<
From version < 99.2 >
edited by Xiaoling
on 2024/09/26 11:45
To version < 13.1 >
edited by Edwin Chen
on 2023/05/11 23:11
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,40 +1,37 @@
1 -
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
2 2  
3 -(% style="text-align:center" %)
4 -[[image:image-20240103095714-2.png]]
5 5  
6 6  
5 +**Table of Contents:**
7 7  
7 +{{toc/}}
8 8  
9 9  
10 10  
11 -**Table of Contents:**
12 12  
13 -{{toc/}}
14 14  
15 15  
14 += 1. Introduction =
16 16  
16 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
17 17  
18 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
18 18  
19 19  
20 -= 1. Introduction =
21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
21 21  
22 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
23 23  
24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
24 24  
25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + Li-ion battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 -(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
27 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
28 28  
29 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
30 30  
31 -SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
30 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
32 32  
33 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34 34  
35 35  == 1.2 ​Features ==
36 36  
37 -
38 38  * LoRaWAN 1.0.3 Class A
39 39  * Ultra-low power consumption
40 40  * Open-Source hardware/software
... ... @@ -43,15 +43,13 @@
43 43  * Support wireless OTA update firmware
44 44  * Uplink on periodically
45 45  * Downlink to change configure
46 -* 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 -* Solar panel + 3000mAh Li-ion battery (SN50v3-LS)
43 +* 8500mAh Battery for long term use
48 48  
49 49  == 1.3 Specification ==
50 50  
51 -
52 52  (% style="color:#037691" %)**Common DC Characteristics:**
53 53  
54 -* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
49 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
55 55  * Operating Temperature: -40 ~~ 85°C
56 56  
57 57  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -85,7 +85,6 @@
85 85  
86 86  == 1.4 Sleep mode and working mode ==
87 87  
88 -
89 89  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
90 90  
91 91  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -94,10 +94,11 @@
94 94  == 1.5 Button & LEDs ==
95 95  
96 96  
97 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
98 98  
99 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
100 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
93 +
94 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 101  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 102  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 103  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -112,7 +112,7 @@
112 112  == 1.6 BLE connection ==
113 113  
114 114  
115 -SN50v3-LB/LS supports BLE remote configure.
110 +SN50v3-LB supports BLE remote configure.
116 116  
117 117  
118 118  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -127,39 +127,34 @@
127 127  == 1.7 Pin Definitions ==
128 128  
129 129  
130 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
131 131  
132 132  
133 133  == 1.8 Mechanical ==
134 134  
135 -=== 1.8.1 for LB version ===
136 136  
131 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
137 137  
138 -[[image:image-20240924112806-1.png||height="548" width="894"]]
133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 139  
135 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
140 140  
141 141  
142 -=== 1.8.2 for LS version ===
138 +== Hole Option ==
143 143  
144 -[[image:image-20231231203439-3.png||height="385" width="886"]]
140 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
145 145  
146 -
147 -== 1.9 Hole Option ==
148 -
149 -
150 -SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
151 -
152 152  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
153 153  
154 154  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
155 155  
156 156  
157 -= 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
147 += 2. Configure SN50v3-LB to connect to LoRaWAN network =
158 158  
159 159  == 2.1 How it works ==
160 160  
161 161  
162 -The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
163 163  
164 164  
165 165  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -167,12 +167,12 @@
167 167  
168 168  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
169 169  
170 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
171 171  
172 172  
173 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
163 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
174 174  
175 -Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
165 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
176 176  
177 177  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
178 178  
... ... @@ -200,10 +200,12 @@
200 200  
201 201  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
202 202  
203 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
204 204  
205 -Press the button for 5 seconds to activate the SN50v3-LB/LS.
194 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
206 206  
196 +
197 +Press the button for 5 seconds to activate the SN50v3-LB.
198 +
207 207  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
208 208  
209 209  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
... ... @@ -214,52 +214,52 @@
214 214  === 2.3.1 Device Status, FPORT~=5 ===
215 215  
216 216  
217 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
218 218  
219 219  The Payload format is as below.
220 220  
221 221  
222 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
223 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
214 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
215 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
224 224  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
225 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
226 226  
227 227  Example parse in TTNv3
228 228  
229 229  
230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
231 231  
232 232  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233 233  
234 234  (% style="color:#037691" %)**Frequency Band**:
235 235  
236 -0x01: EU868
228 +*0x01: EU868
237 237  
238 -0x02: US915
230 +*0x02: US915
239 239  
240 -0x03: IN865
232 +*0x03: IN865
241 241  
242 -0x04: AU915
234 +*0x04: AU915
243 243  
244 -0x05: KZ865
236 +*0x05: KZ865
245 245  
246 -0x06: RU864
238 +*0x06: RU864
247 247  
248 -0x07: AS923
240 +*0x07: AS923
249 249  
250 -0x08: AS923-1
242 +*0x08: AS923-1
251 251  
252 -0x09: AS923-2
244 +*0x09: AS923-2
253 253  
254 -0x0a: AS923-3
246 +*0x0a: AS923-3
255 255  
256 -0x0b: CN470
248 +*0x0b: CN470
257 257  
258 -0x0c: EU433
250 +*0x0c: EU433
259 259  
260 -0x0d: KR920
252 +*0x0d: KR920
261 261  
262 -0x0e: MA869
254 +*0x0e: MA869
263 263  
264 264  
265 265  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -283,40 +283,26 @@
283 283  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
284 284  
285 285  
286 -SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
287 287  
288 288  For example:
289 289  
290 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
282 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
291 291  
292 292  
293 293  (% style="color:red" %) **Important Notice:**
294 294  
295 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 +1. All modes share the same Payload Explanation from HERE.
