Version 53.2 by Xiaoling on 2023/06/15 08:45

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30
31 == 1.2 ​Features ==
32
33
34 * LoRaWAN 1.0.3 Class A
35 * Ultra-low power consumption
36 * Open-Source hardware/software
37 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
38 * Support Bluetooth v5.1 and LoRaWAN remote configure
39 * Support wireless OTA update firmware
40 * Uplink on periodically
41 * Downlink to change configure
42 * 8500mAh Battery for long term use
43
44
45
46 == 1.3 Specification ==
47
48
49 (% style="color:#037691" %)**Common DC Characteristics:**
50
51 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
52 * Operating Temperature: -40 ~~ 85°C
53
54 (% style="color:#037691" %)**I/O Interface:**
55
56 * Battery output (2.6v ~~ 3.6v depends on battery)
57 * +5v controllable output
58 * 3 x Interrupt or Digital IN/OUT pins
59 * 3 x one-wire interfaces
60 * 1 x UART Interface
61 * 1 x I2C Interface
62
63 (% style="color:#037691" %)**LoRa Spec:**
64
65 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
66 * Max +22 dBm constant RF output vs.
67 * RX sensitivity: down to -139 dBm.
68 * Excellent blocking immunity
69
70 (% style="color:#037691" %)**Battery:**
71
72 * Li/SOCI2 un-chargeable battery
73 * Capacity: 8500mAh
74 * Self-Discharge: <1% / Year @ 25°C
75 * Max continuously current: 130mA
76 * Max boost current: 2A, 1 second
77
78 (% style="color:#037691" %)**Power Consumption**
79
80 * Sleep Mode: 5uA @ 3.3v
81 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82
83
84
85 == 1.4 Sleep mode and working mode ==
86
87
88 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
89
90 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
91
92
93 == 1.5 Button & LEDs ==
94
95
96 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97
98
99 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
100 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
104 )))
105 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
106 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
107 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
108 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
109 )))
110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111
112
113
114 == 1.6 BLE connection ==
115
116
117 SN50v3-LB supports BLE remote configure.
118
119
120 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
121
122 * Press button to send an uplink
123 * Press button to active device.
124 * Device Power on or reset.
125
126 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
127
128
129 == 1.7 Pin Definitions ==
130
131
132 [[image:image-20230610163213-1.png||height="404" width="699"]]
133
134
135 == 1.8 Mechanical ==
136
137
138 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
139
140 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
141
142 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143
144
145 == 1.9 Hole Option ==
146
147
148 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
149
150 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
151
152 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
153
154
155 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
156
157 == 2.1 How it works ==
158
159
160 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
161
162
163 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
164
165
166 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
167
168 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
169
170
171 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
172
173 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
174
175 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
176
177
178 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
179
180
181 (% style="color:blue" %)**Register the device**
182
183 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
184
185
186 (% style="color:blue" %)**Add APP EUI and DEV EUI**
187
188 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
189
190
191 (% style="color:blue" %)**Add APP EUI in the application**
192
193
194 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
195
196
197 (% style="color:blue" %)**Add APP KEY**
198
199 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
200
201
202 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
203
204
205 Press the button for 5 seconds to activate the SN50v3-LB.
206
207 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
208
209 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
210
211
212 == 2.3 ​Uplink Payload ==
213
214 === 2.3.1 Device Status, FPORT~=5 ===
215
216
217 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
218
219 The Payload format is as below.
220
221
222 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
223 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
224 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
225 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
226
227 Example parse in TTNv3
228
229
230 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
231
232 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233
234 (% style="color:#037691" %)**Frequency Band**:
235
236 0x01: EU868
237
238 0x02: US915
239
240 0x03: IN865
241
242 0x04: AU915
243
244 0x05: KZ865
245
246 0x06: RU864
247
248 0x07: AS923
249
250 0x08: AS923-1
251
252 0x09: AS923-2
253
254 0x0a: AS923-3
255
256 0x0b: CN470
257
258 0x0c: EU433
259
260 0x0d: KR920
261
262 0x0e: MA869
263
264
265 (% style="color:#037691" %)**Sub-Band**:
266
267 AU915 and US915:value 0x00 ~~ 0x08
268
269 CN470: value 0x0B ~~ 0x0C
270
271 Other Bands: Always 0x00
272
273
274 (% style="color:#037691" %)**Battery Info**:
275
276 Check the battery voltage.
277
278 Ex1: 0x0B45 = 2885mV
279
280 Ex2: 0x0B49 = 2889mV
281
282
283 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
284
285
286 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
287
288 For example:
289
290 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
291
292
293 (% style="color:red" %) **Important Notice:**
294
295 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
296
297 2. All modes share the same Payload Explanation from HERE.
