Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1.Introduction =
21
22 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
23
24 (((
25 (((
26 (((
27
28
29 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
30 )))
31 )))
32
33 (((
34 (((
35 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
36 )))
37 )))
38
39 (((
40 (((
41 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
42 )))
43 )))
44
45 (((
46 (((
47 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
48 )))
49
50 (((
51 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
52
53
54 )))
55 )))
56 )))
57
58 [[image:1653267211009-519.png||height="419" width="724"]]
59
60
61 == 1.2 Specifications ==
62
63
64 **Hardware System:**
65
66 * STM32L072CZT6 MCU
67 * SX1276/78 Wireless Chip 
68 * Power Consumption (exclude RS485 device):
69 ** Idle: 32mA@12v
70 ** 20dB Transmit: 65mA@12v
71
72
73 **Interface for Model:**
74
75 * RS485
76 * Power Input 7~~ 24V DC. 
77
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * +14 dBm high efficiency PA.
87 * Programmable bit rate up to 300 kbps.
88 * High sensitivity: down to -148 dBm.
89 * Bullet-proof front end: IIP3 = -12.5 dBm.
90 * Excellent blocking immunity.
91 * Low RX current of 10.3 mA, 200 nA register retention.
92 * Fully integrated synthesizer with a resolution of 61 Hz.
93 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
94 * Built-in bit synchronizer for clock recovery.
95 * Preamble detection.
96 * 127 dB Dynamic Range RSSI.
97 * Automatic RF Sense and CAD with ultra-fast AFC.
98 * Packet engine up to 256 bytes with CRC
99
100
101
102 == 1.3 Features ==
103
104 * LoRaWAN Class A & Class C protocol (default Class C)
105 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
106 * AT Commands to change parameters
107 * Remote configure parameters via LoRa Downlink
108 * Firmware upgradable via program port
109 * Support multiply RS485 devices by flexible rules
110 * Support Modbus protocol
111 * Support Interrupt uplink (Since hardware version v1.2)
112
113
114
115 == 1.4 Applications ==
116
117 * Smart Buildings & Home Automation
118 * Logistics and Supply Chain Management
119 * Smart Metering
120 * Smart Agriculture
121 * Smart Cities
122 * Smart Factory
123
124
125
126 == 1.5 Firmware Change log ==
127
128 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
129
130
131 == 1.6 Hardware Change log ==
132
133 (((
134 (((
135 (((
136 v1.2: Add External Interrupt Pin.
137 )))
138
139 (((
140 v1.0: Release
141 )))
142
143
144 )))
145 )))
146
147 = 2. Power ON Device =
148
149 (((
150 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
151
152 * Power Source VIN to RS485-LN VIN+
153 * Power Source GND to RS485-LN VIN-
154
155 (((
156 Once there is power, the RS485-LN will be on.
157 )))
158
159 [[image:1653268091319-405.png]]
160
161
162 )))
163
164 = 3. Operation Mode =
165
166 == 3.1 How it works? ==
167
168 (((
169 (((
170 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
171 )))
172
173
174 )))
175
176 == 3.2 Example to join LoRaWAN network ==
177
178 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
179
180 [[image:1653268155545-638.png||height="334" width="724"]]
181
182
183 (((
184 (((
185 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
186 )))
187
188 (((
189 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
190 )))
191
192 [[image:1653268227651-549.png||height="592" width="720"]]
193
194
195 (((
196 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
197 )))
198
199 (((
200 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-LN.
201 )))
202
203 (((
204 Each RS485-LN is shipped with a sticker with unique device EUI:
205 )))
206 )))
207
208 [[image:1652953462722-299.png]]
209
210
211 (((
212 (((
213 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
214 )))
215
216 (((
217 **Add APP EUI in the application.**
218 )))
219 )))
220
221 [[image:image-20220519174512-1.png]]
222
223 [[image:image-20220519174512-2.png||height="323" width="720"]]
224
225 [[image:image-20220519174512-3.png||height="556" width="724"]]
226
227 [[image:image-20220519174512-4.png]]