289 +1. By default, the device will send an uplink message every 20 minutes.
296 296  
297 -2. All modes share the same Payload Explanation from HERE.
298 298  
299 -3. By default, the device will send an uplink message every 20 minutes.
300 -
301 -
302 302  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
303 303  
304 -
305 305  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
306 306  
307 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
308 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
309 -|Value|Bat|(% style="width:191px" %)(((
310 -Temperature(DS18B20)(PC13)
311 -)))|(% style="width:78px" %)(((
312 -ADC(PA4)
313 -)))|(% style="width:216px" %)(((
314 -Digital in(PB15)&Digital Interrupt(PA8)
315 -)))|(% style="width:308px" %)(((
316 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
317 -)))|(% style="width:154px" %)(((
318 -Humidity(SHT20 or SHT31)
319 -)))
296 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
297 +|**Value**|Bat|Temperature(DS18B20)|ADC|Digital in & Digital Interrupt|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|Humidity(SHT20)
320 320  
321 321  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
322 322  
... ... @@ -323,428 +323,225 @@
323 323  
324 324  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
325 325  
326 -
327 327  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328 328  
329 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
330 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
331 -|Value|BAT|(% style="width:196px" %)(((
332 -Temperature(DS18B20)(PC13)
333 -)))|(% style="width:87px" %)(((
334 -ADC(PA4)
335 -)))|(% style="width:189px" %)(((
336 -Digital in(PB15) & Digital Interrupt(PA8)
337 -)))|(% style="width:208px" %)(((
338 -Distance measure by: 1) LIDAR-Lite V3HP
339 -Or 2) Ultrasonic Sensor
340 -)))|(% style="width:117px" %)Reserved
306 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
307 +|**Value**|BAT|(((
308 +Temperature(DS18B20)
309 +)))|ADC|Digital in & Digital Interrupt|(((
310 +Distance measure by:
311 +1) LIDAR-Lite V3HP
312 +Or
313 +2) Ultrasonic Sensor
314 +)))|Reserved
341 341  
342 342  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
343 343  
318 +**Connection of LIDAR-Lite V3HP:**
344 344  
345 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
320 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324581381-162.png?rev=1.1||alt="1656324581381-162.png"]]
346 346  
347 -[[image:image-20230512173758-5.png||height="563" width="712"]]
322 +**Connection to Ultrasonic Sensor:**
348 348  
324 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324598488-204.png?rev=1.1||alt="1656324598488-204.png"]]
349 349  
350 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
351 -
352 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
353 -
354 -[[image:image-20230512173903-6.png||height="596" width="715"]]
355 -
356 -
357 357  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
358 358  
359 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
360 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
361 -|Value|BAT|(% style="width:183px" %)(((
362 -Temperature(DS18B20)(PC13)
363 -)))|(% style="width:173px" %)(((
364 -Digital in(PB15) & Digital Interrupt(PA8)
365 -)))|(% style="width:84px" %)(((
366 -ADC(PA4)
367 -)))|(% style="width:323px" %)(((
328 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
329 +|**Value**|BAT|(((
330 +Temperature(DS18B20)
331 +)))|Digital in & Digital Interrupt|ADC|(((
368 368  Distance measure by:1)TF-Mini plus LiDAR
369 -Or 2) TF-Luna LiDAR
370 -)))|(% style="width:188px" %)Distance signal  strength
333 +Or 
334 +2) TF-Luna LiDAR
335 +)))|Distance signal  strength
371 371  
372 372  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
373 373  
374 -
375 375  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
376 376  
377 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
341 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0
378 378  
379 -[[image:image-20230512180609-7.png||height="555" width="802"]]
343 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376795715-436.png?rev=1.1||alt="1656376795715-436.png"]]
380 380  
381 -
382 382  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
383 383  
384 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
347 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0
385 385  
386 -[[image:image-20230610170047-1.png||height="452" width="799"]]
349 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]
387 387  
351 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption.
388 388  
353 +
389 389  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
390 390  
391 -
392 392  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
393 393  
394 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
395 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
358 +|=(((
396 396  **Size(bytes)**
397 -)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
398 -|Value|(% style="width:68px" %)(((
399 -ADC1(PA4)
400 -)))|(% style="width:75px" %)(((
401 -ADC2(PA5)
402 -)))|(((
403 -ADC3(PA8)
404 -)))|(((
405 -Digital Interrupt(PB15)
406 -)))|(% style="width:304px" %)(((
407 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
408 -)))|(% style="width:163px" %)(((
409 -Humidity(SHT20 or SHT31)
410 -)))|(% style="width:53px" %)Bat
360 +)))|=**2**|=**2**|=**2**|=**1**|=2|=2|=1
361 +|**Value**|ADC(Pin PA0)|ADC2(PA1)|ADC3 (PA4)|(((
362 +Digital in(PA12)&Digital Interrupt1(PB14)
363 +)))|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|Humidity(SHT20 or SHT31)|Bat
411 411  
412 -[[image:image-20230513110214-6.png]]
365 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]
413 413  
414 414  
415 415  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
416 416  
370 +This mode is supported in firmware version since v1.6.1. Software set to AT+MOD=4
417 417  
418 -This mode has total 11 bytes. As shown below:
372 +Hardware connection is as below,
419 419  
420 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
421 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**
422 -|Value|BAT|(% style="width:186px" %)(((
423 -Temperature1(DS18B20)(PC13)
424 -)))|(% style="width:82px" %)(((
425 -ADC(PA4)
426 -)))|(% style="width:210px" %)(((
427 -Digital in(PB15) & Digital Interrupt(PA8) 
428 -)))|(% style="width:191px" %)Temperature2(DS18B20)
429 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
374 +**( Note:**
430 430  
431 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
376 +* In hardware version v1.x and v2.0 , R3 & R4 should change from 10k to 4.7k ohm to support the other 2 x DS18B20 probes.