298
299 3. By default, the device will send an uplink message every 20 minutes.
300
301
302 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
303
304
305 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
306
307 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
308 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
309 |Value|Bat|(% style="width:191px" %)(((
310 Temperature(DS18B20)(PC13)
311 )))|(% style="width:78px" %)(((
312 ADC(PA4)
313 )))|(% style="width:216px" %)(((
314 Digital in(PB15)&Digital Interrupt(PA8)
315 )))|(% style="width:308px" %)(((
316 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
317 )))|(% style="width:154px" %)(((
318 Humidity(SHT20 or SHT31)
319 )))
320
321 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
322
323
324 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
325
326
327 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328
329 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
330 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 |Value|BAT|(% style="width:196px" %)(((
332 Temperature(DS18B20)(PC13)
333 )))|(% style="width:87px" %)(((
334 ADC(PA4)
335 )))|(% style="width:189px" %)(((
336 Digital in(PB15) & Digital Interrupt(PA8)
337 )))|(% style="width:208px" %)(((
338 Distance measure by: 1) LIDAR-Lite V3HP
339 Or 2) Ultrasonic Sensor
340 )))|(% style="width:117px" %)Reserved
341
342 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
343
344
345 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
346
347 [[image:image-20230512173758-5.png||height="563" width="712"]]
348
349
350 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
351
352 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
353
354 [[image:image-20230512173903-6.png||height="596" width="715"]]
355
356
357 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
358
359 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
360 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
361 |Value|BAT|(% style="width:183px" %)(((
362 Temperature(DS18B20)(PC13)
363 )))|(% style="width:173px" %)(((
364 Digital in(PB15) & Digital Interrupt(PA8)
365 )))|(% style="width:84px" %)(((
366 ADC(PA4)
367 )))|(% style="width:323px" %)(((
368 Distance measure by:1)TF-Mini plus LiDAR
369 Or 
370 2) TF-Luna LiDAR
371 )))|(% style="width:188px" %)Distance signal  strength
372
373 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
374
375
376 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
377
378 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
379
380 [[image:image-20230512180609-7.png||height="555" width="802"]]
381
382
383 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
384
385 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
386
387 [[image:image-20230610170047-1.png||height="452" width="799"]]
388
389
390 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
391
392
393 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
394
395 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
396 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
397 **Size(bytes)**
398 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
399 |Value|(% style="width:68px" %)(((
400 ADC1(PA4)
401 )))|(% style="width:75px" %)(((
402 ADC2(PA5)
403 )))|(((
404 ADC3(PA8)
405 )))|(((
406 Digital Interrupt(PB15)
407 )))|(% style="width:304px" %)(((
408 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
409 )))|(% style="width:163px" %)(((
410 Humidity(SHT20 or SHT31)
411 )))|(% style="width:53px" %)Bat
412
413 [[image:image-20230513110214-6.png]]
414
415
416 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
417
418
419 This mode has total 11 bytes. As shown below:
420
421 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
422 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
423 |Value|BAT|(% style="width:186px" %)(((
424 Temperature1(DS18B20)(PC13)
425 )))|(% style="width:82px" %)(((
426 ADC(PA4)
427 )))|(% style="width:210px" %)(((
428 Digital in(PB15) & Digital Interrupt(PA8) 
429 )))|(% style="width:191px" %)Temperature2(DS18B20)
430 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
431
432 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
433
434
435 [[image:image-20230513134006-1.png||height="559" width="736"]]
436
437
438 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
439
440
441 [[image:image-20230512164658-2.png||height="532" width="729"]]
442
443 Each HX711 need to be calibrated before used. User need to do below two steps:
444
445 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
446 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
447 1. (((
448 Weight has 4 bytes, the unit is g.
449
450
451
452 )))