228
229 You can also choose to create the device manually.
230
231 [[image:1652953542269-423.png||height="710" width="723"]]
232
233
234
235 **Add APP KEY and DEV EUI**
236
237 [[image:1652953553383-907.png||height="514" width="724"]]
238
239
240 (((
241 (% style="color:blue" %)**Step 2**(%%): Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
242 )))
243
244 [[image:1652953568895-172.png||height="232" width="724"]]
245
246
247 == 3.3 Configure Commands to read data ==
248
249 (((
250 (((
251 (((
252 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
253 )))
254 )))
255
256 (((
257 (((
258 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
259 )))
260
261
262 )))
263 )))
264
265 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
266
267 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
268
269 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
270 |=(% style="width: 110px;" %)(((
271 **AT Commands**
272 )))|=(% style="width: 190px;" %)(((
273 **Description**
274 )))|=(% style="width: 190px;" %)(((
275 **Example**
276 )))
277 |(% style="width:110px" %)(((
278 AT+BAUDR
279 )))|(% style="width:190px" %)(((
280 Set the baud rate (for RS485 connection). Default Value is: 9600.
281 )))|(% style="width:190px" %)(((
282 (((
283 AT+BAUDR=9600
284 )))
285
286 (((
287 Options: (1200,2400,4800,14400,19200,115200)
288 )))
289 )))
290 |(% style="width:110px" %)(((
291 AT+PARITY
292 )))|(% style="width:190px" %)(((
293 Set UART parity (for RS485 connection)
294 )))|(% style="width:190px" %)(((
295 (((
296 AT+PARITY=0
297 )))
298
299 (((
300 Option: 0: no parity, 1: odd parity, 2: even parity
301 )))
302 )))
303 |(% style="width:110px" %)(((
304 AT+STOPBIT
305 )))|(% style="width:190px" %)(((
306 (((
307 Set serial stopbit (for RS485 connection)
308 )))
309
310 (((
311
312 )))
313 )))|(% style="width:190px" %)(((
314 (((
315 AT+STOPBIT=0 for 1bit
316 )))
317
318 (((
319 AT+STOPBIT=1 for 1.5 bit
320 )))
321
322 (((
323 AT+STOPBIT=2 for 2 bits
324 )))
325 )))
326
327
328
329
330 === 3.3.2 Configure sensors ===
331
332 (((
333 (((
334 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
335 )))
336 )))
337
338 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
339 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
340 |AT+CFGDEV|(% style="width:110px" %)(((
341 (((
342 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
343 )))
344
345 (((
346 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
347 )))
348
349 (((
350 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
351 )))
352 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
353
354
355
356
357 === 3.3.3 Configure read commands for each sampling ===
358
359 (((
360 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
361
362 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
363
364 This section describes how to achieve above goals.
365
366 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
367
368
369 **Each RS485 commands include two parts:**
370
371 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
372
373 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
374
375 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
376
377
378 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
379
380
381 Below are examples for the how above AT Commands works.
382
383
384 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
385
386 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
387 |(% style="width:496px" %)(((
388 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
389
390 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
391
392 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
393 )))
394
395 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
396
397 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
398
399
400 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
401
402 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
403 |(% style="width:510px" %)(((
404 **AT+DATACUTx=a,b,c**
405
406 * **a: length for the return of AT+COMMAND**
407 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
408 * **c: define the position for valid value.  **
409 )))
410
411 **Examples:**
412
413 * Grab bytes:
414
415 [[image:image-20220602153621-1.png]]
416
417
418 * Grab a section.
419
420 [[image:image-20220602153621-2.png]]
421
422
423 * Grab different sections.
424
425 [[image:image-20220602153621-3.png]]
426
427
428
429 )))
430
431 === 3.3.4 Compose the uplink payload ===
432
433 (((
434 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
435
436
437 )))
438
439 (((
440 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
441
442
443 )))
444
445 (((
446 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
447 )))
448
449 (((
450 Final Payload is
451 )))
452
453 (((
454 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
455 )))
456
457 (((
458 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
459 )))
460
461 [[image:1653269759169-150.png||height="513" width="716"]]
462
463
464 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
465
466
467 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
468
469 Final Payload is
470
471 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
472
473
474 1. PAYVER: Defined by AT+PAYVER
475 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
476 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
477 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
478
479 [[image:image-20220602155039-4.png]]
480
481
482 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
483
484 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
485
486 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
487
488 DATA3=the rest of Valid value of RETURN10= **30**
489
490
491 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
492
493 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
494
495 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
496
497 * For US915 band, max 11 bytes for each uplink.
498
499 ~* For all other bands: max 51 bytes for each uplink.