377 +* In hardware version v2.1 no need to change R3 , R4, by default, they are 4.7k ohm already.
432 432  
379 +See [[here>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H1.6A0HardwareChangelog]] for hardware changelog. **) **
433 433  
434 -[[image:image-20230513134006-1.png||height="559" width="736"]]
381 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377461619-156.png?rev=1.1||alt="1656377461619-156.png"]]
435 435  
383 +This mode has total 11 bytes. As shown below:
436 436  
385 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
386 +|**Value**|BAT|(((
387 +Temperature1
388 +(DS18B20)
389 +(PB3)
390 +)))|ADC|Digital in & Digital Interrupt|Temperature2
391 +(DS18B20)
392 +(PA9)|Temperature3
393 +(DS18B20)
394 +(PA10)
395 +
396 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
397 +
398 +(% class="wikigeneratedid" %)
399 +=== ===
400 +
437 437  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
438 438  
403 +This mode is supported in firmware version since v1.6.2. Please use v1.6.5 firmware version so user no need to use extra LDO for connection.
439 439  
440 -[[image:image-20230512164658-2.png||height="532" width="729"]]
441 441  
406 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378224664-860.png?rev=1.1||alt="1656378224664-860.png"]]
407 +
442 442  Each HX711 need to be calibrated before used. User need to do below two steps:
443 443  
444 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
445 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
410 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
411 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
446 446  1. (((
447 -Weight has 4 bytes, the unit is g.
448 -
449 -
450 -
413 +Remove the limit of plus or minus 5Kg in mode 5, and expand from 2 bytes to 4 bytes, the unit is g.(Since v1.8.0)
451 451  )))
452 452  
453 453  For example:
454 454  
455 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
418 +**AT+WEIGAP =403.0**
456 456  
457 457  Response:  Weight is 401 g
458 458  
459 459  Check the response of this command and adjust the value to match the real value for thing.
460 460  
461 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
462 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
424 +|=(((
463 463  **Size(bytes)**
464 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4**
465 -|Value|BAT|(% style="width:193px" %)(((
466 -Temperature(DS18B20)(PC13)
467 -)))|(% style="width:85px" %)(((
468 -ADC(PA4)
469 -)))|(% style="width:186px" %)(((
470 -Digital in(PB15) & Digital Interrupt(PA8)
471 -)))|(% style="width:100px" %)Weight
426 +)))|=**2**|=**2**|=**2**|=**1**|=**4**|=2
427 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Weight|Reserved
472 472  
473 473  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
474 474  
431 +(% class="wikigeneratedid" %)
432 +=== ===
475 475  
476 476  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
477 477  
478 -
479 479  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
480 480  
481 481  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
482 482  
483 -[[image:image-20230512181814-9.png||height="543" width="697"]]
440 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378351863-572.png?rev=1.1||alt="1656378351863-572.png"]]
484 484  
442 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen.
485 485  
486 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
444 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4**
445 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(((
446 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
447 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count
487 487  
488 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
489 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4**
490 -|Value|BAT|(% style="width:256px" %)(((
491 -Temperature(DS18B20)(PC13)
492 -)))|(% style="width:108px" %)(((
493 -ADC(PA4)
494 -)))|(% style="width:126px" %)(((
495 -Digital in(PB15)
496 -)))|(% style="width:145px" %)(((
497 -Count(PA8)
498 -)))
499 -
500 500  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
501 501  
502 502  
503 503  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
504 504  
454 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]]
505 505  
506 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
507 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
456 +|=(((
508 508  **Size(bytes)**
509 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
510 -|Value|BAT|(% style="width:188px" %)(((
511 -Temperature(DS18B20)
512 -(PC13)
513 -)))|(% style="width:83px" %)(((
514 -ADC(PA5)
515 -)))|(% style="width:184px" %)(((
516 -Digital Interrupt1(PA8)
517 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
458 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
459 +|**Value**|BAT|Temperature(DS18B20)|ADC|(((
460 +Digital in(PA12)&Digital Interrupt1(PB14)
461 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved
518 518  
519 -[[image:image-20230513111203-7.png||height="324" width="975"]]
520 520  
521 -
522 522  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
523 523  
524 -
525 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
526 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
466 +|=(((
527 527  **Size(bytes)**
528 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2
529 -|Value|BAT|(% style="width:207px" %)(((
530 -Temperature(DS18B20)
531 -(PC13)
532 -)))|(% style="width:94px" %)(((
533 -ADC1(PA4)
534 -)))|(% style="width:198px" %)(((
535 -Digital Interrupt(PB15)
536 -)))|(% style="width:84px" %)(((
537 -ADC2(PA5)
538 -)))|(% style="width:82px" %)(((
539 -ADC3(PA8)
468 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2
469 +|**Value**|BAT|Temperature(DS18B20)|(((
470 +ADC1(PA0)
471 +)))|(((
472 +Digital in
473 +& Digital Interrupt(PB14)
474 +)))|(((
475 +ADC2(PA1)
476 +)))|(((
477 +ADC3(PA4)
540 540  )))
541 541  
542 -[[image:image-20230513111231-8.png||height="335" width="900"]]
480 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]
543 543  
482 +(% class="wikigeneratedid" %)
483 +=== ===
544 544  
545 545  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
546 546  
547 -
548 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
549 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
487 +|=(((
550 550  **Size(bytes)**
