Version 53.2 by Xiaoling on 2023/06/15 08:45

Hide last authors
Xiaoling 41.2 1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
Edwin Chen 2.1 3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
Edwin Chen 5.1 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
Edwin Chen 2.1 18
Xiaoling 43.2 19
Edwin Chen 4.1 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 21
Edwin Chen 4.1 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
Edwin Chen 2.1 23
Edwin Chen 4.1 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
Edwin Chen 2.1 25
Edwin Chen 4.1 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 27
Edwin Chen 4.1 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 29
Edwin Chen 4.1 30
Edwin Chen 2.1 31 == 1.2 ​Features ==
32
Xiaoling 43.44 33
Edwin Chen 2.1 34 * LoRaWAN 1.0.3 Class A
35 * Ultra-low power consumption
Edwin Chen 5.1 36 * Open-Source hardware/software
Edwin Chen 2.1 37 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
38 * Support Bluetooth v5.1 and LoRaWAN remote configure
39 * Support wireless OTA update firmware
40 * Uplink on periodically
41 * Downlink to change configure
42 * 8500mAh Battery for long term use
43
Xiaoling 52.4 44
Xiaoling 53.2 45
Edwin Chen 2.1 46 == 1.3 Specification ==
47
Xiaoling 43.4 48
Edwin Chen 2.1 49 (% style="color:#037691" %)**Common DC Characteristics:**
50
51 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
52 * Operating Temperature: -40 ~~ 85°C
53
Edwin Chen 5.1 54 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 55
Edwin Chen 5.1 56 * Battery output (2.6v ~~ 3.6v depends on battery)
57 * +5v controllable output
58 * 3 x Interrupt or Digital IN/OUT pins
59 * 3 x one-wire interfaces
60 * 1 x UART Interface
61 * 1 x I2C Interface
Edwin Chen 2.1 62
63 (% style="color:#037691" %)**LoRa Spec:**
64
65 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
66 * Max +22 dBm constant RF output vs.
67 * RX sensitivity: down to -139 dBm.
68 * Excellent blocking immunity
69
70 (% style="color:#037691" %)**Battery:**
71
72 * Li/SOCI2 un-chargeable battery
73 * Capacity: 8500mAh
74 * Self-Discharge: <1% / Year @ 25°C
75 * Max continuously current: 130mA
76 * Max boost current: 2A, 1 second
77
78 (% style="color:#037691" %)**Power Consumption**
79
80 * Sleep Mode: 5uA @ 3.3v
81 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82
Xiaoling 52.4 83
Xiaoling 53.2 84
Edwin Chen 2.1 85 == 1.4 Sleep mode and working mode ==
86
Xiaoling 43.4 87
Edwin Chen 2.1 88 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
89
90 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
91
92
93 == 1.5 Button & LEDs ==
94
95
96 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97
98
99 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
100 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
104 )))
105 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
106 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
107 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
108 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
109 )))
110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111
Xiaoling 52.4 112
Xiaoling 53.2 113
Edwin Chen 2.1 114 == 1.6 BLE connection ==
115
116
Edwin Chen 5.1 117 SN50v3-LB supports BLE remote configure.
Edwin Chen 2.1 118
119
120 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
121
122 * Press button to send an uplink
123 * Press button to active device.
124 * Device Power on or reset.
125
126 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
127
128
Edwin Chen 6.1 129 == 1.7 Pin Definitions ==
Edwin Chen 2.1 130
131
Saxer Lin 49.1 132 [[image:image-20230610163213-1.png||height="404" width="699"]]
Edwin Chen 2.1 133
134
135 == 1.8 Mechanical ==
136
137
138 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
139
140 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
141
142 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143
144
Saxer Lin 44.5 145 == 1.9 Hole Option ==
Edwin Chen 5.1 146
Xiaoling 43.4 147
Edwin Chen 5.1 148 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
149
150 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
151
152 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
153
154
Edwin Chen 10.1 155 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
Edwin Chen 2.1 156
157 == 2.1 How it works ==
158
159
Xiaoling 44.3 160 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 161
162
163 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
164
165
166 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
167
Xiaoling 44.3 168 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 2.1 169
170
Edwin Chen 11.2 171 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
Edwin Chen 2.1 172
Edwin Chen 11.2 173 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 174
Edwin Chen 11.2 175 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 176
177
178 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
179
180
181 (% style="color:blue" %)**Register the device**
182
183 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
184
185
186 (% style="color:blue" %)**Add APP EUI and DEV EUI**
187
188 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
189
190
191 (% style="color:blue" %)**Add APP EUI in the application**
192
193
194 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
195
196
197 (% style="color:blue" %)**Add APP KEY**
198
199 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
200
201
Edwin Chen 11.2 202 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
Edwin Chen 2.1 203
204
Edwin Chen 11.2 205 Press the button for 5 seconds to activate the SN50v3-LB.