500
501
502 Below are the uplink payloads:
503
504 [[image:1654157178836-407.png]]
505
506
507 === 3.3.5 Uplink on demand ===
508
509 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
510
511 Downlink control command:
512
513 **0x08 command**: Poll an uplink with current command set in RS485-LN.
514
515 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
516
517
518
519 === 3.3.6 Uplink on Interrupt ===
520
521 RS485-LN support external Interrupt uplink since hardware v1.2 release.
522
523 [[image:1654157342174-798.png]]
524
525 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
526
527
528 == 3.4 Uplink Payload ==
529
530
531 [[image:image-20220606110929-1.png]]
532
533 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
534
535
536 == 3.5 Configure RS485-LN via AT or Downlink ==
537
538 (((
539 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
540 )))
541
542 (((
543 There are two kinds of Commands:
544 )))
545
546 * (((
547 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
548 )))
549
550 * (((
551 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
552 )))
553
554 (((
555
556 )))
557
558
559 === 3.5.1 Common Commands ===
560
561 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
562
563
564 === 3.5.2 Sensor related commands ===
565
566 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
567
568 [[image:image-20220602163333-5.png||height="263" width="1160"]]
569
570 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
571
572
573 === 3.5.3 Sensor related commands ===
574
575
576
577
578 ==== **RS485 Debug Command** ====
579
580 (((
581 This command is used to configure the RS485 devices; they won’t be used during sampling.
582 )))
583
584 * (((
585 **AT Command**
586 )))
587
588 (% class="box infomessage" %)
589 (((
590 (((
591 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
592 )))
593 )))
594
595 (((
596 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
597 )))
598
599 * (((
600 **Downlink Payload**
601 )))
602
603 (((
604 Format: A8 MM NN XX XX XX XX YY
605 )))
606
607 (((
608 Where:
609 )))
610
611 * (((
612 MM: 1: add CRC-16/MODBUS ; 0: no CRC
613 )))
614 * (((
615 NN: The length of RS485 command
616 )))
617 * (((
618 XX XX XX XX: RS485 command total NN bytes
619 )))
620 * (((
621 (((
622 YY: How many bytes will be uplink from the return of this RS485 command,
623 )))
624
625 * (((
626 if YY=0, RS485-LN will execute the downlink command without uplink;
627 )))
628 * (((
629 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
630 )))
631 * (((
632 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
633 )))
634 )))
635
636 (((
637 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
638 )))
639
640 (((
641 To connect a Modbus Alarm with below commands.
642 )))
643
644 * (((
645 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
646 )))
647
648 * (((
649 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
650 )))
651
652 (((
653 So if user want to use downlink command to control to RS485 Alarm, he can use:
654 )))
655
656 (((
657 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
658 )))
659
660 (((
661 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
662 )))
663
664 (((
665 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
666 )))
667
668 (((
669
670 )))
671
672 (((
673 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
674 )))
675
676 (((
677 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
678 )))
679
680 (((
681
682 )))
683
684 (((
685 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
686 )))
687
688 (((
689 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
690 )))
691
692 (((
693 [[image:1654159460680-153.png]]
694 )))
695
696
697
698
699 ==== **Set Payload version** ====
700
701 (((
702 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
703 )))
704
705 * (((
706 **AT Command:**
707 )))
708
709 (% class="box infomessage" %)
710 (((
711 (((
712 **AT+PAYVER: Set PAYVER field = 1**
713 )))
714 )))
715
716 * (((
717 **Downlink Payload:**
718 )))
719
720 (((
721 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
722 )))
723
724 (((
725 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
726 )))
727
728
729
730
731 ==== **Set RS485 Sampling Commands** ====
732
733 (((
734 AT+COMMANDx or AT+DATACUTx
735 )))
736
737 (((
738 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
739 )))
740
741 (((
742
743 )))
744
745 * (((
746 **AT Command:**
747 )))
748
749 (% class="box infomessage" %)
750 (((
751 (((
752 **AT+COMMANDx: Configure RS485 read command to sensor.**
753 )))
754 )))
755
756 (% class="box infomessage" %)
757 (((
758 (((
759 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