551 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4
552 -|Value|BAT|(((
553 -Temperature
554 -(DS18B20)(PC13)
489 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4
490 +|**Value**|BAT|(((
491 +Temperature1(PB3)
555 555  )))|(((
556 -Temperature2
557 -(DS18B20)(PB9)
493 +Temperature2(PA9)
558 558  )))|(((
559 -Digital Interrupt
560 -(PB15)
561 -)))|(% style="width:193px" %)(((
562 -Temperature3
563 -(DS18B20)(PB8)
564 -)))|(% style="width:78px" %)(((
565 -Count1(PA8)
566 -)))|(% style="width:78px" %)(((
567 -Count2(PA4)
495 +Digital in
496 +& Digital Interrupt(PA4)
497 +)))|(((
498 +Temperature3(PA10)
499 +)))|(((
500 +Count1(PB14)
501 +)))|(((
502 +Count2(PB15)
568 568  )))
569 569  
570 -[[image:image-20230513111255-9.png||height="341" width="899"]]
505 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]
571 571  
572 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
507 +**The newly added AT command is issued correspondingly:**
573 573  
574 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
509 +**~ AT+INTMOD1** ** PB14**  pin:  Corresponding downlink:  **06 00 00 xx**
575 575  
576 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
511 +**~ AT+INTMOD2**  **PB15** pin:  Corresponding downlink:**  06 00 01 xx**
577 577  
578 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
513 +**~ AT+INTMOD3**  **PA4**  pin:  Corresponding downlink:  ** 06 00 02 xx**
579 579  
515 +**AT+SETCNT=aa,bb** 
580 580  
581 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
517 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb
582 582  
583 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
519 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb
584 584  
585 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
521 +=== 2.3.10  ​Decode payload in The Things Network ===
586 586  
587 -
588 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
589 -
590 -
591 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
592 -
593 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
594 -
595 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
596 -
597 -
598 -===== 2.3.2.10.a  Uplink, PWM input capture =====
599 -
600 -
601 -[[image:image-20230817172209-2.png||height="439" width="683"]]
602 -
603 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
604 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
605 -|Value|Bat|(% style="width:191px" %)(((
606 -Temperature(DS18B20)(PC13)
607 -)))|(% style="width:78px" %)(((
608 -ADC(PA4)
609 -)))|(% style="width:135px" %)(((
610 -PWM_Setting
611 -&Digital Interrupt(PA8)
612 -)))|(% style="width:70px" %)(((
613 -Pulse period
614 -)))|(% style="width:89px" %)(((
615 -Duration of high level
616 -)))
617 -
618 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
619 -
620 -
621 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
622 -
623 -**Frequency:**
624 -
625 -(% class="MsoNormal" %)
626 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
627 -
628 -(% class="MsoNormal" %)
629 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
630 -
631 -
632 -(% class="MsoNormal" %)
633 -**Duty cycle:**
634 -
635 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
636 -
637 -[[image:image-20230818092200-1.png||height="344" width="627"]]
638 -
639 -
640 -===== 2.3.2.10.b  Uplink, PWM output =====
641 -
642 -
643 -[[image:image-20230817172209-2.png||height="439" width="683"]]
644 -
645 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
646 -
647 -a is the time delay of the output, the unit is ms.
648 -
649 -b is the output frequency, the unit is HZ.
650 -
651 -c is the duty cycle of the output, the unit is %.
652 -
653 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
654 -
655 -aa is the time delay of the output, the unit is ms.
656 -
657 -bb is the output frequency, the unit is HZ.
658 -
659 -cc is the duty cycle of the output, the unit is %.
660 -
661 -
662 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
663 -
664 -The oscilloscope displays as follows:
665 -
666 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
667 -
668 -
669 -===== 2.3.2.10.c  Downlink, PWM output =====
670 -
671 -
672 -[[image:image-20230817173800-3.png||height="412" width="685"]]
673 -
674 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
675 -
676 - xx xx xx is the output frequency, the unit is HZ.
677 -
678 - yy is the duty cycle of the output, the unit is %.
679 -
680 - zz zz is the time delay of the output, the unit is ms.
681 -
682 -
683 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
684 -
685 -The oscilloscope displays as follows:
686 -
687 -[[image:image-20230817173858-5.png||height="634" width="843"]]
688 -
689 -
690 -
691 -==== 2.3.2.11  MOD~=11 (TEMP117) ====
692 -
693 -
694 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
695 -
696 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
697 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
698 -|Value|Bat|(% style="width:191px" %)(((
699 -Temperature(DS18B20)(PC13)
700 -)))|(% style="width:78px" %)(((
701 -ADC(PA4)
702 -)))|(% style="width:216px" %)(((
703 -Digital in(PB15)&Digital Interrupt(PA8)
704 -)))|(% style="width:308px" %)(((
705 -Temperature
706 -
707 -(TEMP117)
708 -)))|(% style="width:154px" %)(((
709 -Reserved position, meaningless
710 -
711 -(0x0000)
712 -)))
713 -
714 -[[image:image-20240717113113-1.png||height="352" width="793"]]
715 -
716 -Connection:
717 -
718 -[[image:image-20240717141528-2.jpeg||height="430" width="654"]]
719 -
720 -
721 -==== 2.3.2.12  MOD~=12 (Count+SHT31) ====
722 -
723 -
724 -This mode has total 11 bytes. As shown below:
725 -
726 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
727 -|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**Size(bytes)**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
728 -|Value|BAT|(% style="width:86px" %)(((
729 - Temperature_SHT31
730 -)))|(% style="width:86px" %)(((
731 -Humidity_SHT31
732 -)))|(% style="width:86px" %)(((
733 - Digital in(PB15)
734 -)))|(% style="width:86px" %)(((
735 -Count(PA8)
736 -)))
737 -
738 -[[image:image-20240717150948-5.png||height="389" width="979"]]
739 -
740 -Wiring example:
741 -
742 -[[image:image-20240717152224-6.jpeg||height="359" width="680"]]
743 -
744 -
745 -=== 2.3.3  ​Decode payload ===
746 -
747 -
748 748  While using TTN V3 network, you can add the payload format to decode the payload.