Edwin Chen 2.1 206
207 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
208
209 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
210
211
212 == 2.3 ​Uplink Payload ==
213
214 === 2.3.1 Device Status, FPORT~=5 ===
215
216
Xiaoling 44.3 217 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 218
219 The Payload format is as below.
220
221
222 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
223 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
224 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
Xiaoling 45.4 225 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
Edwin Chen 2.1 226
227 Example parse in TTNv3
228
229
Xiaoling 44.3 230 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
Edwin Chen 2.1 231
232 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233
234 (% style="color:#037691" %)**Frequency Band**:
235
Xiaoling 53.2 236 0x01: EU868
Edwin Chen 2.1 237
Xiaoling 53.2 238 0x02: US915
Edwin Chen 2.1 239
Xiaoling 53.2 240 0x03: IN865
Edwin Chen 2.1 241
Xiaoling 53.2 242 0x04: AU915
Edwin Chen 2.1 243
Xiaoling 53.2 244 0x05: KZ865
Edwin Chen 2.1 245
Xiaoling 53.2 246 0x06: RU864
Edwin Chen 2.1 247
Xiaoling 53.2 248 0x07: AS923
Edwin Chen 2.1 249
Xiaoling 53.2 250 0x08: AS923-1
Edwin Chen 2.1 251
Xiaoling 53.2 252 0x09: AS923-2
Edwin Chen 2.1 253
Xiaoling 53.2 254 0x0a: AS923-3
Edwin Chen 2.1 255
Xiaoling 53.2 256 0x0b: CN470
Edwin Chen 2.1 257
Xiaoling 53.2 258 0x0c: EU433
Edwin Chen 2.1 259
Xiaoling 53.2 260 0x0d: KR920
Edwin Chen 2.1 261
Xiaoling 53.2 262 0x0e: MA869
Edwin Chen 2.1 263
264
265 (% style="color:#037691" %)**Sub-Band**:
266
267 AU915 and US915:value 0x00 ~~ 0x08
268
269 CN470: value 0x0B ~~ 0x0C
270
271 Other Bands: Always 0x00
272
273
274 (% style="color:#037691" %)**Battery Info**:
275
276 Check the battery voltage.
277
278 Ex1: 0x0B45 = 2885mV
279
280 Ex2: 0x0B49 = 2889mV
281
282
Edwin Chen 12.1 283 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 284
285
Xiaoling 44.2 286 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
Edwin Chen 12.1 287
288 For example:
289
Xiaoling 44.2 290 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
Edwin Chen 12.1 291
292
Edwin Chen 13.1 293 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 294
Xiaoling 44.3 295 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
Edwin Chen 12.1 296
Xiaoling 44.2 297 2. All modes share the same Payload Explanation from HERE.
Xiaoling 43.53 298
Xiaoling 44.2 299 3. By default, the device will send an uplink message every 20 minutes.
