Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1.Introduction =
21
22 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
23
24 (((
25 (((
26 (((
27
28
29 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
30 )))
31 )))
32
33 (((
34 (((
35 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
36 )))
37 )))
38
39 (((
40 (((
41 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
42 )))
43 )))
44
45 (((
46 (((
47 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
48 )))
49
50 (((
51 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
52
53
54 )))
55 )))
56 )))
57
58 [[image:1653267211009-519.png||height="419" width="724"]]
59
60
61 == 1.2 Specifications ==
62
63
64 **Hardware System:**
65
66 * STM32L072CZT6 MCU
67 * SX1276/78 Wireless Chip 
68 * Power Consumption (exclude RS485 device):
69 ** Idle: 32mA@12v
70 ** 20dB Transmit: 65mA@12v
71
72 **Interface for Model:**
73
74 * RS485
75 * Power Input 7~~ 24V DC. 
76
77 **LoRa Spec:**
78
79 * Frequency Range:
80 ** Band 1 (HF): 862 ~~ 1020 Mhz
81 ** Band 2 (LF): 410 ~~ 528 Mhz
82 * 168 dB maximum link budget.
83 * +20 dBm - 100 mW constant RF output vs.
84 * +14 dBm high efficiency PA.
85 * Programmable bit rate up to 300 kbps.
86 * High sensitivity: down to -148 dBm.
87 * Bullet-proof front end: IIP3 = -12.5 dBm.
88 * Excellent blocking immunity.
89 * Low RX current of 10.3 mA, 200 nA register retention.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC.
96 * Packet engine up to 256 bytes with CRC
97
98
99 == 1.3 Features ==
100
101 * LoRaWAN Class A & Class C protocol (default Class C)
102 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
103 * AT Commands to change parameters
104 * Remote configure parameters via LoRa Downlink
105 * Firmware upgradable via program port
106 * Support multiply RS485 devices by flexible rules
107 * Support Modbus protocol
108 * Support Interrupt uplink (Since hardware version v1.2)
109
110
111 == 1.4 Applications ==
112
113 * Smart Buildings & Home Automation
114 * Logistics and Supply Chain Management
115 * Smart Metering
116 * Smart Agriculture
117 * Smart Cities
118 * Smart Factory
119
120
121 == 1.5 Firmware Change log ==
122
123 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
124
125
126 == 1.6 Hardware Change log ==
127
128 (((
129 (((
130 (((
131 v1.2: Add External Interrupt Pin.
132 )))
133
134 (((
135 v1.0: Release
136 )))
137
138
139 )))
140 )))
141
142 = 2. Power ON Device =
143
144 (((
145 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
146
147 * Power Source VIN to RS485-LN VIN+
148 * Power Source GND to RS485-LN VIN-
149
150 (((
151 Once there is power, the RS485-LN will be on.
152 )))
153
154 [[image:1653268091319-405.png]]
155
156
157 )))
158
159 = 3. Operation Mode =
160
161 == 3.1 How it works? ==
162
163 (((
164 (((
165 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
166 )))
167
168
169 )))
170
171 == 3.2 Example to join LoRaWAN network ==
172
173 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
174
175 [[image:1653268155545-638.png||height="334" width="724"]]
176
177
178 (((
179 (((
180 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
181 )))
182
183 (((
184 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
185 )))
186
187 [[image:1653268227651-549.png||height="592" width="720"]]
188
189
190 (((
191 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
192 )))
193
194 (((
195 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-LN.
196 )))
197
198 (((
199 Each RS485-LN is shipped with a sticker with unique device EUI:
200 )))
201 )))
202
203 [[image:1652953462722-299.png]]
204
205
206 (((
207 (((
208 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
209 )))
210
211 (((
212 **Add APP EUI in the application.**
213 )))
214 )))
215
216 [[image:image-20220519174512-1.png]]
217
218 [[image:image-20220519174512-2.png||height="323" width="720"]]
219
220 [[image:image-20220519174512-3.png||height="556" width="724"]]
221
222 [[image:image-20220519174512-4.png]]