749 749  
750 750  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -751,33 +751,41 @@
751 751  
752 752  The payload decoder function for TTN V3 are here:
753 753  
754 -SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
529 +LSN50 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
755 755  
756 756  
757 -==== 2.3.3.1 Battery Info ====
532 +Sensor Data is uplink via FPORT=2
758 758  
534 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
535 +|=(% style="width: 90px;background-color:#D9E2F3" %)(((
536 +**Size(bytes)**
537 +)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
538 +|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
539 +[[Battery>>||anchor="HBattery:"]]
540 +)))|(% style="width:130px" %)(((
541 +[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
542 +)))|(% style="width:91px" %)(((
543 +[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
544 +)))|(% style="width:103px" %)(((
545 +[[Temperature>>||anchor="HTemperature:"]]
546 +)))|(% style="width:80px" %)(((
547 +[[Humidity>>||anchor="HHumidity:"]]
548 +)))
759 759  
760 -Check the battery voltage for SN50v3-LB/LS.
550 +==== (% style="color:#4472c4" %)**Battery**(%%) ====
761 761  
552 +Sensor Battery Level.
553 +
762 762  Ex1: 0x0B45 = 2885mV
763 763  
764 764  Ex2: 0x0B49 = 2889mV
765 765  
766 766  
767 -==== 2.3.3.2  Temperature (DS18B20) ====
768 768  
560 +==== (% style="color:#4472c4" %)**Temperature**(%%) ====
769 769  
770 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
562 +**Example**:
771 771  
772 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
773 -
774 -(% style="color:blue" %)**Connection:**
775 -
776 -[[image:image-20230512180718-8.png||height="538" width="647"]]
777 -
778 -
779 -(% style="color:blue" %)**Example**:
780 -
781 781  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
782 782  
783 783  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -785,260 +785,195 @@
785 785  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
786 786  
787 787  
788 -==== 2.3.3.3 Digital Input ====
571 +==== (% style="color:#4472c4" %)**Humidity**(%%) ====
789 789  
790 790  
791 -The digital input for pin PB15,
574 +Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
792 792  
793 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
794 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
795 795  
796 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
797 -(((
798 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
577 +==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
799 799  
800 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
801 801  
802 -
803 -)))
580 +**Example:**
804 804  
805 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
582 +If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
806 806  
584 +If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
807 807  
808 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
586 +If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
809 809  
810 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
588 +If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settingssee [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
811 811  
812 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
813 813  
591 +== 2.4 Payload Decoder file ==
814 814  
815 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
816 816  
594 +In TTN, use can add a custom payload so it shows friendly reading
817 817  
818 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
596 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
819 819  
820 -[[image:image-20230811113449-1.png||height="370" width="608"]]
598 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
821 821  
822 822  
601 +== 2.5 Datalog Feature ==
823 823  
824 -==== 2.3.3.5 Digital Interrupt ====
825 825  
604 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
826 826  
827 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
828 828  
829 -(% style="color:blue" %)** Interrupt connection method:**
607 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
830 830  
831 -[[image:image-20230513105351-5.png||height="147" width="485"]]
832 832  
610 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
833 833  
834 -(% style="color:blue" %)**Example to use with door sensor :**
612 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
613 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
835 835  
836 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
615 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
837 837  
838 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
617 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
839 839  
840 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
619 +=== 2.5.2 Unix TimeStamp ===
841 841  
842 842  
843 -(% style="color:blue" %)**Below is the installation example:**
622 +S31x-LB uses Unix TimeStamp format based on
844 844  
845 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
624 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
846 846  
847 -* (((
848 -One pin to SN50v3-LB/LS's PA8 pin
849 -)))
850 -* (((
851 -The other pin to SN50v3-LB/LS's VDD pin
852 -)))
626 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
853 853  
854 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
628 +Below is the converter example
855 855  
856 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
630 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
857 857  
858 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
632 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 Jan ~-~- 29 Friday 03:03:25
859 859  
860 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
861 861  
862 -The above photos shows the two parts of the magnetic switch fitted to a door.
635 +=== 2.5.3 Set Device Time ===
863 863  
864 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
865 865  
866 -The command is:
638 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
867 867  
868 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
640 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
869 869  
870 -Below shows some screen captures in TTN V3:
642 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
871 871  
872 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
873 873  
645 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
874 874  
875 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
876 876  
877 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
648 +The Datalog uplinks will use below payload format.
