Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 20 added, 0 removed)
- image-20230512163509-1.png
- image-20230512164658-2.png
- image-20230512170701-3.png
- image-20230512172447-4.png
- image-20230512173758-5.png
- image-20230512173903-6.png
- image-20230512180609-7.png
- image-20230512180718-8.png
- image-20230512181814-9.png
- image-20230513084523-1.png
- image-20230513102034-2.png
- image-20230513103633-3.png
- image-20230513105207-4.png
- image-20230513105351-5.png
- image-20230513110214-6.png
- image-20230513111203-7.png
- image-20230513111231-8.png
- image-20230513111255-9.png
- image-20230513134006-1.png
- image-20230515135611-1.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB User Manual 1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.Xiaoling - Content
-
... ... @@ -1,4 +1,5 @@ 1 -[[image:image-20230511201248-1.png||height="403" width="489"]] 1 +(% style="text-align:center" %) 2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 2 2 3 3 4 4 ... ... @@ -15,23 +15,21 @@ 15 15 16 16 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 17 17 19 + 18 18 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 19 19 20 - 21 21 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 22 22 23 - 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 - 27 27 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 28 28 29 - 30 30 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 31 31 32 32 33 33 == 1.2 Features == 34 34 33 + 35 35 * LoRaWAN 1.0.3 Class A 36 36 * Ultra-low power consumption 37 37 * Open-Source hardware/software ... ... @@ -42,8 +42,11 @@ 42 42 * Downlink to change configure 43 43 * 8500mAh Battery for long term use 44 44 44 + 45 + 45 45 == 1.3 Specification == 46 46 48 + 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -78,8 +78,11 @@ 78 78 * Sleep Mode: 5uA @ 3.3v 79 79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 80 80 83 + 84 + 81 81 == 1.4 Sleep mode and working mode == 82 82 87 + 83 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 84 84 85 85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -104,6 +104,8 @@ 104 104 ))) 105 105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 106 106 112 + 113 + 107 107 == 1.6 BLE connection == 108 108 109 109 ... ... @@ -122,7 +122,7 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-202305112034 50-2.png||height="443" width="785"]]132 +[[image:image-20230513102034-2.png]] 126 126 127 127 128 128 == 1.8 Mechanical == ... ... @@ -137,6 +137,7 @@ 137 137 138 138 == Hole Option == 139 139 147 + 140 140 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 141 141 142 142 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -149,7 +149,7 @@ 149 149 == 2.1 How it works == 150 150 151 151 152 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 153 153 154 154 155 155 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -157,7 +157,7 @@ 157 157 158 158 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 159 159 160 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.168 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 161 161 162 162 163 163 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -206,7 +206,7 @@ 206 206 === 2.3.1 Device Status, FPORT~=5 === 207 207 208 208 209 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 217 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 210 210 211 211 The Payload format is as below. 212 212 ... ... @@ -219,7 +219,7 @@ 219 219 Example parse in TTNv3 220 220 221 221 222 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 223 223 224 224 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 225 225 ... ... @@ -275,26 +275,40 @@ 275 275 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 276 276 277 277 278 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 286 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 279 279 280 280 For example: 281 281 282 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 290 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 283 283 284 284 285 285 (% style="color:red" %) **Important Notice:** 286 286 287 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 288 -1. All modes share the same Payload Explanation from HERE. 289 -1. By default, the device will send an uplink message every 20 minutes. 295 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 290 290 297 +2. All modes share the same Payload Explanation from HERE. 291 291 299 +3. By default, the device will send an uplink message every 20 minutes. 300 + 301 + 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 304 + 294 294 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 295 295 296 -|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 297 -|**Value**|Bat|Temperature(DS18B20)|ADC|Digital in & Digital Interrupt|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|Humidity(SHT20) 307 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 308 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 309 +|**Value**|Bat|(% style="width:191px" %)((( 310 +Temperature(DS18B20)(PC13) 311 +)))|(% style="width:78px" %)((( 312 +ADC(PA4) 313 +)))|(% style="width:216px" %)((( 314 +Digital in(PB15)&Digital Interrupt(PA8) 315 +)))|(% style="width:308px" %)((( 316 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 317 +)))|(% style="width:154px" %)((( 318 +Humidity(SHT20 or SHT31) 319 +))) 298 298 299 299 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 300 300 ... ... @@ -301,225 +301,274 @@ 301 301 302 302 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 303 303 326 + 304 304 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 