453
454 For example:
455
456 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
457
458 Response:  Weight is 401 g
459
460 Check the response of this command and adjust the value to match the real value for thing.
461
462 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
463 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
464 **Size(bytes)**
465 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
466 |Value|BAT|(% style="width:193px" %)(((
467 Temperature(DS18B20)(PC13)
468 )))|(% style="width:85px" %)(((
469 ADC(PA4)
470 )))|(% style="width:186px" %)(((
471 Digital in(PB15) & Digital Interrupt(PA8)
472 )))|(% style="width:100px" %)Weight
473
474 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
475
476
477
478 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
479
480
481 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
482
483 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
484
485 [[image:image-20230512181814-9.png||height="543" width="697"]]
486
487
488 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
489
490 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
491 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
492 |Value|BAT|(% style="width:256px" %)(((
493 Temperature(DS18B20)(PC13)
494 )))|(% style="width:108px" %)(((
495 ADC(PA4)
496 )))|(% style="width:126px" %)(((
497 Digital in(PB15)
498 )))|(% style="width:145px" %)(((
499 Count(PA8)
500 )))
501
502 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
503
504
505 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
506
507
508 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
509 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
510 **Size(bytes)**
511 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
512 |Value|BAT|(% style="width:188px" %)(((
513 Temperature(DS18B20)
514 (PC13)
515 )))|(% style="width:83px" %)(((
516 ADC(PA5)
517 )))|(% style="width:184px" %)(((
518 Digital Interrupt1(PA8)
519 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
520
521 [[image:image-20230513111203-7.png||height="324" width="975"]]
522
523
524 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
525
526
527 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
528 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
529 **Size(bytes)**
530 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
531 |Value|BAT|(% style="width:207px" %)(((
532 Temperature(DS18B20)
533 (PC13)
534 )))|(% style="width:94px" %)(((
535 ADC1(PA4)
536 )))|(% style="width:198px" %)(((
537 Digital Interrupt(PB15)
538 )))|(% style="width:84px" %)(((
539 ADC2(PA5)
540 )))|(% style="width:82px" %)(((
541 ADC3(PA8)
542 )))
543
544 [[image:image-20230513111231-8.png||height="335" width="900"]]
545
546
547 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
548
549
550 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
551 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
552 **Size(bytes)**
553 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
554 |Value|BAT|(((
555 Temperature
556 (DS18B20)(PC13)
557 )))|(((
558 Temperature2
559 (DS18B20)(PB9)
560 )))|(((
561 Digital Interrupt
562 (PB15)
563 )))|(% style="width:193px" %)(((
564 Temperature3
565 (DS18B20)(PB8)
566 )))|(% style="width:78px" %)(((
567 Count1(PA8)
568 )))|(% style="width:78px" %)(((
569 Count2(PA4)
570 )))
571
572 [[image:image-20230513111255-9.png||height="341" width="899"]]
573
574 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
575
576 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
577
578 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
579
580 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
581
582
583 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
584
585 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
586
587 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
588
589
590 === 2.3.3  ​Decode payload ===
591
592
593 While using TTN V3 network, you can add the payload format to decode the payload.
594
595 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
596
597 The payload decoder function for TTN V3 are here:
598
599 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
600
601
602 ==== 2.3.3.1 Battery Info ====
603
604
605 Check the battery voltage for SN50v3-LB.
606
607 Ex1: 0x0B45 = 2885mV
608
609 Ex2: 0x0B49 = 2889mV
610
611
612 ==== 2.3.3.2  Temperature (DS18B20) ====
613
614
615 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
616
617 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
618
619 (% style="color:blue" %)**Connection:**
620
621 [[image:image-20230512180718-8.png||height="538" width="647"]]
622
623
624 (% style="color:blue" %)**Example**:
625
626 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
627
628 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
629
630 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
631
632
633 ==== 2.3.3.3 Digital Input ====
634
635
636 The digital input for pin PB15,
637
638 * When PB15 is high, the bit 1 of payload byte 6 is 1.
639 * When PB15 is low, the bit 1 of payload byte 6 is 0.