878 878  
650 +**Retrieval data payload:**
879 879  
880 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
652 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
653 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
654 +**Size(bytes)**
655 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
656 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
657 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
658 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
881 881  
660 +**Poll message flag & Ext:**
882 882  
883 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
662 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
884 884  
885 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
664 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
886 886  
887 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
666 +**Poll Message Flag**: 1: This message is a poll message reply.
888 888  
668 +* Poll Message Flag is set to 1.
889 889  
890 -Below is the connection to SHT20/ SHT31. The connection is as below:
670 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
891 891  
892 -[[image:image-20230610170152-2.png||height="501" width="846"]]
672 +For example, in US915 band, the max payload for different DR is:
893 893  
674 +**a) DR0:** max is 11 bytes so one entry of data
894 894  
895 -The device will be able to get the I2C sensor data now and upload to IoT Server.
676 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
896 896  
897 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
678 +**c) DR2:** total payload includes 11 entries of data
898 898  
899 -Convert the read byte to decimal and divide it by ten.
680 +**d) DR3: **total payload includes 22 entries of data.
900 900  
901 -**Example:**
682 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
902 902  
903 -Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
904 904  
905 -Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
906 -
907 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
908 -
909 -
910 -==== 2.3.3.7  ​Distance Reading ====
911 -
912 -
913 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
914 -
915 -
916 -==== 2.3.3.8 Ultrasonic Sensor ====
917 -
918 -
919 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
920 -
921 -The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
922 -
923 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
924 -
925 -The picture below shows the connection:
926 -
927 -[[image:image-20230512173903-6.png||height="596" width="715"]]
928 -
929 -
930 -Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
931 -
932 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
933 -
934 934  **Example:**
935 935  
936 -Distance:  Read: 0C2D(Hex) = 3117(D)  Value 3117 mm=311.7 cm
687 +If S31x-LB has below data inside Flash:
937 937  
689 +[[image:1682646494051-944.png]]
938 938  
939 -==== 2.3.3.9  Battery Output - BAT pin ====
691 +If user sends below downlink command: 3160065F9760066DA705
940 940  
693 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
941 941  
942 -The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
695 + Stop time: 60066DA7= time 21/1/19 05:27:03
943 943  
944 944  
945 -==== 2.3.3.1 +5V Output ====
698 +**S31x-LB will uplink this payload.**
946 946  
700 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
947 947  
948 -SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
702 +(((
703 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
704 +)))
949 949  
950 -The 5V output time can be controlled by AT Command.
706 +(((
707 +Where the first 11 bytes is for the first entry:
708 +)))
951 951  
952 -(% style="color:blue" %)**AT+5VT=1000**
710 +(((
711 +7FFF089801464160065F97
712 +)))
953 953  
954 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
714 +(((
715 +**Ext sensor data**=0x7FFF/100=327.67
716 +)))
955 955  
956 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
718 +(((
719 +**Temp**=0x088E/100=22.00
720 +)))
957 957  
958 -
959 -==== 2.3.3.11  BH1750 Illumination Sensor ====
960 -
961 -
962 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
963 -
964 -[[image:image-20230512172447-4.png||height="416" width="712"]]
965 -
966 -
967 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
968 -
969 -
970 -==== 2.3.3.12  PWM MOD ====
971 -
972 -
973 -* (((
974 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
722 +(((
723 +**Hum**=0x014B/10=32.6
975 975  )))
976 -* (((
977 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
978 -)))
979 979  
980 - [[image:image-20230817183249-3.png||height="320" width="417"]]
981 -
982 -* (((
983 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
726 +(((
727 +**poll message flag & Ext**=0x41,means reply data,Ext=1
984 984  )))
985 -* (((
986 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
987 -)))
988 -* (((
989 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
990 990  
991 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
992 -
993 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
994 -
995 -b) If the output duration is more than 30 seconds, better to use external power source. 
730 +(((
731 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
996 996  )))
997 997  
998 -==== 2.3.3.13  Working MOD ====
999 999  
735 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
1000 1000  
1001 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
737 +== 2.6 Temperature Alarm Feature ==
1002 1002  
1003 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
1004 1004  
1005 -Case 7^^th^^ Byte >> 2 & 0x1f:
740 +S31x-LB work flow with Alarm feature.
1006 1006  
1007 -* 0: MOD1
1008 -* 1: MOD2
1009 -* 2: MOD3
1010 -* 3: MOD4
1011 -* 4: MOD5
1012 -* 5: MOD6
1013 -* 6: MOD7
1014 -* 7: MOD8
1015 -* 8: MOD9
1016 -* 9: MOD10
1017 1017  
1018 -== 2.4 Payload Decoder file ==
743 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
1019 1019  
1020 1020  
1021 -In TTN, use can add a custom payload so it shows friendly reading
746 +== 2.7 Frequency Plans ==
1022 1022  
1023 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
1024 1024  
1025 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
749 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
1026 1026  
1027 -
1028 -== 2.5 Frequency Plans ==
1029 -
1030 -
1031 -The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
1032 -
1033 1033  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
1034 1034  
1035 1035  
1036 -= 3. Configure SN50v3-LB/LS =
754 += 3. Configure S31x-LB =
1037 1037  
1038 1038  == 3.1 Configure Methods ==
1039 1039  
1040 1040  
1041 -SN50v3-LB/LS supports below configure method:
759 +S31x-LB supports below configure method:
1042 1042  
1043 1043  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1044 1044  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -1057,10 +1057,10 @@
1057 1057  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1058 1058  
1059 1059  
1060 -== 3.3 Commands special design for SN50v3-LB/LS ==
778 +== 3.3 Commands special design for S31x-LB ==
1061 1061  
1062 1062  
1063 -These commands only valid for SN50v3-LB/LS, as below:
781 +These commands only valid for S31x-LB, as below:
1064 1064  
1065 1065  
1066 1066  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1071,7 +1071,7 @@
1071 1071  (% style="color:blue" %)**AT Command: AT+TDC**
1072 1072  
1073 1073  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1074 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
792 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1075 1075  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1076 1076  30000
1077 1077  OK
... ... @@ -1094,246 +1094,120 @@
1094 1094  === 3.3.2 Get Device Status ===
1095 1095  
1096 1096  
1097 -Send a LoRaWAN downlink to ask the device to send its status.