305 305 306 -|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 307 -|**Value**|BAT|((( 308 -Temperature(DS18B20) 309 -)))|ADC|Digital in & Digital Interrupt|((( 310 -Distance measure by: 311 -1) LIDAR-Lite V3HP 329 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 331 +|**Value**|BAT|(% style="width:196px" %)((( 332 +Temperature(DS18B20)(PC13) 333 +)))|(% style="width:87px" %)((( 334 +ADC(PA4) 335 +)))|(% style="width:189px" %)((( 336 +Digital in(PB15) & Digital Interrupt(PA8) 337 +)))|(% style="width:208px" %)((( 338 +Distance measure by:1) LIDAR-Lite V3HP 312 312 Or 313 313 2) Ultrasonic Sensor 314 -)))|Reserved 341 +)))|(% style="width:117px" %)Reserved 315 315 316 316 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 317 317 318 -**Connection of LIDAR-Lite V3HP:** 319 319 320 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324581381-162.png?rev=1.1||alt="1656324581381-162.png"]]346 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 321 321 322 - **Connection to UltrasonicSensor:**348 +[[image:image-20230512173758-5.png||height="563" width="712"]] 323 323 324 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324598488-204.png?rev=1.1||alt="1656324598488-204.png"]] 325 325 351 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 352 + 353 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 354 + 355 +[[image:image-20230512173903-6.png||height="596" width="715"]] 356 + 357 + 326 326 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 327 327 328 -|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 329 -|**Value**|BAT|((( 330 -Temperature(DS18B20) 331 -)))|Digital in & Digital Interrupt|ADC|((( 360 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 361 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 362 +|**Value**|BAT|(% style="width:183px" %)((( 363 +Temperature(DS18B20)(PC13) 364 +)))|(% style="width:173px" %)((( 365 +Digital in(PB15) & Digital Interrupt(PA8) 366 +)))|(% style="width:84px" %)((( 367 +ADC(PA4) 368 +)))|(% style="width:323px" %)((( 332 332 Distance measure by:1)TF-Mini plus LiDAR 333 333 Or 334 334 2) TF-Luna LiDAR 335 -)))|Distance signal strength 372 +)))|(% style="width:188px" %)Distance signal strength 336 336 337 337 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 338 338 376 + 339 339 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 340 340 341 -Need to remove R3 and R4 resistors to get low power . Sincefirmwarev1.7.0379 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 342 342 343 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376795715-436.png?rev=1.1||alt="1656376795715-436.png"]]381 +[[image:image-20230512180609-7.png||height="555" width="802"]] 344 344 383 + 345 345 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 346 346 347 -Need to remove R3 and R4 resistors to get low power . Sincefirmwarev1.7.0386 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 348 348 349 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]388 +[[image:image-20230513105207-4.png||height="469" width="802"]] 350 350 351 -Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption. 352 352 353 - 354 354 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 355 355 393 + 356 356 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 357 357 358 -|=((( 396 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 397 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 359 359 **Size(bytes)** 360 -)))|=**2**|=**2**|=**2**|=**1**|=2|=2|=1 361 -|**Value**|ADC(Pin PA0)|ADC2(PA1)|ADC3 (PA4)|((( 362 -Digital in(PA12)&Digital Interrupt1(PB14) 363 -)))|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|Humidity(SHT20 or SHT31)|Bat 399 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 400 +|**Value**|(% style="width:68px" %)((( 401 +ADC1(PA4) 402 +)))|(% style="width:75px" %)((( 403 +ADC2(PA5) 404 +)))|((( 405 +ADC3(PA8) 406 +)))|((( 407 +Digital Interrupt(PB15) 408 +)))|(% style="width:304px" %)((( 409 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 410 +)))|(% style="width:163px" %)((( 411 +Humidity(SHT20 or SHT31) 412 +)))|(% style="width:53px" %)Bat 364 364 365 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]414 +[[image:image-20230513110214-6.png]] 366 366 367 367 368 368 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 369 369 370 -This mode is supported in firmware version since v1.6.1. Software set to AT+MOD=4 371 371 372 -Hardware connection is as below, 373 - 374 -**( Note:** 375 - 376 -* In hardware version v1.x and v2.0 , R3 & R4 should change from 10k to 4.7k ohm to support the other 2 x DS18B20 probes. 377 -* In hardware version v2.1 no need to change R3 , R4, by default, they are 4.7k ohm already. 378 - 379 -See [[here>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H1.6A0HardwareChangelog]] for hardware changelog. **) ** 380 - 381 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377461619-156.png?rev=1.1||alt="1656377461619-156.png"]] 382 - 383 383 This mode has total 11 bytes. As shown below: 384 384 385 - |**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**386 -|** Value**|BAT|(((387 - Temperature1388 -(DS18B20) 389 -( PB3)390 - )))|ADC|Digital in & Digital Interrupt|Temperature2391 -( DS18B20)392 -(P A9)|Temperature3393 -(DS18B20) 394 -(P A10)422 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 423 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 424 +|**Value**|BAT|(% style="width:186px" %)((( 425 +Temperature1(DS18B20)(PC13) 426 +)))|(% style="width:82px" %)((( 427 +ADC(PA4) 428 +)))|(% style="width:210px" %)((( 429 +Digital in(PB15) & Digital Interrupt(PA8) 430 +)))|(% style="width:191px" %)Temperature2(DS18B20) 431 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 395 395 396 396 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 397 397 398 -(% class="wikigeneratedid" %) 399 -=== === 400 400 401 - ====2.3.2.5MOD~=5(WeightMeasurementby HX711)====436 +[[image:image-20230513134006-1.png||height="559" width="736"]] 402 402 403 -This mode is supported in firmware version since v1.6.2. Please use v1.6.5 firmware version so user no need to use extra LDO for connection. 