223
224 You can also choose to create the device manually.
225
226 [[image:1652953542269-423.png||height="710" width="723"]]
227
228
229
230 **Add APP KEY and DEV EUI**
231
232 [[image:1652953553383-907.png||height="514" width="724"]]
233
234
235 (((
236 (% style="color:blue" %)**Step 2**(%%): Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
237 )))
238
239 [[image:1652953568895-172.png||height="232" width="724"]]
240
241
242 == 3.3 Configure Commands to read data ==
243
244 (((
245 (((
246 (((
247 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-LNviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
248 )))
249 )))
250
251 (((
252 (((
253 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
254 )))
255
256
257 )))
258 )))
259
260 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
261
262 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
263
264 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
265 |=(% style="width: 110px;" %)(((
266 **AT Commands**
267 )))|=(% style="width: 190px;" %)(((
268 **Description**
269 )))|=(% style="width: 190px;" %)(((
270 **Example**
271 )))
272 |(% style="width:110px" %)(((
273 AT+BAUDR
274 )))|(% style="width:190px" %)(((
275 Set the baud rate (for RS485 connection). Default Value is: 9600.
276 )))|(% style="width:190px" %)(((
277 (((
278 AT+BAUDR=9600
279 )))
280
281 (((
282 Options: (1200,2400,4800,14400,19200,115200)
283 )))
284 )))
285 |(% style="width:110px" %)(((
286 AT+PARITY
287 )))|(% style="width:190px" %)(((
288 Set UART parity (for RS485 connection)
289 )))|(% style="width:190px" %)(((
290 (((
291 AT+PARITY=0
292 )))
293
294 (((
295 Option: 0: no parity, 1: odd parity, 2: even parity
296 )))
297 )))
298 |(% style="width:110px" %)(((
299 AT+STOPBIT
300 )))|(% style="width:190px" %)(((
301 (((
302 Set serial stopbit (for RS485 connection)
303 )))
304
305 (((
306
307 )))
308 )))|(% style="width:190px" %)(((
309 (((
310 AT+STOPBIT=0 for 1bit
311 )))
312
313 (((
314 AT+STOPBIT=1 for 1.5 bit
315 )))
316
317 (((
318 AT+STOPBIT=2 for 2 bits
319 )))
320 )))
321
322
323
324 === 3.3.2 Configure sensors ===
325
326 (((
327 (((
328 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
329 )))
330 )))
331
332 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
333 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
334 |AT+CFGDEV|(% style="width:110px" %)(((
335 (((
336 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
337 )))
338
339 (((
340 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
341 )))
342
343 (((
344 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
345 )))
346 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
347
348
349
350 === 3.3.3 Configure read commands for each sampling ===
351
352 (((
353 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
354
355 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
356
357 This section describes how to achieve above goals.
358
359 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
360
361
362 (% style="color:#037691" %)**Each RS485 commands include two parts:**
363
364 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
365
366 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
367
368 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
369
370
371 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
372
373 Below are examples for the how above AT Commands works.
374
375
376 (% style="color:#037691" %)**AT+COMMANDx **(%%)**: **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
377
378 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
379 |(% style="width:496px" %)(((
380 (% style="color:#037691" %)**AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
381
382 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
383
384 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
385 )))
386
387 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
388
389 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
390
391
392 (% style="color:#037691" %)**AT+DATACUTx **(%%)**: **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
393
394 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
395 |(% style="width:510px" %)(((
396 **AT+DATACUTx=a,b,c**
397
398 * **a: length for the return of AT+COMMAND**
399 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
400 * **c: define the position for valid value.  **
401 )))
402
403 **Examples:**
404
405 * (% style="color:#037691" %)**Grab bytes**
406
407 [[image:image-20220602153621-1.png]]
408
409
410 * (% style="color:#037691" %)**Grab a section**
411
412 [[image:image-20220602153621-2.png]]
413
414
415 * (% style="color:#037691" %)**Grab different sections**
416
417 [[image:image-20220602153621-3.png]]
418
419
420
421 )))
422
423 === 3.3.4 Compose the uplink payload ===
424
425 (((
426 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
427
428
429 )))
430
431 (((
432 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
433
434
435 )))
436
437 (((
438 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
439 )))
440
441 (((
442 Final Payload is
443 )))
444
445 (((
446 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
447 )))
448
449 (((
450 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
451 )))
452
453 [[image:1653269759169-150.png||height="513" width="716"]]
454
455
456 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
457
458
459 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
460
461 Final Payload is
462
463 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
464
465
466 1. PAYVER: Defined by AT+PAYVER
467 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
468 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
469 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
470
471 [[image:image-20220602155039-4.png]]
472
473
474 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
475
476 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
477
478 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
479
480 DATA3=the rest of Valid value of RETURN10= **30**
481
482
483 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
484
485 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
486
487 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
488
489 * For US915 band, max 11 bytes for each uplink.
