Pin Mapping ==
1009
1010
1011 [[image:image-20240412165523-2.png]]
1012
1013
1014 == 5.8 Pin Mapping ==
1015
1016 === 5.8.1 One tow four main wires ===
1017
1018 [[image:image-20250529090933-1.jpeg||height="553" width="872"]]
1019
1020
1021 * Black line  <~-~-~-~-~-~->  GND of battery charging motherboard (-)
1022 * Red line  <~-~-~-~-~-~->  GND of battery charging motherboard (+)
1023 * White line  <~-~-~-~-~-~->  A pin of WSC2-L motherboard
1024 * Green line  <~-~-~-~-~-~->  B pin of WSC2-L motherboard
1025 * Yellow line  <~-~-~-~-~-~->  GPIO_EXIT pin of WSC2-L motherboard
1026
1027 === 5.8.2 Single line: ===
1028
1029 [[image:image-20250529100822-2.jpeg||height="505" width="854"]]
1030
1031
1032 * Black line  <~-~-~-~-~-~->  Power (-) pin
1033 * Red line  <~-~-~-~-~-~->  Power (+) pin
1034 * White line  <~-~-~-~-~-~->  RS485-A pin
1035 * Green line  <~-~-~-~-~-~->  RS485-B pin
1036 * Yellow line  <~-~-~-~-~-~->  Pulse interrupt pin
1037 * Orange line  <~-~-~-~-~-~->  Not used (can be cut off)
1038
1039 == 5.9  Mechanical ==
1040
1041
1042 Refer LSn50v3 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/ADY2192VNMFoMmryPGdwkRk/LoRaWAN%20End%20Node/SN50v3-LB/Mechinical?dl=0&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1>>https://www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/ADY2192VNMFoMmryPGdwkRk/LoRaWAN%20End%20Node/SN50v3-LB/Mechinical?dl=0&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1]]
1043
1044
1045 = 6. OTA Firmware update =
1046
1047
1048 (% class="wikigeneratedid" %)
1049 **User can change firmware WSC2-L to:**
1050
1051 * Change Frequency band/ region.
1052 * Update with new features.
1053 * Fix bugs.
1054
1055 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/8j3ioji411ni9gu/AADnOw3ErB1REsthKilfaq_Pa?dl=0]]**
1056
1057 **Methods to Update Firmware:**
1058
1059 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1060
1061 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1062
1063 = 7. FAQ =
1064
1065 == 7.1 What else do I need to purchase to build Weather Station? ==
1066
1067
1068 Below is the installation photo and structure:
1069
1070 [[image:image-20240413172530-3.png]]
1071
1072 == 7.2 Where can i find the modbus command for the WSS-09 sensor? ==
1073
1074 See this link for the [[modbus command set>>https://www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/AK7twfUnkB4qKMvtU4XcEss/LoRaWAN%20End%20Node/WSC2-L%20Combine%20Weather%20Station%20Kit?dl=0&e=2&preview=Weather_Sensors_Modbus_Command_List.xlsx&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1]].
1075
1076
1077 = 8. Trouble Shooting =
1078
1079 == 8.1 What should I do when the RS485 sensor cannot collect data? ==
1080
1081
1082 ~1. Recheck whether the sensor's power supply voltage is 12V at maximum.
1083
1084 2. Recheck whether the A and B signal lines of the sensor are connected reversely.
1085
1086 3. Check whether the sensor's transmission baud rate is 4800. If not, please change it to 4800 and try reading again.
1087
1088
1089 == 8.2 Why does the weather station make electric current sounds during operation? ==
1090
1091
1092 ~1. Because a certain amount of sound will be produced during long-term power supply operation. This is a normal phenomenon and does not affect use.
1093
1094
1095 == 8.3 How to solve the problem of temperature difference in weather stations? ==
1096
1097
1098 You can use AT+RSWRITE (downlink: E2 xx xx xx xx xx xx xx ) to modify the temperature compensation function in the weather station.
1099
1100 **For example:**
1101
1102 When the temperature of the weather station is 3°C different from the right value, you can use AT+RSWRITE=01 06 00 50 00 1E 09 D3 (downlink: E2 01 06 00 50 00 1E 09 D3) to modify the temperature compensation value of the weather station to +3°C .
1103
1104
1105 == 8.4 Why does the rain gauge have no data? ==
1106
1107
1108 The default mode of the rain gauge is trigger mode.
1109 When it rains, it will trigger an uplink, and the data does not include rainfall data.
1110 If you want to query rainfall data, please change to counting mode
1111
1112 Feature: Users can set the trigger mode to counting mode or interrupt mode as needed.
1113
1114 (% style="color:#037691" %)**AT Command:**
1115
1116 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1117 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
1118 |(% style="width:157px" %)AT+COUNTMOD=0|(% style="width:188px" %)set to interrupt mode|(% style="width:85px" %)OK
1119 |(% style="width:157px" %)AT+COUNTMOD=1|(% style="width:188px" %)(((
1120 set to counting mode
1121 )))|(% style="width:85px" %)OK
1122
1123 (% style="color:#037691" %)**Downlink Command:**
1124
1125 Format: Command Code (0x10) followed by 1 bytes time value.
1126
1127 If the downlink payload=10 00, Set the trigger mode to interrupt mode, while type code is 10.
1128
1129 * Example 1: Downlink Payload: 10 00  ~/~/  Same as: AT+COUNTMOD=0  set to interrupt mode
1130
1131 = 9. Order Info =
1132
1133
1134 (% style="color:red" %)**Please note that the WSC2-L only includes the wireless transmitter, and the WSS-08, WSS-09, WSS-21, WSS-22, WSS-23, WSS-24, WSS-25, WSS-26, WSS-27 sensor need to be purchased separately. If you need to connect more than 3 sensors, please purchase an additional one to four adapter cable (DR-F6C-4M).**
1135
1136
1137 **Part Number:**
1138
1139 (% style="color:blue" %)**Wireless Transmitter :**(%%)** WSC2-L-XX **
1140
1141 **XX**: the default frequency band
1142
1143 * **AS923**: LoRaWAN AS923 band
1144 * **AU915**: LoRaWAN AU915 band
1145 * **EU433**: LoRaWAN EU433 band
1146 * **EU868**: LoRaWAN EU868 band
1147 * **KR920**: LoRaWAN KR920 band
1148 * **S915**: LoRaWAN US915 band
1149 * **IN865**: LoRaWAN IN865 band
1150 * **CN470**: LoRaWAN CN470 band
1151
1152 (% style="color:green" %)**Sensors Option :**(%%)** WSS-08, WSS-09, WSS-21, WSS-22, WSS-23, WSS-24, WSS-25, WSS-26, WSS-27**
1153
1154
1155 = 10. Support =
1156
1157
1158 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1159
1160 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].