404 404 439 +==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 405 405 406 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378224664-860.png?rev=1.1||alt="1656378224664-860.png"]] 407 407 442 +[[image:image-20230512164658-2.png||height="532" width="729"]] 443 + 408 408 Each HX711 need to be calibrated before used. User need to do below two steps: 409 409 410 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 411 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 446 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 447 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 412 412 1. ((( 413 -Remove the limit of plus or minus 5Kg in mode 5, and expand from 2 bytes to 4 bytes, the unit is g.(Since v1.8.0) 449 +Weight has 4 bytes, the unit is g. 450 + 451 + 452 + 414 414 ))) 415 415 416 416 For example: 417 417 418 -**AT+ WEIGAP=403.0**457 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 419 419 420 420 Response: Weight is 401 g 421 421 422 422 Check the response of this command and adjust the value to match the real value for thing. 423 423 424 -|=((( 463 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 464 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 425 425 **Size(bytes)** 426 -)))|=**2**|=**2**|=**2**|=**1**|=**4**|=2 427 -|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Weight|Reserved 466 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 467 +|**Value**|BAT|(% style="width:193px" %)((( 468 +Temperature(DS18B20)(PC13) 469 +)))|(% style="width:85px" %)((( 470 +ADC(PA4) 471 +)))|(% style="width:186px" %)((( 472 +Digital in(PB15) & Digital Interrupt(PA8) 473 +)))|(% style="width:100px" %)Weight 428 428 429 429 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 430 430 431 -(% class="wikigeneratedid" %) 432 -=== === 433 433 478 + 434 434 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 435 435 481 + 436 436 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 437 437 438 438 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. 439 439 440 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378351863-572.png?rev=1.1||alt="1656378351863-572.png"]]486 +[[image:image-20230512181814-9.png||height="543" width="697"]] 441 441 442 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen. 443 443 444 -|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4** 445 -|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|((( 446 -[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 447 -)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count 489 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 448 448 491 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 492 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 493 +|**Value**|BAT|(% style="width:256px" %)((( 494 +Temperature(DS18B20)(PC13) 495 +)))|(% style="width:108px" %)((( 496 +ADC(PA4) 497 +)))|(% style="width:126px" %)((( 498 +Digital in(PB15) 499 +)))|(% style="width:145px" %)((( 500 +Count(PA8) 501 +))) 502 + 449 449 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 450 450 451 451 452 452 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 453 453 454 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]] 455 455 456 -|=((( 509 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 510 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 457 457 **Size(bytes)** 458 -)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 459 -|**Value**|BAT|Temperature(DS18B20)|ADC|((( 460 -Digital in(PA12)&Digital Interrupt1(PB14) 461 -)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved 512 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 513 +|**Value**|BAT|(% style="width:188px" %)((( 514 +Temperature(DS18B20) 515 +(PC13) 516 +)))|(% style="width:83px" %)((( 517 +ADC(PA5) 518 +)))|(% style="width:184px" %)((( 519 +Digital Interrupt1(PA8) 520 +)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 462 462 522 +[[image:image-20230513111203-7.png||height="324" width="975"]] 463 463 524 + 464 464 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 465 465 466 -|=((( 527 + 528 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 529 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 467 467 **Size(bytes)** 468 -)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2 469 -|**Value**|BAT|Temperature(DS18B20)|((( 470 -ADC1(PA0) 471 -)))|((( 472 -Digital in 473 -& Digital Interrupt(PB14) 474 -)))|((( 475 -ADC2(PA1) 476 -)))|((( 477 -ADC3(PA4) 531 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 532 +|**Value**|BAT|(% style="width:207px" %)((( 533 +Temperature(DS18B20) 534 +(PC13) 535 +)))|(% style="width:94px" %)((( 536 +ADC1(PA4) 537 +)))|(% style="width:198px" %)((( 538 +Digital Interrupt(PB15) 539 +)))|(% style="width:84px" %)((( 540 +ADC2(PA5) 541 +)))|(% style="width:82px" %)((( 542 +ADC3(PA8) 478 478 ))) 479 479 480 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]545 +[[image:image-20230513111231-8.png||height="335" width="900"]] 481 481 482 -(% class="wikigeneratedid" %) 483 -=== === 484 484 485 485 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 486 486 487 -|=((( 550 + 551 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 552 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 488 488 **Size(bytes)** 489 -)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4 554 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 490 490 |**Value**|BAT|((( 491 -Temperature1(PB3) 556 +Temperature 557 +(DS18B20)(PC13) 492 492 )))|((( 493 -Temperature2(PA9) 559 +Temperature2 560 +(DS18B20)(PB9) 494 494 )))|((( 495 -Digital in 496 -& Digital Interrupt(PA4) 497 -)))|((( 498 -Temperature3(PA10) 499 -)))|((( 500 -Count1(PB14) 501 -)))|((( 502 -Count2(PB15) 562 +Digital Interrupt 563 +(PB15) 564 +)))|(% style="width:193px" %)((( 565 +Temperature3 566 +(DS18B20)(PB8) 567 +)))|(% style="width:78px" %)((( 568 +Count1(PA8) 569 +)))|(% style="width:78px" %)((( 570 +Count2(PA4) 503 503 ))) 504 504 505 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]573 +[[image:image-20230513111255-9.png||height="341" width="899"]] 506 506 507 -**The newly added AT command is issued correspondingly:** 575 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 508 508 509 -** ~AT+INTMOD1****PB14** pin: Corresponding downlink: **06 00 00 xx**577 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 510 510 511 -** ~AT+INTMOD2** **PB15****06 00 01 xx**579 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 512 512 513 -** ~AT+INTMOD3****PA4**581 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 514 514 515 -**AT+SETCNT=aa,bb** 516 516 517 - WhenAA is1, settheuntof PB14 pin to BB Correspondingdownlink:09 01bbbb bb bb584 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 518 518 519 -When AA is 2, set the count of PB15pin to BB Corresponding downlink:09 02bb bb bb bb586 +When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 520 520 521 - ===2.3.10DecodepayloadinTheThingsNetwork===588 +When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 522 522 590 + 591 +=== 2.3.3 Decode payload === 592 + 593 + 523 523 While using TTN V3 network, you can add the payload format to decode the payload. 524 524 525 525 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -526,41 +526,33 @@ 526 526 527 527 The payload decoder function for TTN V3 are here: 528 528 529 - LSN50 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]600 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 530 530 531 531 532 - SensorDatais uplinkvia FPORT=2603 +==== 2.3.3.1 Battery Info ==== 533 533 534 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %) 535 -|=(% style="width: 90px;background-color:#D9E2F3" %)((( 536 -**Size(bytes)** 537 -)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2 538 -|(% style="width:99px" %)**Value**|(% style="width:69px" %)((( 539 -[[Battery>>||anchor="HBattery:"]] 540 -)))|(% style="width:130px" %)((( 541 -[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]] 542 -)))|(% style="width:91px" %)((( 543 -[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]] 544 -)))|(% style="width:103px" %)((( 545 -[[Temperature>>||anchor="HTemperature:"]] 546 -)))|(% style="width:80px" %)((( 547 -[[Humidity>>||anchor="HHumidity:"]] 548 -))) 549 549 550 - ====(% style="color:#4472c4"%)**Battery**(%%)====606 +Check the battery voltage for SN50v3-LB. 551 551 552 -Sensor Battery Level. 553 - 554 554 Ex1: 0x0B45 = 2885mV 555 555 556 556 Ex2: 0x0B49 = 2889mV 557 557 558 558 613 +==== 2.3.3.2 Temperature (DS18B20) ==== 559 559 560 -==== (% style="color:#4472c4" %)**Temperature**(%%) ==== 561 561 562 - **Example**:616 +If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 563 563 618 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 619 + 620 +(% style="color:blue" %)**Connection:** 621 + 622 +[[image:image-20230512180718-8.png||height="538" width="647"]] 623 + 624 + 625 +(% style="color:blue" %)**Example**: 626 + 564 564 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 565 565 566 566 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -568,200 +568,234 @@ 568 568 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative) 569 569 570 570 571 -==== (%style="color:#4472c4"%)**Humidity**(%%)====634 +==== 2.3.3.3 Digital Input ==== 572 572 573 573 574 - Read:0x(0197)=412Value:412/10=41.2,So 41.2%637 +The digital input for pin PB15, 575 575 639 +* When PB15 is high, the bit 1 of payload byte 6 is 1. 640 +* When PB15 is low, the bit 1 of payload byte 6 is 0. 576 576 577 -==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ==== 642 +(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 643 +((( 644 +When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 578 578 646 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 579 579 580 -**Example:** 648 + 649 +))) 581 581 582 - Ifpayload& 0x01 = 0x01 **~-~->** Thisisan AlarmMessage651 +==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 583 583 584 -If payload & 0x01 = 0x00 **~-~->** This is a normal uplink message, no alarm 585 585 586 - Ifpayload>>2=0x00**~-~->**means MOD=1,Thisisa samplinguplinkmessage654 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 587 587 588 - Ifpayload>>2=0x31**~-~->**meansMOD=31, thismessage isareplymessagefor polling,thismessagecontains thealarmsettings.see[[this link>>path:#HPolltheAlarmsettings:]]fordetail.656 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 589 589 658 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 590 590 591 -== 2.4 Payload Decoder file == 592 592 661 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 593 593 594 -In TTN, use can add a custom