490
491 ~* For all other bands: max 51 bytes for each uplink.
492
493
494 Below are the uplink payloads:
495
496 [[image:1654157178836-407.png]]
497
498
499
500 === 3.3.5 Uplink on demand ===
501
502 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
503
504 Downlink control command:
505
506 **0x08 command**: Poll an uplink with current command set in RS485-LN.
507
508 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
509
510
511
512 === 3.3.6 Uplink on Interrupt ===
513
514 RS485-LN support external Interrupt uplink since hardware v1.2 release.
515
516 [[image:1654157342174-798.png]]
517
518 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
519
520
521 == 3.4 Uplink Payload ==
522
523
524 [[image:image-20220606110929-1.png]]
525
526 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
527
528
529 == 3.5 Configure RS485-LN via AT or Downlink ==
530
531 (((
532 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
533 )))
534
535 (((
536 There are two kinds of Commands:
537 )))
538
539 * (((
540 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
541 )))
542
543 * (((
544 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
545 )))
546
547 (((
548
549 )))
550
551
552 === 3.5.1 Common Commands ===
553
554 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
555
556
557 === 3.5.2 Sensor related commands ===
558
559 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
560
561 [[image:image-20220602163333-5.png||height="263" width="1160"]]
562
563 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
564
565
566 === 3.5.3 Sensor related commands ===
567
568
569
570
571 ==== (% style="color:#037691" %)**RS485 Debug Command**(%%) ====
572
573 (((
574 This command is used to configure the RS485 devices; they won’t be used during sampling.
575 )))
576
577 * (((
578 (% style="color:#037691" %)**AT Command**
579
580 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
581
582
583 )))
584
585 (((
586 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
587 )))
588
589 * (((
590 (% style="color:#037691" %)**Downlink Payload**
591 )))
592
593 (((
594 Format: A8 MM NN XX XX XX XX YY
595 )))
596
597 (((
598 Where:
599 )))
600
601 * (((
602 MM: 1: add CRC-16/MODBUS ; 0: no CRC
603 )))
604 * (((
605 NN: The length of RS485 command
606 )))
607 * (((
608 XX XX XX XX: RS485 command total NN bytes
609 )))
610 * (((
611 (((
612 YY: How many bytes will be uplink from the return of this RS485 command,
613 )))
614
615 * (((
616 if YY=0, RS485-LN will execute the downlink command without uplink;
617 )))
618 * (((
619 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
620 )))
621 * (((
622 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
623 )))
624 )))
625
626 (((
627 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
628 )))
629
630 (((
631 To connect a Modbus Alarm with below commands.
632 )))
633
634 * (((
635 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
636 )))
637
638 * (((
639 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
640 )))
641
642 (((
643 So if user want to use downlink command to control to RS485 Alarm, he can use:
644 )))
645
646 (((
647 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
648 )))
649
650 (((
651 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
652 )))
653
654 (((
655 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
656 )))
657
658 (((
659
660 )))
661
662 (((
663 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
664 )))
665
666 (((
667 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
668 )))
669
670 (((
671
672 )))
673
674 (((
675 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
676 )))
677
678 (((
679 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
680 )))
681
682 (((
683 [[image:1654159460680-153.png]]
684 )))
685
686
687
688
689 ==== **Set Payload version** ====
690
691 (((
692 This is the first byte of the uplink payload. RS485-LN can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
693 )))
694
695 * (((
696 **AT Command:**
697 )))
698
699 (% class="box infomessage" %)
700 (((
701 (((
702 **AT+PAYVER: Set PAYVER field = 1**
703 )))
704 )))
705
706 * (((
707 **Downlink Payload:**
708 )))
709
710 (((
711 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
712 )))
713
714 (((
715 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
716 )))
717
718
719