300
301
Edwin Chen 13.1 302 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 303
Xiaoling 43.5 304
Edwin Chen 12.1 305 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
306
Xiaoling 43.5 307 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 308 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.4 309 |Value|Bat|(% style="width:191px" %)(((
Xiaoling 43.12 310 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 311 )))|(% style="width:78px" %)(((
Xiaoling 43.12 312 ADC(PA4)
Saxer Lin 26.2 313 )))|(% style="width:216px" %)(((
Xiaoling 43.13 314 Digital in(PB15)&Digital Interrupt(PA8)
Saxer Lin 40.1 315 )))|(% style="width:308px" %)(((
Xiaoling 43.12 316 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 317 )))|(% style="width:154px" %)(((
Xiaoling 43.12 318 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 319 )))
320
Edwin Chen 12.1 321 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
322
323
Edwin Chen 13.1 324 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
325
Xiaoling 43.45 326
Edwin Chen 12.1 327 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328
Xiaoling 43.14 329 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 330 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
Xiaoling 45.4 331 |Value|BAT|(% style="width:196px" %)(((
Xiaoling 43.16 332 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 333 )))|(% style="width:87px" %)(((
Xiaoling 43.16 334 ADC(PA4)
Saxer Lin 40.1 335 )))|(% style="width:189px" %)(((
Xiaoling 43.16 336 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 337 )))|(% style="width:208px" %)(((
Xiaoling 53.2 338 Distance measure by: 1) LIDAR-Lite V3HP
339 Or 2) Ultrasonic Sensor
Saxer Lin 40.1 340 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 341
342 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
343
Xiaoling 43.45 344
Xiaoling 43.17 345 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
Edwin Chen 12.1 346
Saxer Lin 26.2 347 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 348
Xiaoling 43.45 349
Xiaoling 43.17 350 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
Edwin Chen 12.1 351
Ellie Zhang 44.1 352 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
Saxer Lin 36.1 353
Saxer Lin 26.2 354 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 355
Xiaoling 43.45 356
Edwin Chen 12.1 357 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
358
Xiaoling 43.19 359 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 360 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.5 361 |Value|BAT|(% style="width:183px" %)(((
Xiaoling 43.19 362 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 363 )))|(% style="width:173px" %)(((
Xiaoling 43.19 364 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 365 )))|(% style="width:84px" %)(((
Xiaoling 43.19 366 ADC(PA4)
Saxer Lin 40.1 367 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 368 Distance measure by:1)TF-Mini plus LiDAR
Xiaoling 43.22 369 Or 
370 2) TF-Luna LiDAR
Saxer Lin 40.1 371 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 372
373 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
374
Xiaoling 43.45 375
Edwin Chen 12.1 376 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
377
Ellie Zhang 44.1 378 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 379
Saxer Lin 26.2 380 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 381
Xiaoling 43.45 382
Edwin Chen 12.1 383 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
384
Ellie Zhang 44.1 385 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 386
Saxer Lin 52.1 387 [[image:image-20230610170047-1.png||height="452" width="799"]]
Edwin Chen 12.1 388
389
Edwin Chen 13.1 390 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
391
Xiaoling 43.45 392
Edwin Chen 12.1 393 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
394
Xiaoling 43.21 395 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.25 396 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
397 **Size(bytes)**
Xiaoling 43.54 398 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
Xiaoling 45.4 399 |Value|(% style="width:68px" %)(((
Xiaoling 43.23 400 ADC1(PA4)
Saxer Lin 26.2 401 )))|(% style="width:75px" %)(((
Xiaoling 43.23 402 ADC2(PA5)
Saxer Lin 36.1 403 )))|(((
Xiaoling 43.23 404 ADC3(PA8)
Saxer Lin 36.1 405 )))|(((
406 Digital Interrupt(PB15)
407 )))|(% style="width:304px" %)(((
Xiaoling 43.23 408 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 36.1 409 )))|(% style="width:163px" %)(((
Xiaoling 43.23 410 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 411 )))|(% style="width:53px" %)Bat
412
413 [[image:image-20230513110214-6.png]]
414
415
Edwin Chen 13.1 416 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
417
Edwin Chen 12.1 418
Saxer Lin 26.2 419 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 420
Xiaoling 43.26 421 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 422 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
Xiaoling 45.4 423 |Value|BAT|(% style="width:186px" %)(((
Xiaoling 43.27 424 Temperature1(DS18B20)(PC13)
Saxer Lin 26.2 425 )))|(% style="width:82px" %)(((
Xiaoling 43.27 426 ADC(PA4)
Saxer Lin 26.2 427 )))|(% style="width:210px" %)(((
Xiaoling 43.27 428 Digital in(PB15) & Digital Interrupt(PA8) 
Saxer Lin 26.2 429 )))|(% style="width:191px" %)Temperature2(DS18B20)
Xiaoling 43.27 430 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
Edwin Chen 12.1 431
432 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
433
Xiaoling 44.4 434
Saxer Lin 39.2 435 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 436
Saxer Lin 39.1 437
Edwin Chen 13.1 438 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
439
Xiaoling 43.45 440
Saxer Lin 26.2 441 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 442
443 Each HX711 need to be calibrated before used. User need to do below two steps:
444
Xiaoling 44.2 445 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
446 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
Edwin Chen 12.1 447 1. (((
Saxer Lin 26.2 448 Weight has 4 bytes, the unit is g.