payload so it shows friendly reading 595 595 596 - In the page (% style="color:#037691"%)**Applications ~-~-> PayloadFormats ~-~-> Custom ~-~-> decoder**(%%)toadd the decoder from:664 +==== 2.3.3.5 Digital Interrupt ==== 597 597 598 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]] 599 599 667 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 600 600 601 - ==2.5 Datalog Feature==669 +(% style="color:blue" %)** Interrupt connection method:** 602 602 671 +[[image:image-20230513105351-5.png||height="147" width="485"]] 603 603 604 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes. 605 605 674 +(% style="color:blue" %)**Example to use with door sensor :** 606 606 607 - ===2.5.1Ways to getdatalogviaLoRaWAN===676 +The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 608 608 678 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 609 609 610 - Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]],S31x-LBwillwaitforACK forevery uplink, whentheresnoLoRaWANnetwork,S31x-LBwillmarktheserecordswith non-ack messagesandstore thesensordata,andit willsendallmessages(10sinterval)after thenetworkrecovery.680 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 611 611 612 -* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server. 613 -* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages. 614 614 615 -Below is the typicalcase fortheuto-update datalog feature (Set PNACKMD=1)683 +(% style="color:blue" %)**Below is the installation example:** 616 616 617 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png"height="381"width="1119"]]685 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 618 618 619 -=== 2.5.2 Unix TimeStamp === 687 +* ((( 688 +One pin to SN50v3-LB's PA8 pin 689 +))) 690 +* ((( 691 +The other pin to SN50v3-LB's VDD pin 692 +))) 620 620 694 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 621 621 622 - S31x-LBusesUnixTimeStampformatbased on696 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 623 623 624 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png"height="97"width="627"]]698 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 625 625 626 - User canget this time from link:[[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]]:700 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 627 627 628 - Belowis theconverterexample702 +The above photos shows the two parts of the magnetic switch fitted to a door. 629 629 630 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png"height="298"width="720"]]704 +The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt. 631 631 632 - So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan~-~- 29 Friday03:03:25706 +The command is: 633 633 708 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 634 634 635 - ===2.5.3SetDeviceTime===710 +Below shows some screen captures in TTN V3: 636 636 712 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 637 637 638 -User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 639 639 640 - OnceS31x-LB Joined LoRaWAN network,it willsendthe MACcommand(DeviceTimeReq) and theserverwill replywith (DeviceTimeAns)to sendthecurrenttime to S31x-LB. If S31x-LB failsto get the timefrom the server,S31x-LB will use the internaltimeandwait fornexttime request (AT+SYNCTDCtoset the time request period, defaultis10 days).715 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 641 641 642 - (% style="color:red" %)**Note: LoRaWAN Serverneed to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot supportbut TTN V3 v2 doesn't support. If server doesn't support this command, it will through awayuplink packetwith this command, so user will losethepacketwith time request for TTN V3 v2 if SYNCMOD=1.**717 +door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 643 643 644 644 645 -=== 2. 5.4DatalogUplinkpayload(FPORT~=3) ===720 +==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 646 646 647 647 648 -The Data loguplinkswillusebelowpayloadformat.723 +The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 649 649 650 - **Retrievaldata payload:**725 +We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 651 651 652 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 653 -|=(% style="width: 80px;background-color:#D9E2F3" %)((( 654 -**Size(bytes)** 655 -)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4** 656 -|(% style="width:103px" %)**Value**|(% style="width:54px" %)((( 657 -[[Temp_Black>>||anchor="HTemperatureBlack:"]] 658 -)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]] 727 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 659 659 660 -**Poll message flag & Ext:** 661 661 662 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png"height="112"width="754"]]730 +Below is the connection to SHT20/ SHT31. The connection is as below: 663 663 664 - **No ACK Message**:1: Thismessagemeans thispayload is fromnUplink Message which doesn'tget ACK from the server before ( for **PNACKMD=1** feature)732 +[[image:image-20230513103633-3.png||height="448" width="716"]] 665 665 666 -**Poll Message Flag**: 1: This message is a poll message reply. 667 667 668 - *PollMessageFlagisset to1.735 +The device will be able to get the I2C sensor data now and upload to IoT Server. 