640
641 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
642 (((
643 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
644
645 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
646
647
648 )))
649
650 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
651
652
653 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
654
655 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
656
657 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
658
659
660 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
661
662
663 ==== 2.3.3.5 Digital Interrupt ====
664
665
666 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
667
668 (% style="color:blue" %)** Interrupt connection method:**
669
670 [[image:image-20230513105351-5.png||height="147" width="485"]]
671
672
673 (% style="color:blue" %)**Example to use with door sensor :**
674
675 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
676
677 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
678
679 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
680
681
682 (% style="color:blue" %)**Below is the installation example:**
683
684 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
685
686 * (((
687 One pin to SN50v3-LB's PA8 pin
688 )))
689 * (((
690 The other pin to SN50v3-LB's VDD pin
691 )))
692
693 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
694
695 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
696
697 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
698
699 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
700
701 The above photos shows the two parts of the magnetic switch fitted to a door.
702
703 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
704
705 The command is:
706
707 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
708
709 Below shows some screen captures in TTN V3:
710
711 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
712
713
714 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
715
716 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
717
718
719 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
720
721
722 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
723
724 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
725
726 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
727
728
729 Below is the connection to SHT20/ SHT31. The connection is as below:
730
731 [[image:image-20230610170152-2.png||height="501" width="846"]]
732
733
734 The device will be able to get the I2C sensor data now and upload to IoT Server.
735
736 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
737
738 Convert the read byte to decimal and divide it by ten.
739
740 **Example:**
741
742 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
743
744 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
745
746 If you want to use other I2C device, please refer the SHT20 part source code as reference.
747
748
749 ==== 2.3.3.7  ​Distance Reading ====
750
751
752 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
753
754
755 ==== 2.3.3.8 Ultrasonic Sensor ====
756
757
758 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
759
760 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
761
762 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
763
764 The picture below shows the connection:
765
766 [[image:image-20230512173903-6.png||height="596" width="715"]]
767
768
769 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
770
771 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
772
773 **Example:**
774
775 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
776
777
778 ==== 2.3.3.9  Battery Output - BAT pin ====
779
780
781 The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
782
783
784 ==== 2.3.3.10  +5V Output ====
785
786
787 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
788
789 The 5V output time can be controlled by AT Command.
790
791 (% style="color:blue" %)**AT+5VT=1000**
792
793 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
794
795 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
796
797
798 ==== 2.3.3.11  BH1750 Illumination Sensor ====
799
800
801 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
802
803 [[image:image-20230512172447-4.png||height="416" width="712"]]
804
805
806 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
807
808
809 ==== 2.3.3.12  Working MOD ====
810
811
812 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
813
814 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
815
816 Case 7^^th^^ Byte >> 2 & 0x1f:
817
818 * 0: MOD1
819 * 1: MOD2
820 * 2: MOD3
821 * 3: MOD4
822 * 4: MOD5
823 * 5: MOD6
824 * 6: MOD7
825 * 7: MOD8
826 * 8: MOD9
827
828 == 2.4 Payload Decoder file ==
829
830
831 In TTN, use can add a custom payload so it shows friendly reading
832
833 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
834
835 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
836
837
838 == 2.5 Frequency Plans ==
839
840
841 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
842
843 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
844
845
846 = 3. Configure SN50v3-LB =
847
848 == 3.1 Configure Methods ==
849
850
851 SN50v3-LB supports below configure method:
852
853 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
854 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
855 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
856
857 == 3.2 General Commands ==
858
859
860 These commands are to configure:
861
862 * General system settings like: uplink interval.
863 * LoRaWAN protocol & radio related command.
864
865 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
866
867 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
868
869
870 == 3.3 Commands special design for SN50v3-LB ==
871
872
873 These commands only valid for SN50v3-LB, as below:
874
875
876 === 3.3.1 Set Transmit Interval Time ===
877
878
879 Feature: Change LoRaWAN End Node Transmit Interval.
880
881 (% style="color:blue" %)**AT Command: AT+TDC**
882
883 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
884 |=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
885 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
886 30000
887 OK
888 the interval is 30000ms = 30s
889 )))
890 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
891 OK
892 Set transmit interval to 60000ms = 60 seconds
893 )))
894
895 (% style="color:blue" %)**Downlink Command: 0x01**
896
897 Format: Command Code (0x01) followed by 3 bytes time value.
898
899 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
900
901 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
902 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
903
904 === 3.3.2 Get Device Status ===
905
906
907 Send a LoRaWAN downlink to ask the device to send its status.
908
909 (% style="color:blue" %)**Downlink Payload: 0x26 01**
910
911 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
912
913
914 === 3.3.3 Set Interrupt Mode ===
915
916
917 Feature, Set Interrupt mode for GPIO_EXIT.
918
919 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
920
921 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
922 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
923 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
924 0
925 OK
926 the mode is 0 =Disable Interrupt
927 )))
928 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
929 Set Transmit Interval
930 0. (Disable Interrupt),
931 ~1. (Trigger by rising and falling edge)
932 2. (Trigger by falling edge)
933 3. (Trigger by rising edge)
934 )))|(% style="width:157px" %)OK
935 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
936 Set Transmit Interval
937 trigger by rising edge.