Xiaoling 43.53 449
450
451
Edwin Chen 12.1 452 )))
453
454 For example:
455
Xiaoling 44.2 456 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
Edwin Chen 12.1 457
458 Response:  Weight is 401 g
459
460 Check the response of this command and adjust the value to match the real value for thing.
461
Xiaoling 43.29 462 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
463 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 464 **Size(bytes)**
Xiaoling 43.30 465 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 466 |Value|BAT|(% style="width:193px" %)(((
Xiaoling 43.55 467 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 468 )))|(% style="width:85px" %)(((
Xiaoling 43.31 469 ADC(PA4)
Saxer Lin 40.1 470 )))|(% style="width:186px" %)(((
Xiaoling 43.55 471 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 472 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 473
Edwin Chen 12.1 474 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
475
476
Xiaoling 43.45 477
Edwin Chen 13.1 478 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
479
Xiaoling 43.45 480
Edwin Chen 12.1 481 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
482
483 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
484
Saxer Lin 26.2 485 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 486
Xiaoling 43.53 487
Xiaoling 43.45 488 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
Edwin Chen 12.1 489
Xiaoling 43.38 490 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.57 491 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 492 |Value|BAT|(% style="width:256px" %)(((
Xiaoling 43.31 493 Temperature(DS18B20)(PC13)
Saxer Lin 36.1 494 )))|(% style="width:108px" %)(((
Xiaoling 43.31 495 ADC(PA4)
Saxer Lin 36.1 496 )))|(% style="width:126px" %)(((
Xiaoling 43.31 497 Digital in(PB15)
Saxer Lin 36.1 498 )))|(% style="width:145px" %)(((
Xiaoling 43.31 499 Count(PA8)
Saxer Lin 36.1 500 )))
501
Edwin Chen 12.1 502 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
503
504
Edwin Chen 13.1 505 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
506
Xiaoling 43.45 507
Xiaoling 43.38 508 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.33 509 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 510 **Size(bytes)**
Xiaoling 43.34 511 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 512 |Value|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 513 Temperature(DS18B20)
514 (PC13)
Saxer Lin 40.1 515 )))|(% style="width:83px" %)(((
Xiaoling 43.35 516 ADC(PA5)
Saxer Lin 40.1 517 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 518 Digital Interrupt1(PA8)
Saxer Lin 40.1 519 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 520
521 [[image:image-20230513111203-7.png||height="324" width="975"]]
522
Xiaoling 43.45 523
Edwin Chen 13.1 524 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
525
Xiaoling 43.45 526
Xiaoling 43.38 527 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.35 528 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 529 **Size(bytes)**
Xiaoling 43.55 530 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 531 |Value|BAT|(% style="width:207px" %)(((
Saxer Lin 36.1 532 Temperature(DS18B20)
533 (PC13)
534 )))|(% style="width:94px" %)(((
Xiaoling 43.36 535 ADC1(PA4)
Saxer Lin 36.1 536 )))|(% style="width:198px" %)(((
537 Digital Interrupt(PB15)