669 669 670 - * Eachdata entryis 11bytes, tosaveairtimed battery,deviceswill send max bytesaccording tothecurrent DRand Frequencybands.737 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] 671 671 672 - For example,in US915 band,the maxpayloadfordifferentDRis:739 +Convert the read byte to decimal and divide it by ten. 673 673 674 -**a ) DR0:**max is 11 bytes so one entry of data741 +**Example:** 675 675 676 - **b) DR1:**max is 53 bytesso devices will upload4entriesof data (total44bytes)743 +Temperature: Read:0116(H) = 278(D) Value: 278 /10=27.8℃; 677 677 678 - **c)DR2:**totalpayload includes11entriesofdata745 +Humidity: Read:0248(H)=584(D) Value: 584 / 10=58.4, So 58.4% 679 679 680 - **d)DR3:**totalpayloadincludes22entriesofdata.747 +If you want to use other I2C device, please refer the SHT20 part source code as reference. 681 681 682 -If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0 683 683 750 +==== 2.3.3.7 Distance Reading ==== 684 684 752 + 753 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 754 + 755 + 756 +==== 2.3.3.8 Ultrasonic Sensor ==== 757 + 758 + 759 +This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 760 + 761 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 762 + 763 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 764 + 765 +The picture below shows the connection: 766 + 767 +[[image:image-20230512173903-6.png||height="596" width="715"]] 768 + 769 + 770 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 771 + 772 +The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 773 + 685 685 **Example:** 686 686 687 - If S31x-LB hasbelow datainsideFlash:776 +Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 688 688 689 -[[image:1682646494051-944.png]] 690 690 691 - Ifusersendsbelowdownlinkcommand: 3160065F9760066DA705779 +==== 2.3.3.9 Battery Output - BAT pin ==== 692 692 693 -Where : Start time: 60065F97 = time 21/1/19 04:27:03 694 694 695 - Stop time:60066DA7=time21/1/1905:27:03782 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 696 696 697 697 698 - **S31x-LBwilluplinkthispayload.**785 +==== 2.3.3.10 +5V Output ==== 699 699 700 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]] 701 701 702 -((( 703 -__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E 704 -))) 788 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 705 705 706 -((( 707 -Where the first 11 bytes is for the first entry: 708 -))) 790 +The 5V output time can be controlled by AT Command. 709 709 710 -((( 711 -7FFF089801464160065F97 712 -))) 792 +(% style="color:blue" %)**AT+5VT=1000** 713 713 714 -((( 715 -**Ext sensor data**=0x7FFF/100=327.67 716 -))) 794 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 717 717 718 -((( 719 -**Temp**=0x088E/100=22.00 720 -))) 796 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 721 721 722 -((( 723 -**Hum**=0x014B/10=32.6 724 -))) 725 725 726 -((( 727 -**poll message flag & Ext**=0x41,means reply data,Ext=1 728 -))) 799 +==== 2.3.3.11 BH1750 Illumination Sensor ==== 729 729 730 -((( 731 -**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03 732 -))) 733 733 802 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 734 734 735 - (% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true"height="15"role="presentation" title="单击并拖动以移动"width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的804 +[[image:image-20230512172447-4.png||height="416" width="712"]] 736 736 737 -== 2.6 Temperature Alarm Feature == 738 738 807 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 739 739 740 -S31x-LB work flow with Alarm feature. 741 741 810 +==== 2.3.3.12 Working MOD ==== 742 742 743 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]] 744 744 813 +The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 745 745 746 - ==2.7FrequencyPlans==815 +User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: 747 747 817 +Case 7^^th^^ Byte >> 2 & 0x1f: 748 748 749 -The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 819 +* 0: MOD1 820 +* 1: MOD2 821 +* 2: MOD3 822 +* 3: MOD4 823 +* 4: MOD5 824 +* 5: MOD6 825 +* 6: MOD7 826 +* 7: MOD8 827 +* 8: MOD9 750 750 829 + 830 + 831 +== 2.4 Payload Decoder file == 832 + 833 + 834 +In TTN, use can add a custom payload so it shows friendly reading 835 + 836 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 837 + 838 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 839 + 840 + 841 +== 2.5 Frequency Plans == 842 + 843 + 844 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 845 + 751 751 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 752 752 753 753 754 -= 3. Configure S3 1x-LB =849 += 3. Configure SN50v3-LB = 755 755 756 756 == 3.1 Configure Methods == 757 757 758 758 759 -S3 1x-LB supports below configure method:854 +SN50v3-LB supports below configure method: 760 760 761 761 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 762 762 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 763 763 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 764 764 860 + 861 + 765 765 == 3.2 General Commands == 766 766 767 767 ... ... @@ -775,10 +775,10 @@ 775 775 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 776 776 777 777 778 -== 3.3 Commands special design for S3 1x-LB ==875 +== 3.3 Commands special design for SN50v3-LB == 779 779 780 780 781 -These commands only valid for S3 1x-LB, as below:878 +These commands only valid for SN50v3-LB, as below: 782 782 783 783 784 784 === 3.3.1 Set Transmit Interval Time === ... ... @@ -809,118 +809,170 @@ 809 809 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 810 810 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 811 811 909 + 910 + 812 812 === 3.3.2 Get Device Status === 813 813 814 814 815 -Send a LoRaWAN downlink to ask device send Alarmsettings.914 +Send a LoRaWAN downlink to ask the device to send its status. 