815 +Send a LoRaWAN downlink to ask device send Alarm settings.
1098 1098  
1099 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
817 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1100 1100  
1101 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
819 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1102 1102  
1103 1103  
1104 -=== 3.3.3 Set Interrupt Mode ===
822 +=== 3.3.3 Set Temperature Alarm Threshold ===
1105 1105  
824 +* (% style="color:blue" %)**AT Command:**
1106 1106  
1107 -Feature, Set Interrupt mode for GPIO_EXIT.
826 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
1108 1108  
1109 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
828 +* When min=0, and max≠0, Alarm higher than max
829 +* When min≠0, and max=0, Alarm lower than min
830 +* When min≠0 and max≠0, Alarm higher than max or lower than min
1110 1110  
1111 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1112 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1113 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1114 -0
1115 -OK
1116 -the mode is 0 =Disable Interrupt
1117 -)))
1118 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
1119 -Set Transmit Interval
1120 -0. (Disable Interrupt),
1121 -~1. (Trigger by rising and falling edge)
1122 -2. (Trigger by falling edge)
1123 -3. (Trigger by rising edge)
1124 -)))|(% style="width:157px" %)OK
1125 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1126 -Set Transmit Interval
1127 -trigger by rising edge.
1128 -)))|(% style="width:157px" %)OK
1129 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
832 +Example:
1130 1130  
1131 -(% style="color:blue" %)**Downlink Command: 0x06**
834 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
1132 1132  
1133 -Format: Command Code (0x06) followed by 3 bytes.
836 +* (% style="color:blue" %)**Downlink Payload:**
1134 1134  
1135 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
838 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
1136 1136  
1137 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1138 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1139 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1140 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
840 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
1141 1141  
1142 -=== 3.3.4 Set Power Output Duration ===
1143 1143  
843 +=== 3.3.4 Set Humidity Alarm Threshold ===
1144 1144  
1145 -Control the output duration 5V . Before each sampling, device will
845 +* (% style="color:blue" %)**AT Command:**
1146 1146  
1147 -~1. first enable the power output to external sensor,
847 +(% style="color:#037691" %)**AT+SHHUM=min,max**
1148 1148  
1149 -2. keep it on as per duration, read sensor value and construct uplink payload
849 +* When min=0, and max≠0, Alarm higher than max
850 +* When min≠0, and max=0, Alarm lower than min
851 +* When min≠0 and max≠0, Alarm higher than max or lower than min
1150 1150  
1151 -3. final, close the power output.
853 +Example:
1152 1152  
1153 -(% style="color:blue" %)**AT Command: AT+5VT**
855 + AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
1154 1154  
1155 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1156 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1157 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1158 -500(default)
1159 -OK
1160 -)))
1161 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1162 -Close after a delay of 1000 milliseconds.
1163 -)))|(% style="width:157px" %)OK
857 +* (% style="color:blue" %)**Downlink Payload:**
1164 1164  
1165 -(% style="color:blue" %)**Downlink Command: 0x07**
859 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
1166 1166  
1167 -Format: Command Code (0x07) followed by 2 bytes.
861 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
1168 1168  
1169 -The first and second bytes are the time to turn on.
1170 1170  
1171 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1172 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
864 +=== 3.3.5 Set Alarm Interval ===
1173 1173  
1174 -=== 3.3.5 Set Weighing parameters ===
866 +The shortest time of two Alarm packet. (unit: min)
1175 1175  
868 +* (% style="color:blue" %)**AT Command:**
1176 1176  
1177 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
870 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
1178 1178  
1179 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
872 +* (% style="color:blue" %)**Downlink Payload:**
1180 1180  
1181 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1182 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1183 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1184 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1185 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
874 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
1186 1186  
1187 -(% style="color:blue" %)**Downlink Command: 0x08**
1188 1188  
1189 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
877 +=== 3.3.6 Get Alarm settings ===
1190 1190  
1191 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1192 1192  
1193 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
880 +Send a LoRaWAN downlink to ask device send Alarm settings.
1194 1194  
1195 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1196 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1197 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
882 +* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
1198 1198  
1199 -=== 3.3.6 Set Digital pulse count value ===
884 +**Example:**
1200 1200  
886 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
1201 1201  
1202 -Feature: Set the pulse count value.
1203 1203  
1204 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
889 +**Explain:**
1205 1205  
1206 -(% style="color:blue" %)**AT Command: AT+SETCNT**
891 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1207 1207  
1208 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1209 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1210 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1211 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
893 +=== 3.3.7 Set Interrupt Mode ===
1212 1212  
1213 -(% style="color:blue" %)**Downlink Command: 0x09**
1214 1214  
1215 -Format: Command Code (0x09) followed by 5 bytes.
896 +Feature, Set Interrupt mode for GPIO_EXIT.