538 )))|(% style="width:84px" %)(((
Xiaoling 43.36 539 ADC2(PA5)
Saxer Lin 40.1 540 )))|(% style="width:82px" %)(((
Xiaoling 43.36 541 ADC3(PA8)
Edwin Chen 12.1 542 )))
543
Saxer Lin 36.1 544 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 545
546
Edwin Chen 13.1 547 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
548
Xiaoling 43.45 549
Xiaoling 43.38 550 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
551 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 552 **Size(bytes)**
Xiaoling 43.56 553 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
Xiaoling 45.4 554 |Value|BAT|(((
Xiaoling 43.58 555 Temperature
556 (DS18B20)(PC13)
Edwin Chen 12.1 557 )))|(((
Xiaoling 43.58 558 Temperature2
559 (DS18B20)(PB9)
Edwin Chen 12.1 560 )))|(((
Saxer Lin 36.1 561 Digital Interrupt
562 (PB15)
563 )))|(% style="width:193px" %)(((
Xiaoling 43.58 564 Temperature3
565 (DS18B20)(PB8)
Saxer Lin 36.1 566 )))|(% style="width:78px" %)(((
Xiaoling 43.39 567 Count1(PA8)
Saxer Lin 36.1 568 )))|(% style="width:78px" %)(((
Xiaoling 43.39 569 Count2(PA4)
Edwin Chen 12.1 570 )))
571
Saxer Lin 36.1 572 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 573
Xiaoling 43.40 574 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
Edwin Chen 12.1 575
Xiaoling 43.44 576 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
Edwin Chen 12.1 577
Xiaoling 43.44 578 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
Edwin Chen 12.1 579
Xiaoling 43.44 580 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
Edwin Chen 12.1 581
582
Xiaoling 43.41 583 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
584
Saxer Lin 36.1 585 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 586
Saxer Lin 36.1 587 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 588
589
Edwin Chen 14.1 590 === 2.3.3  ​Decode payload ===
591
Xiaoling 43.45 592
Edwin Chen 12.1 593 While using TTN V3 network, you can add the payload format to decode the payload.
594
595 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
596
597 The payload decoder function for TTN V3 are here:
598
Xiaoling 44.2 599 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 600
601
Edwin Chen 14.1 602 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 603
Xiaoling 43.45 604
Xiaoling 44.2 605 Check the battery voltage for SN50v3-LB.
Edwin Chen 2.1 606
607 Ex1: 0x0B45 = 2885mV
608
609 Ex2: 0x0B49 = 2889mV
610
611
Edwin Chen 14.1 612 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 613
Xiaoling 43.45 614
Saxer Lin 42.1 615 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 616
Xiaoling 43.45 617 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
Edwin Chen 14.1 618
Xiaoling 43.41 619 (% style="color:blue" %)**Connection:**
Edwin Chen 14.1 620
Saxer Lin 26.2 621 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 622
Xiaoling 43.46 623
Xiaoling 43.41 624 (% style="color:blue" %)**Example**:
Edwin Chen 2.1 625
626 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
627
628 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
629
630 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
631
632
Edwin Chen 14.1 633 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 634
Xiaoling 43.46 635
Saxer Lin 26.2 636 The digital input for pin PB15,
Edwin Chen 2.1 637
Saxer Lin 26.2 638 * When PB15 is high, the bit 1 of payload byte 6 is 1.