816 816 817 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01916 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 818 818 819 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 918 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 820 820 821 821 822 -=== 3.3.3 Set TemperatureAlarm Threshold ===921 +=== 3.3.3 Set Interrupt Mode === 823 823 824 -* (% style="color:blue" %)**AT Command:** 825 825 826 - (%style="color:#037691"%)**AT+SHTEMP=min,max**924 +Feature, Set Interrupt mode for GPIO_EXIT. 827 827 828 -* When min=0, and max≠0, Alarm higher than max 829 -* When min≠0, and max=0, Alarm lower than min 830 -* When min≠0 and max≠0, Alarm higher than max or lower than min 926 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 831 831 832 -Example: 928 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 929 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 930 +|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 931 +0 932 +OK 933 +the mode is 0 =Disable Interrupt 934 +))) 935 +|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)((( 936 +Set Transmit Interval 937 +0. (Disable Interrupt), 938 +~1. (Trigger by rising and falling edge) 939 +2. (Trigger by falling edge) 940 +3. (Trigger by rising edge) 941 +)))|(% style="width:157px" %)OK 942 +|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 943 +Set Transmit Interval 944 +trigger by rising edge. 945 +)))|(% style="width:157px" %)OK 946 +|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 833 833 834 - AT+SHTEMP=0,30 ~/~/ Alarmwhentemperature higher than30.948 +(% style="color:blue" %)**Downlink Command: 0x06** 835 835 836 - * (% style="color:blue"%)**Downlink Payload:**950 +Format: Command Code (0x06) followed by 3 bytes. 837 837 838 - (%style="color:#037691"%)**0x(0C01001E)**(%%)~/~/SetAT+SHTEMP=0,30952 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 839 839 840 -(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)** 954 +* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 955 +* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 956 +* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 957 +* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 841 841 842 842 843 -=== 3.3.4 Set Humidity Alarm Threshold === 844 844 845 - *(%style="color:blue"%)**AT Command:**961 +=== 3.3.4 Set Power Output Duration === 846 846 847 -(% style="color:#037691" %)**AT+SHHUM=min,max** 848 848 849 -* When min=0, and max≠0, Alarm higher than max 850 -* When min≠0, and max=0, Alarm lower than min 851 -* When min≠0 and max≠0, Alarm higher than max or lower than min 964 +Control the output duration 5V . Before each sampling, device will 852 852 853 - Example:966 +~1. first enable the power output to external sensor, 854 854 855 - AT+SHHUM=70,0~/~/ Alarmwhenhumiditylowerhan70%.968 +2. keep it on as per duration, read sensor value and construct uplink payload 856 856 857 - *(% style="color:blue"%)**DownlinkPayload:**970 +3. final, close the power output. 858 858 859 -(% style="color: #037691" %)**0x(0C02 46 00)**(%%) ~/~/ SetAT+SHTHUM=70,0972 +(% style="color:blue" %)**AT Command: AT+5VT** 860 860 861 -(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))** 974 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 975 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 976 +|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 977 +500(default) 978 +OK 979 +))) 980 +|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 981 +Close after a delay of 1000 milliseconds. 982 +)))|(% style="width:157px" %)OK 862 862 984 +(% style="color:blue" %)**Downlink Command: 0x07** 863 863 864 - ===3.3.5SetAlarmInterval ===986 +Format: Command Code (0x07) followed by 2 bytes. 865 865 866 -The s hortest timeoftwoAlarm packet. (unit:min)988 +The first and second bytes are the time to turn on. 867 867 868 -* (% style="color:blue" %)**AT Command:** 990 +* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 991 +* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 869 869 870 -(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes. 871 871 872 -* (% style="color:blue" %)**Downlink Payload:** 873 873 874 - (% style="color:#037691"%)**0x(0D 00 1E)**(%%) **~-~--> **SetAT+ATDC=0x 00 1E = 30 minutes995 +=== 3.3.5 Set Weighing parameters === 875 875 876 876 877 - ===3.3.6GetAlarmsettings===998 +Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 878 878 1000 +(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 879 879 880 -Send a LoRaWAN downlink to ask device send Alarm settings. 1002 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1003 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1004 +|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1005 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1006 +|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 881 881 882 - *(% style="color:#037691" %)**DownlinkPayload:**(%%)0x0E 011008 +(% style="color:blue" %)**Downlink Command: 0x08** 883 883 884 - **Example:**1010 +Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 885 885 886 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]1012 +Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 887 887 1014 +The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value. 888 888 889 -**Explain:** 1016 +* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 1017 +* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1018 +* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 890 890 891 -* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message. 892 892 893 -=== 3.3.7 Set Interrupt Mode === 894 894 1022 +=== 3.3.6 Set Digital pulse count value === 895 895 896 -Feature, Set Interrupt mode for GPIO_EXIT. 897 897 898 - (% style="color:blue"%)**ATCommand:AT+INTMOD**1025 +Feature: Set the pulse count value. 