720
721 ==== **Set RS485 Sampling Commands** ====
722
723 (((
724 AT+COMMANDx or AT+DATACUTx
725 )))
726
727 (((
728 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
729 )))
730
731 (((
732
733 )))
734
735 * (((
736 **AT Command:**
737 )))
738
739 (% class="box infomessage" %)
740 (((
741 (((
742 **AT+COMMANDx: Configure RS485 read command to sensor.**
743 )))
744 )))
745
746 (% class="box infomessage" %)
747 (((
748 (((
749 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
750 )))
751 )))
752
753 (((
754
755 )))
756
757 * (((
758 **Downlink Payload:**
759 )))
760
761 (((
762 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
763 )))
764
765 (((
766 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
767 )))
768
769 (((
770 Format: AF MM NN LL XX XX XX XX YY
771 )))
772
773 (((
774 Where:
775 )))
776
777 * (((
778 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
779 )))
780 * (((
781 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
782 )))
783 * (((
784 LL:  The length of AT+COMMAND or AT+DATACUT command
785 )))
786 * (((
787 XX XX XX XX: AT+COMMAND or AT+DATACUT command
788 )))
789 * (((
790 YY:  If YY=0, RS485-LN will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
791 )))
792
793 (((
794 **Example:**
795 )))
796
797 (((
798 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
799 )))
800
801 (((
802 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
803 )))
804
805 (((
806 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
807 )))
808
809
810
811
812 ==== **Fast command to handle MODBUS device** ====
813
814 (((
815 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
816 )))
817
818 (((
819 This command is valid since v1.3 firmware version
820 )))
821
822 (((
823 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
824 )))
825
826 (((
827
828 )))
829
830 (((
831 **Example:**
832 )))
833
834 * (((
835 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
836 )))
837 * (((
838 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
839 )))
840 * (((
841 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
842 )))
843
844 [[image:image-20220602165351-6.png]]
845
846 [[image:image-20220602165351-7.png]]
847
848
849
850
851 ==== **RS485 command timeout** ====
852
853 (((
854 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
855 )))
856
857 (((
858 Default value: 0, range:  0 ~~ 65 seconds
859 )))
860
861 * (((
862 **AT Command:**
863 )))
864
865 (% class="box infomessage" %)
866 (((
867 (((
868 **AT+CMDDLaa=hex(bb cc)*1000**
869 )))
870 )))
871
872 (((
873 **Example:**
874 )))
875
876 (((
877 **AT+CMDDL1=1000** to send the open time to 1000ms
878 )))
879
880 (((
881
882 )))
883
884 * (((
885 **Downlink Payload:**
886 )))
887
888 (((
889 **0x AA aa bb cc**
890 )))
891
892 (((
893 Same as: AT+CMDDLaa=hex(bb cc)*1000
894 )))
895
896 (((
897 **Example:**
898 )))
899
900 (((
901 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
902 )))
903
904
905
906
907 ==== **Uplink payload mode** ====
908
909 (((
910 Define to use one uplink or multiple uplinks for the sampling.
911 )))
912
913 (((
914 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
915 )))
916
917 * (((
918 **AT Command:**
919 )))
920
921 (% class="box infomessage" %)
922 (((
923 (((
924 **AT+DATAUP=0**
925 )))
926 )))
927
928 (% class="box infomessage" %)
929 (((
930 (((
931 **AT+DATAUP=1**
932 )))
933 )))
934
935 (((
936
937 )))
938
939 * (((
940 **Downlink Payload:**
941 )))
942
943 (((
944 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
945 )))
946
947 (((
948 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
949 )))
950
951
952
953
954 ==== **Manually trigger an Uplink** ====
955
956 (((
957 Ask device to send an uplink immediately.
958 )))
959
960 * (((
961 **AT Command:**
962 )))
963
964 (((
965 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
966 )))
967
968 (((
969
970 )))
971
972 * (((
973 **Downlink Payload:**
974 )))
975
976 (((
977 **0x08 FF**, RS485-LN will immediately send an uplink.
978 )))
979
980
981
982
983 ==== **Clear RS485 Command** ====
984
985 (((
986 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
987 )))
988
989 * (((
990 **AT Command:**
991 )))
992
993 (((
994 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
995 )))
996
997 (((
998 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
999 )))