639 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 640
Saxer Lin 26.2 641 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
642 (((
Saxer Lin 36.1 643 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
644
Xiaoling 43.46 645 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
646
647
Saxer Lin 26.2 648 )))
649
Edwin Chen 14.1 650 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 651
Xiaoling 43.46 652
Saxer Lin 53.1 653 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 654
Saxer Lin 53.1 655 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 656
Saxer Lin 26.2 657 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 658
Xiaoling 44.2 659
Xiaoling 43.46 660 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
Edwin Chen 14.1 661
Saxer Lin 43.1 662
Edwin Chen 14.1 663 ==== 2.3.3.5 Digital Interrupt ====
664
Xiaoling 43.46 665
Xiaoling 44.2 666 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
Edwin Chen 14.1 667
Xiaoling 43.44 668 (% style="color:blue" %)** Interrupt connection method:**
Edwin Chen 14.1 669
Saxer Lin 36.1 670 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 671
Xiaoling 43.46 672
Xiaoling 43.8 673 (% style="color:blue" %)**Example to use with door sensor :**
Edwin Chen 14.1 674
675 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
676
677 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
678
Xiaoling 44.2 679 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 680
681
Xiaoling 43.46 682 (% style="color:blue" %)**Below is the installation example:**
683
Xiaoling 44.2 684 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
Edwin Chen 14.1 685
686 * (((
Xiaoling 44.2 687 One pin to SN50v3-LB's PA8 pin
Edwin Chen 14.1 688 )))
689 * (((
Xiaoling 44.2 690 The other pin to SN50v3-LB's VDD pin
Edwin Chen 14.1 691 )))
692
Saxer Lin 36.1 693 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 694
Xiaoling 43.46 695 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
Edwin Chen 14.1 696
Saxer Lin 36.1 697 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 698
699 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
700
701 The above photos shows the two parts of the magnetic switch fitted to a door.
702
703 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
704
705 The command is:
706
Xiaoling 44.2 707 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 708
709 Below shows some screen captures in TTN V3:
710
711 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
712
Xiaoling 43.47 713
Xiaoling 44.4 714 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
Edwin Chen 14.1 715
716 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
717
718
Saxer Lin 26.2 719 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 720
Xiaoling 43.47 721
Saxer Lin 26.2 722 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 723
Saxer Lin 40.1 724 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 725
Xiaoling 44.2 726 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
Edwin Chen 14.1 727
Xiaoling 44.2 728
Edwin Chen 14.1 729 Below is the connection to SHT20/ SHT31. The connection is as below:
730
Saxer Lin 52.1 731 [[image:image-20230610170152-2.png||height="501" width="846"]]
Saxer Lin 36.1 732
Xiaoling 44.4 733
Edwin Chen 14.1 734 The device will be able to get the I2C sensor data now and upload to IoT Server.
735
736 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
737
738 Convert the read byte to decimal and divide it by ten.
739
Edwin Chen 2.1 740 **Example:**
741
Edwin Chen 14.1 742 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 743
Edwin Chen 14.1 744 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 745
Edwin Chen 14.1 746 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 747
748
Edwin Chen 14.1 749 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 750
Xiaoling 43.48 751
Xiaoling 43.42 752 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
Edwin Chen 14.1 753
754
755 ==== 2.3.3.8 Ultrasonic Sensor ====
756
Xiaoling 43.48 757
Saxer Lin 26.2 758 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 759
Xiaoling 44.2 760 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 761
Xiaoling 43.44 762 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
Saxer Lin 36.1 763
Edwin Chen 14.1 764 The picture below shows the connection:
765
Saxer Lin 36.1 766 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 767
Xiaoling 43.50 768
Xiaoling 44.2 769 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 770
771 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
772
773 **Example:**
774
775 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
776
777
778 ==== 2.3.3.9  Battery Output - BAT pin ====
779
Xiaoling 43.50 780
Xiaoling 44.4 781 The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
Edwin Chen 14.1 782
783
784 ==== 2.3.3.10  +5V Output ====
785
Xiaoling 43.50 786
Xiaoling 44.2 787 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
Edwin Chen 14.1 788
789 The 5V output time can be controlled by AT Command.
790
Xiaoling 43.9 791 (% style="color:blue" %)**AT+5VT=1000**
Edwin Chen 14.1 792
793 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
794
Xiaoling 44.4 795 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
Edwin Chen 14.1 796
797
798 ==== 2.3.3.11  BH1750 Illumination Sensor ====
799
Xiaoling 43.50 800
Edwin Chen 14.1 801 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
802
Saxer Lin 40.1 803 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 804
Xiaoling 43.51 805
Saxer Lin 40.1 806 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 807
808
809 ==== 2.3.3.12  Working MOD ====
810
Xiaoling 43.51 811
Edwin Chen 14.1 812 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
813
814 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
815
816 Case 7^^th^^ Byte >> 2 & 0x1f:
817
818 * 0: MOD1
819 * 1: MOD2
820 * 2: MOD3
821 * 3: MOD4
822 * 4: MOD5
823 * 5: MOD6
Saxer Lin 36.1 824 * 6: MOD7
825 * 7: MOD8
826 * 8: MOD9
Edwin Chen 14.1 827
Edwin Chen 2.1 828 == 2.4 Payload Decoder file ==
829
830
831 In TTN, use can add a custom payload so it shows friendly reading
832
833 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
834
Saxer Lin 40.1 835 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 836
837
Edwin Chen 15.1 838 == 2.5 Frequency Plans ==
Edwin Chen 2.1 839
840
Edwin Chen 15.1 841 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 2.1 842
843 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
844
845
Edwin Chen 16.1 846 = 3. Configure SN50v3-LB =
Edwin Chen 2.1 847
848 == 3.1 Configure Methods ==
849
850
Edwin Chen 16.1 851 SN50v3-LB supports below configure method:
Edwin Chen 2.1 852
853 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
854 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
855 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
856
857 == 3.2 General Commands ==
858
859
860 These commands are to configure:
861
862 * General system settings like: uplink interval.
863 * LoRaWAN protocol & radio related command.
864
865 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
866
867 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
868
869
Edwin Chen 16.1 870 == 3.3 Commands special design for SN50v3-LB ==
Edwin Chen 2.1 871
872
Xiaoling 44.2 873 These commands only valid for SN50v3-LB, as below:
Edwin Chen 2.1 874
875
876 === 3.3.1 Set Transmit Interval Time ===
877
Xiaoling 43.51 878
Edwin Chen 2.1 879 Feature: Change LoRaWAN End Node Transmit Interval.
880
881 (% style="color:blue" %)**AT Command: AT+TDC**
882
883 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.2 884 |=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
Edwin Chen 2.1 885 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
886 30000
887 OK
888 the interval is 30000ms = 30s
889 )))
890 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
891 OK
892 Set transmit interval to 60000ms = 60 seconds
893 )))
894
895 (% style="color:blue" %)**Downlink Command: 0x01**
896
897 Format: Command Code (0x01) followed by 3 bytes time value.
898
899 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
900
901 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
902 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
903
904 === 3.3.2 Get Device Status ===
905
Xiaoling 43.52 906
Saxer Lin 40.1 907 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 908
Xiaoling 44.4 909 (% style="color:blue" %)**Downlink Payload: 0x26 01**
Edwin Chen 2.1 910
Xiaoling 44.4 911 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
Edwin Chen 2.1 912
913
Saxer Lin 36.1 914 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 915
Xiaoling 43.52 916
Edwin Chen 2.1 917 Feature, Set Interrupt mode for GPIO_EXIT.
918
Saxer Lin 36.1 919 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 920
921 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 922 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 923 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 924 0
925 OK
926 the mode is 0 =Disable Interrupt
927 )))
Saxer Lin 36.1 928 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 929 Set Transmit Interval
930 0. (Disable Interrupt),
931 ~1. (Trigger by rising and falling edge)
932 2. (Trigger by falling edge)
933 3. (Trigger by rising edge)
934 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 935 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
936 Set Transmit Interval
937 trigger by rising edge.
938 )))|(% style="width:157px" %)OK
939 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
940
Edwin Chen 2.1 941 (% style="color:blue" %)**Downlink Command: 0x06**
942
943 Format: Command Code (0x06) followed by 3 bytes.
944
945 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
946
Saxer Lin 36.1 947 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
948 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
949 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
950 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 951
Saxer Lin 36.1 952 === 3.3.4 Set Power Output Duration ===
953
Xiaoling 43.52 954
Saxer Lin 36.1 955 Control the output duration 5V . Before each sampling, device will
956
957 ~1. first enable the power output to external sensor,
958
959 2. keep it on as per duration, read sensor value and construct uplink payload
960
961 3. final, close the power output.