1216 1216  
1217 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
898 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1218 1218  
1219 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1220 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1221 -
1222 -=== 3.3.7 Set Workmode ===
1223 -
1224 -
1225 -Feature: Switch working mode.
1226 -
1227 -(% style="color:blue" %)**AT Command: AT+MOD**
1228 -
1229 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1230 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1231 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
900 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
901 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
902 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
903 +0
1232 1232  OK
905 +the mode is 0 =Disable Interrupt
1233 1233  )))
1234 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1235 -OK
1236 -Attention:Take effect after ATZ
1237 -)))
907 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
908 +Set Transmit Interval
909 +0. (Disable Interrupt),
910 +~1. (Trigger by rising and falling edge)
911 +2. (Trigger by falling edge)
912 +3. (Trigger by rising edge)
913 +)))|(% style="width:157px" %)OK
1238 1238  
1239 -(% style="color:blue" %)**Downlink Command: 0x0A**
915 +(% style="color:blue" %)**Downlink Command: 0x06**
1240 1240  
1241 -Format: Command Code (0x0A) followed by 1 bytes.
917 +Format: Command Code (0x06) followed by 3 bytes.
1242 1242  
1243 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1244 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
919 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1245 1245  
1246 -=== 3.3.8 PWM setting ===
921 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
922 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1247 1247  
924 += 4. Battery & Power Consumption =
1248 1248  
1249 -Feature: Set the time acquisition unit for PWM input capture.
1250 1250  
1251 -(% style="color:blue" %)**AT Command: AT+PWMSET**
927 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1252 1252  
1253 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1254 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1255 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1256 -0(default)
1257 -OK
1258 -)))
1259 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1260 -OK
1261 -
1262 -)))
1263 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1264 -
1265 -(% style="color:blue" %)**Downlink Command: 0x0C**
1266 -
1267 -Format: Command Code (0x0C) followed by 1 bytes.
1268 -
1269 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1270 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1271 -
1272 -**Feature: Set PWM output time, output frequency and output duty cycle.**
1273 -
1274 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1275 -
1276 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1277 -|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1278 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1279 -0,0,0(default)
1280 -OK
1281 -)))
1282 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1283 -OK
1284 -
1285 -)))
1286 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1287 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1288 -
1289 -
1290 -)))|(% style="width:137px" %)(((
1291 -OK
1292 -)))
1293 -
1294 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1295 -|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1296 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1297 -AT+PWMOUT=a,b,c
1298 -
1299 -
1300 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1301 -Set PWM output time, output frequency and output duty cycle.
1302 -
1303 -(((
1304 -
1305 -)))
1306 -
1307 -(((
1308 -
1309 -)))
1310 -)))|(% style="width:242px" %)(((
1311 -a: Output time (unit: seconds)
1312 -The value ranges from 0 to 65535.
1313 -When a=65535, PWM will always output.
1314 -)))
1315 -|(% style="width:242px" %)(((
1316 -b: Output frequency (unit: HZ)
1317 -)))
1318 -|(% style="width:242px" %)(((
1319 -c: Output duty cycle (unit: %)
1320 -The value ranges from 0 to 100.
1321 -)))
1322 -
1323 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1324 -
1325 -Format: Command Code (0x0B01) followed by 6 bytes.
1326 -
1327 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1328 -
1329 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1330 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1331 -
1332 -= 4. Battery & Power Cons =
1333 -
1334 -
1335 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1336 -
1337 1337  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1338 1338  
1339 1339  
... ... @@ -1341,47 +1341,28 @@
1341 1341  
1342 1342  
1343 1343  (% class="wikigeneratedid" %)
1344 -**User can change firmware SN50v3-LB/LS to:**
936 +User can change firmware SN50v3-LB to:
1345 1345  
1346 1346  * Change Frequency band/ region.
1347 1347  * Update with new features.
1348 1348  * Fix bugs.
1349 1349  
1350 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
942 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1351 1351  
1352 -**Methods to Update Firmware:**
1353 1353  
1354 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1355 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
945 +Methods to Update Firmware:
1356 1356  
947 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
948 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
949 +
1357 1357  = 6. FAQ =
1358 1358  
1359 -== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1360 1360  
1361 1361  
1362 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1363 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1364 -
1365 -== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1366 -
1367 -
1368 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1369 -
1370 -
1371 -== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1372 -
1373 -
1374 -When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1375 -
1376 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1377 -
1378 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1379 -
1380 -
1381 1381  = 7. Order Info =
1382 1382  
1383 1383  
1384 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
957 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1385 1385  
1386 1386  (% style="color:red" %)**XX**(%%): The default frequency band
1387 1387  
... ... @@ -1403,10 +1403,9 @@
1403 1403  
1404 1404  = 8. ​Packing Info =
1405 1405  
1406 -
1407 1407  (% style="color:#037691" %)**Package Includes**:
1408 1408  
1409 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
981 +* SN50v3-LB LoRaWAN Generic Node
1410 1410  
1411 1411  (% style="color:#037691" %)**Dimension and weight**:
1412 1412  
... ... @@ -1419,5 +1419,4 @@
1419 1419  
1420 1420  
1421 1421  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1422 -
1423 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
994 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -230.1 KB
Content
image-20240717113113-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -34.0 KB
Content
image-20240717141512-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -948.8 KB
Content
image-20240717141528-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -234.2 KB
Content
image-20240717145707-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -39.8 KB
Content
image-20240717150334-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20240717150948-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -38.3 KB
Content
image-20240717152224-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -238.1 KB
Content
image-20240924112806-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -140.2 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0