1000
1001 (((
1002 Example screen shot after clear all RS485 commands. 
1003 )))
1004
1005 (((
1006
1007 )))
1008
1009 (((
1010 The uplink screen shot is:
1011 )))
1012
1013 [[image:1654160691922-496.png]]
1014
1015
1016 * (((
1017 **Downlink Payload:**
1018 )))
1019
1020 (((
1021 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1022 )))
1023
1024
1025
1026
1027 ==== **Set Serial Communication Parameters** ====
1028
1029 (((
1030 Set the Rs485 serial communication parameters:
1031 )))
1032
1033 * (((
1034 **AT Command:**
1035 )))
1036
1037 (((
1038 Set Baud Rate:
1039 )))
1040
1041 (% class="box infomessage" %)
1042 (((
1043 (((
1044 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1045 )))
1046 )))
1047
1048 (((
1049 Set UART Parity
1050 )))
1051
1052 (% class="box infomessage" %)
1053 (((
1054 (((
1055 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1056 )))
1057 )))
1058
1059 (((
1060 Set STOPBIT
1061 )))
1062
1063 (% class="box infomessage" %)
1064 (((
1065 (((
1066 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1067 )))
1068 )))
1069
1070 (((
1071
1072 )))
1073
1074 * (((
1075 **Downlink Payload:**
1076 )))
1077
1078 (((
1079 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1080 )))
1081
1082 (((
1083 **Example:**
1084 )))
1085
1086 * (((
1087 A7 01 00 60   same as AT+BAUDR=9600
1088 )))
1089 * (((
1090 A7 01 04 80  same as AT+BAUDR=115200
1091 )))
1092
1093 (((
1094 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1095 )))
1096
1097 (((
1098 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1099 )))
1100
1101
1102
1103
1104 == 3.6 Listening mode for RS485 network ==
1105
1106 (((
1107 This feature support since firmware v1.4
1108 )))
1109
1110 (((
1111 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1112 )))
1113
1114 [[image:image-20220602171200-8.png||height="567" width="1007"]]
1115
1116 (((
1117 To enable the listening mode, use can run the command AT+RXMODE.
1118 )))
1119
1120 (((
1121
1122 )))
1123
1124 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
1125 |=(% style="width: 100px;" %)(((
1126 **Command example**
1127 )))|=(% style="width: 400px;" %)(((
1128 **Function**
1129 )))
1130 |(% style="width:100px" %)(((
1131 AT+RXMODE=1,10
1132 )))|(% style="width:400px" %)(((
1133 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1134 )))
1135 |(% style="width:100px" %)(((
1136 AT+RXMODE=2,500
1137 )))|(% style="width:400px" %)(((
1138 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1139 )))
1140 |(% style="width:100px" %)(((
1141 AT+RXMODE=0,0
1142 )))|(% style="width:400px" %)(((
1143 Disable listening mode. This is the default settings.
1144 )))
1145 |(% style="width:100px" %)(((
1146
1147 )))|(% style="width:400px" %)(((
1148 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1149 )))
1150
1151 (((
1152 **Downlink Command:**
1153 )))
1154
1155 (((
1156 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
1157 )))
1158
1159 (((
1160
1161 )))
1162
1163 (((
1164 **Example**:
1165 )))
1166
1167 (((
1168 The RS485-LN is set to AT+RXMODE=2,1000
1169 )))
1170
1171 (((
1172 There is a two Modbus commands in the RS485 network as below:
1173 )))
1174
1175 (((
1176 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
1177 )))
1178
1179 (((
1180 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1181 )))
1182
1183 (((
1184 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1185 )))
1186
1187 (((
1188 [[image:image-20220602171200-9.png]]
1189 )))
1190
1191 (((
1192
1193 )))
1194
1195 (((
1196 (((
1197 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
1198 )))
1199 )))
1200
1201
1202 == 3.7 Buttons ==
1203
1204
1205 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1206 |=(% style="width: 50px;" %)**Button**|=(% style="width: 361px;" %)**Feature**
1207 |(% style="width:50px" %)**ACT**|(% style="width:361px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1208 |(% style="width:50px" %)**RST**|(% style="width:361px" %)Reboot RS485
1209 |(% style="width:50px" %)**PRO**|(% style="width:361px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
1210
1211 == 3.8 LEDs ==
1212
1213
1214 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1215 |=(% style="width: 50px;" %)**LEDs**|=(% style="width: 380px;" %)**Feature**