962
963 (% style="color:blue" %)**AT Command: AT+5VT**
964
965 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 966 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 967 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
968 500(default)
969 OK
970 )))
971 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
972 Close after a delay of 1000 milliseconds.
973 )))|(% style="width:157px" %)OK
974
975 (% style="color:blue" %)**Downlink Command: 0x07**
976
977 Format: Command Code (0x07) followed by 2 bytes.
978
979 The first and second bytes are the time to turn on.
980
Saxer Lin 40.1 981 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
982 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 983
984 === 3.3.5 Set Weighing parameters ===
985
Xiaoling 43.52 986
Saxer Lin 37.1 987 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 988
989 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
990
991 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 992 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 37.1 993 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
994 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
995 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 996
997 (% style="color:blue" %)**Downlink Command: 0x08**
998
Saxer Lin 37.1 999 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 1000
Saxer Lin 37.1 1001 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 1002
Saxer Lin 37.1 1003 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 1004
Saxer Lin 37.1 1005 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1006 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1007 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1008
Saxer Lin 36.1 1009 === 3.3.6 Set Digital pulse count value ===
1010
Xiaoling 43.52 1011
Saxer Lin 36.1 1012 Feature: Set the pulse count value.
1013
Saxer Lin 37.1 1014 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1015
Saxer Lin 36.1 1016 (% style="color:blue" %)**AT Command: AT+SETCNT**
1017
1018 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1019 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1020 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1021 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1022
1023 (% style="color:blue" %)**Downlink Command: 0x09**
1024
1025 Format: Command Code (0x09) followed by 5 bytes.
1026
1027 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1028
1029 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1030 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1031
1032 === 3.3.7 Set Workmode ===
1033
Xiaoling 43.52 1034
Saxer Lin 37.1 1035 Feature: Switch working mode.
Saxer Lin 36.1 1036
1037 (% style="color:blue" %)**AT Command: AT+MOD**
1038
1039 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1040 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1041 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1042 OK
1043 )))
1044 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1045 OK
1046 Attention:Take effect after ATZ
1047 )))
1048
1049 (% style="color:blue" %)**Downlink Command: 0x0A**
1050
1051 Format: Command Code (0x0A) followed by 1 bytes.
1052
1053 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1054 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1055
Edwin Chen 2.1 1056 = 4. Battery & Power Consumption =
1057
1058
Edwin Chen 11.1 1059 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1060
1061 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1062
1063
1064 = 5. OTA Firmware update =
1065
1066
1067 (% class="wikigeneratedid" %)
Xiaoling 44.4 1068 **User can change firmware SN50v3-LB to:**
Edwin Chen 2.1 1069
1070 * Change Frequency band/ region.
1071 * Update with new features.
1072 * Fix bugs.
1073
Xiaoling 52.2 1074 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
Edwin Chen 2.1 1075
Xiaoling 44.4 1076 **Methods to Update Firmware:**
Edwin Chen 2.1 1077
1078 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1079 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1080
1081 = 6. FAQ =
1082
Edwin Chen 17.1 1083 == 6.1 Where can i find source code of SN50v3-LB? ==
Edwin Chen 2.1 1084
Xiaoling 43.52 1085
Edwin Chen 17.1 1086 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1087 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1088
1089 = 7. Order Info =
1090
1091
Edwin Chen 10.1 1092 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
Edwin Chen 2.1 1093
1094 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1095
Edwin Chen 2.1 1096 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1097 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1098 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1099 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1100 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1101 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1102 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1103 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1104
Edwin Chen 10.1 1105 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1106
Edwin Chen 10.1 1107 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1108 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1109 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1110 * (% style="color:red" %)**NH**(%%): No Hole
1111
Edwin Chen 2.1 1112 = 8. ​Packing Info =
1113
Xiaoling 43.52 1114
Edwin Chen 2.1 1115 (% style="color:#037691" %)**Package Includes**:
1116
Edwin Chen 10.1 1117 * SN50v3-LB LoRaWAN Generic Node
Edwin Chen 2.1 1118
1119 (% style="color:#037691" %)**Dimension and weight**:
1120
1121 * Device Size: cm
1122 * Device Weight: g
1123 * Package Size / pcs : cm
1124 * Weight / pcs : g
1125
1126 = 9. Support =
1127
1128
1129 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 43.10 1130
Xiaoling 41.4 1131 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]