899 899 1027 +Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. 1028 + 1029 +(% style="color:blue" %)**AT Command: AT+SETCNT** 1030 + 900 900 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 901 901 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 902 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 903 -0 1033 +|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1034 +|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1035 + 1036 +(% style="color:blue" %)**Downlink Command: 0x09** 1037 + 1038 +Format: Command Code (0x09) followed by 5 bytes. 1039 + 1040 +The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. 1041 + 1042 +* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1043 +* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1044 + 1045 + 1046 + 1047 +=== 3.3.7 Set Workmode === 1048 + 1049 + 1050 +Feature: Switch working mode. 1051 + 1052 +(% style="color:blue" %)**AT Command: AT+MOD** 1053 + 1054 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1055 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1056 +|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 904 904 OK 905 -the mode is 0 =Disable Interrupt 906 906 ))) 907 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 908 -Set Transmit Interval 909 -0. (Disable Interrupt), 910 -~1. (Trigger by rising and falling edge) 911 -2. (Trigger by falling edge) 912 -3. (Trigger by rising edge) 913 -)))|(% style="width:157px" %)OK 1059 +|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1060 +OK 1061 +Attention:Take effect after ATZ 1062 +))) 914 914 915 -(% style="color:blue" %)**Downlink Command: 0x0 6**1064 +(% style="color:blue" %)**Downlink Command: 0x0A** 916 916 917 -Format: Command Code (0x0 6) followed by3bytes.1066 +Format: Command Code (0x0A) followed by 1 bytes. 918 918 919 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1068 +* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1069 +* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 920 920 921 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 922 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 923 923 1072 + 924 924 = 4. Battery & Power Consumption = 925 925 926 926 ... ... @@ -933,24 +933,31 @@ 933 933 934 934 935 935 (% class="wikigeneratedid" %) 936 -User can change firmware SN50v3-LB to: 1085 +**User can change firmware SN50v3-LB to:** 937 937 938 938 * Change Frequency band/ region. 939 939 * Update with new features. 940 940 * Fix bugs. 941 941 942 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1091 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 943 943 1093 +**Methods to Update Firmware:** 944 944 945 -Methods to Update Firmware: 946 - 947 947 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 948 948 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 949 949 1098 + 1099 + 950 950 = 6. FAQ = 951 951 1102 +== 6.1 Where can i find source code of SN50v3-LB? == 952 952 953 953 1105 +* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1106 +* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1107 + 1108 + 1109 + 954 954 = 7. Order Info = 955 955 956 956 ... ... @@ -974,8 +974,11 @@ 974 974 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 975 975 * (% style="color:red" %)**NH**(%%): No Hole 976 976 1133 + 1134 + 977 977 = 8. Packing Info = 978 978 1137 + 979 979 (% style="color:#037691" %)**Package Includes**: 980 980 981 981 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -987,8 +987,11 @@ 987 987 * Package Size / pcs : cm 988 988 * Weight / pcs : g 989 989 1149 + 1150 + 990 990 = 9. Support = 991 991 992 992 993 993 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 994 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1155 + 1156 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
- image-20230512163509-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20230512164658-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.0 MB - Content
- image-20230512170701-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.5 MB - Content
- image-20230512172447-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.0 MB - Content
- image-20230512173758-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.1 MB - Content
- image-20230512173903-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.3 MB - Content
- image-20230512180609-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.3 MB - Content
- image-20230512180718-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.3 MB - Content
- image-20230512181814-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.2 MB - Content
- image-20230513084523-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +611.3 KB - Content
- image-20230513102034-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +607.1 KB - Content
- image-20230513103633-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +595.5 KB - Content
- image-20230513105207-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +384.7 KB - Content
- image-20230513105351-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.6 KB - Content
- image-20230513110214-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +172.7 KB - Content
- image-20230513111203-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +79.9 KB - Content
- image-20230513111231-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +64.9 KB - Content
- image-20230513111255-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +70.4 KB - Content
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.0 KB - Content