1216 |**PWR**|Always on if there is power
1217 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
1218
1219 = 4. Case Study =
1220
1221 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1222
1223
1224 = 5. Use AT Command =
1225
1226 == 5.1 Access AT Command ==
1227
1228 (((
1229 RS485-LN supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-LN to use AT command, as below.
1230 )))
1231
1232 [[image:1654162355560-817.png]]
1233
1234
1235 (((
1236 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-LN. The default password is 123456. Below is the output for reference:
1237 )))
1238
1239 [[image:1654162368066-342.png]]
1240
1241
1242 (((
1243 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1244 )))
1245
1246
1247
1248 == 5.2 Common AT Command Sequence ==
1249
1250 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1251
1252 If device has not joined network yet:
1253
1254 (% class="box infomessage" %)
1255 (((
1256 **AT+FDR**
1257 )))
1258
1259 (% class="box infomessage" %)
1260 (((
1261 **AT+NJM=0**
1262 )))
1263
1264 (% class="box infomessage" %)
1265 (((
1266 **ATZ**
1267 )))
1268
1269
1270 (((
1271 If device already joined network:
1272 )))
1273
1274 (% class="box infomessage" %)
1275 (((
1276 **AT+NJM=0**
1277 )))
1278
1279 (% class="box infomessage" %)
1280 (((
1281 **ATZ**
1282 )))
1283
1284
1285 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1286
1287
1288 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1289
1290 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1291
1292 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1293
1294 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
1295
1296 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1297
1298 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1299
1300 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1301
1302 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1303
1304 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1305
1306 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1307
1308
1309 (% style="color:red" %)**Note:**
1310
1311 (((
1312 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1313 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1314 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1315 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1316 )))
1317
1318 [[image:1654162478620-421.png]]
1319
1320
1321 = 6. FAQ =
1322
1323 == 6.1 How to upgrade the image? ==
1324
1325 (((
1326 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
1327 )))
1328
1329 * (((
1330 Support new features
1331 )))
1332 * (((
1333 For bug fix
1334 )))
1335 * (((
1336 Change LoRaWAN bands.
1337 )))
1338
1339 (((
1340 Below shows the hardware connection for how to upload an image to RS485-LN:
1341 )))
1342
1343 [[image:1654162535040-878.png]]
1344
1345 (((
1346 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1347 )))
1348
1349 (((
1350 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1351 )))
1352
1353 (((
1354 **Step3: **Open flashloader; choose the correct COM port to update.
1355 )))
1356
1357 (((
1358 (((
1359 (((
1360 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1361 )))
1362 )))
1363 )))
1364
1365
1366 [[image:image-20220602175818-12.png]]
1367
1368
1369 [[image:image-20220602175848-13.png]]
1370
1371
1372 [[image:image-20220602175912-14.png]]
1373
1374
1375 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1376
1377 [[image:image-20220602175638-10.png]]
1378
1379
1380 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1381
1382 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1383
1384
1385 == 6.3 How many RS485-Slave can RS485-LN connects? ==
1386
1387 The RS485-LN can support max 32 RS485 devices. Each uplink command of RS485-LN can support max 16 different RS485 command. So RS485-LN can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1388
1389
1390 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1391
1392 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1393
1394 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1395
1396
1397 = 7. Trouble Shooting =
1398
1399 == 7.1 Downlink doesn’t work, how to solve it? ==
1400
1401 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1402
1403
1404 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1405
1406 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1407
1408
1409 = 8. Order Info =
1410
1411 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1412
1413 (% style="color:blue" %)**XXX:**
1414
1415 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1416 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1417 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1418 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1419 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1420 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1421 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1422 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1423 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1424 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1425
1426 = 9.Packing Info =
1427
1428
1429 **Package Includes**:
1430
1431 * RS485-LN x 1
1432 * Stick Antenna for LoRa RF part x 1
1433 * Program cable x 1
1434
1435 **Dimension and weight**:
1436
1437 * Device Size: 13.5 x 7 x 3 cm
1438 * Device Weight: 105g
1439 * Package Size / pcs : 14.5 x 8 x 5 cm
1440 * Weight / pcs : 170g
1441
1442 = 10. FCC Caution for RS485LN-US915 =
1443
1444 (((
1445 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1446 )))
1447
1448 (((
1449 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1450 )))
1451
1452 (((
1453
1454 )))
1455
1456 (((
1457 **IMPORTANT NOTE:**
1458 )))
1459
1460 (((
1461 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1462 )))
1463
1464 (((
1465 —Reorient or relocate the receiving antenna.
1466 )))
1467
1468 (((
1469 —Increase the separation between the equipment and receiver.
1470 )))
1471
1472 (((
1473 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1474 )))
1475
1476 (((
1477 —Consult the dealer or an experienced radio/TV technician for help.
1478 )))
1479
1480 (((
1481
1482 )))
1483
1484 (((
1485 **FCC Radiation Exposure Statement:**
1486 )))
1487
1488 (((
1489 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1490 )))
1491
1492
1493 = 11. Support =
1494
1495 * (((
1496 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1497 )))
1498 * (((
1499 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1500 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0