938 )))|(% style="width:157px" %)OK
939 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
940
941 (% style="color:blue" %)**Downlink Command: 0x06**
942
943 Format: Command Code (0x06) followed by 3 bytes.
944
945 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
946
947 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
948 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
949 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
950 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
951
952 === 3.3.4 Set Power Output Duration ===
953
954
955 Control the output duration 5V . Before each sampling, device will
956
957 ~1. first enable the power output to external sensor,
958
959 2. keep it on as per duration, read sensor value and construct uplink payload
960
961 3. final, close the power output.
962
963 (% style="color:blue" %)**AT Command: AT+5VT**
964
965 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
966 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
967 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
968 500(default)
969 OK
970 )))
971 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
972 Close after a delay of 1000 milliseconds.
973 )))|(% style="width:157px" %)OK
974
975 (% style="color:blue" %)**Downlink Command: 0x07**
976
977 Format: Command Code (0x07) followed by 2 bytes.
978
979 The first and second bytes are the time to turn on.
980
981 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
982 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
983
984 === 3.3.5 Set Weighing parameters ===
985
986
987 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
988
989 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
990
991 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
992 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
993 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
994 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
995 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
996
997 (% style="color:blue" %)**Downlink Command: 0x08**
998
999 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1000
1001 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1002
1003 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1004
1005 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1006 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1007 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1008
1009 === 3.3.6 Set Digital pulse count value ===
1010
1011
1012 Feature: Set the pulse count value.
1013
1014 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1015
1016 (% style="color:blue" %)**AT Command: AT+SETCNT**
1017
1018 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1019 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1020 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1021 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1022
1023 (% style="color:blue" %)**Downlink Command: 0x09**
1024
1025 Format: Command Code (0x09) followed by 5 bytes.
1026
1027 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1028
1029 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1030 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1031
1032 === 3.3.7 Set Workmode ===
1033
1034
1035 Feature: Switch working mode.
1036
1037 (% style="color:blue" %)**AT Command: AT+MOD**
1038
1039 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1040 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1041 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1042 OK
1043 )))
1044 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1045 OK
1046 Attention:Take effect after ATZ
1047 )))
1048
1049 (% style="color:blue" %)**Downlink Command: 0x0A**
1050
1051 Format: Command Code (0x0A) followed by 1 bytes.
1052
1053 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1054 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1055
1056 = 4. Battery & Power Consumption =
1057
1058
1059 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1060
1061 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1062
1063
1064 = 5. OTA Firmware update =
1065
1066
1067 (% class="wikigeneratedid" %)
1068 **User can change firmware SN50v3-LB to:**
1069
1070 * Change Frequency band/ region.
1071 * Update with new features.
1072 * Fix bugs.
1073
1074 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1075
1076 **Methods to Update Firmware:**
1077
1078 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1079 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1080
1081 = 6. FAQ =
1082
1083 == 6.1 Where can i find source code of SN50v3-LB? ==
1084
1085
1086 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1087 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1088
1089 = 7. Order Info =
1090
1091
1092 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1093
1094 (% style="color:red" %)**XX**(%%): The default frequency band
1095
1096 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1097 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1098 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1099 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1100 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1101 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1102 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1103 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1104
1105 (% style="color:red" %)**YY: ** (%%)Hole Option
1106
1107 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1108 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1109 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1110 * (% style="color:red" %)**NH**(%%): No Hole
1111
1112 = 8. ​Packing Info =
1113
1114
1115 (% style="color:#037691" %)**Package Includes**:
1116
1117 * SN50v3-LB LoRaWAN Generic Node
1118
1119 (% style="color:#037691" %)**Dimension and weight**:
1120
1121 * Device Size: cm
1122 * Device Weight: g
1123 * Package Size / pcs : cm
1124 * Weight / pcs : g
1125
1126 = 9. Support =
1127
1128
1129 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1130
1131 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]