760 )))
761 )))
762
763 (((
764
765 )))
766
767 * (((
768 **Downlink Payload:**
769 )))
770
771 (((
772 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
773 )))
774
775 (((
776 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
777 )))
778
779 (((
780 Format: AF MM NN LL XX XX XX XX YY
781 )))
782
783 (((
784 Where:
785 )))
786
787 * (((
788 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
789 )))
790 * (((
791 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
792 )))
793 * (((
794 LL:  The length of AT+COMMAND or AT+DATACUT command
795 )))
796 * (((
797 XX XX XX XX: AT+COMMAND or AT+DATACUT command
798 )))
799 * (((
800 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
801 )))
802
803 (((
804 **Example:**
805 )))
806
807 (((
808 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
809 )))
810
811 (((
812 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
813 )))
814
815 (((
816 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
817 )))
818
819
820
821
822 ==== **Fast command to handle MODBUS device** ====
823
824 (((
825 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
826 )))
827
828 (((
829 This command is valid since v1.3 firmware version
830 )))
831
832 (((
833 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
834 )))
835
836 (((
837
838 )))
839
840 (((
841 **Example:**
842 )))
843
844 * (((
845 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
846 )))
847 * (((
848 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
849 )))
850 * (((
851 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
852 )))
853
854 [[image:image-20220602165351-6.png]]
855
856 [[image:image-20220602165351-7.png]]
857
858
859
860
861 ==== **RS485 command timeout** ====
862
863 (((
864 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
865 )))
866
867 (((
868 Default value: 0, range:  0 ~~ 65 seconds
869 )))
870
871 * (((
872 **AT Command:**
873 )))
874
875 (% class="box infomessage" %)
876 (((
877 (((
878 **AT+CMDDLaa=hex(bb cc)*1000**
879 )))
880 )))
881
882 (((
883 **Example:**
884 )))
885
886 (((
887 **AT+CMDDL1=1000** to send the open time to 1000ms
888 )))
889
890 (((
891
892 )))
893
894 * (((
895 **Downlink Payload:**
896 )))
897
898 (((
899 **0x AA aa bb cc**
900 )))
901
902 (((
903 Same as: AT+CMDDLaa=hex(bb cc)*1000
904 )))
905
906 (((
907 **Example:**
908 )))
909
910 (((
911 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
912 )))
913
914
915
916
917 ==== **Uplink payload mode** ====
918
919 (((
920 Define to use one uplink or multiple uplinks for the sampling.
921 )))
922
923 (((
924 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
925 )))
926
927 * (((
928 **AT Command:**
929 )))
930
931 (% class="box infomessage" %)
932 (((
933 (((
934 **AT+DATAUP=0**
935 )))
936 )))
937
938 (% class="box infomessage" %)
939 (((
940 (((
941 **AT+DATAUP=1**
942 )))
943 )))
944
945 (((
946
947 )))
948
949 * (((
950 **Downlink Payload:**
951 )))
952
953 (((
954 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
955 )))
956
957 (((
958 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
959 )))
960
961
962
963
964 ==== **Manually trigger an Uplink** ====
965
966 (((
967 Ask device to send an uplink immediately.
968 )))
969
970 * (((
971 **AT Command:**
972 )))
973
974 (((
975 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
976 )))
977
978 (((
979
980 )))
981
982 * (((
983 **Downlink Payload:**
984 )))
985
986 (((
987 **0x08 FF**, RS485-LN will immediately send an uplink.
988 )))
989
990
991
992
993 ==== **Clear RS485 Command** ====
994
995 (((
996 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
997 )))
998
999 * (((
1000 **AT Command:**
1001 )))
1002
1003 (((
1004 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
1005 )))
1006
1007 (((
1008 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1009 )))
1010
1011 (((
1012 Example screen shot after clear all RS485 commands. 
1013 )))
1014
1015 (((
1016
1017 )))
1018
1019 (((
1020 The uplink screen shot is:
1021 )))
1022
1023 [[image:1654160691922-496.png]]
1024
1025
1026 * (((
1027 **Downlink Payload:**
1028 )))
1029
1030 (((
1031 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1032 )))
1033
1034
1035
1036
1037 ==== **Set Serial Communication Parameters** ====
1038
1039 (((
1040 Set the Rs485 serial communication parameters:
1041 )))
1042
1043 * (((
1044 **AT Command:**
1045 )))
1046
1047 (((
1048 Set Baud Rate:
1049 )))
1050
1051 (% class="box infomessage" %)
1052 (((
1053 (((
1054 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1055 )))
1056 )))
1057
1058 (((
1059 Set UART Parity
1060 )))
1061
1062 (% class="box infomessage" %)
1063 (((
1064 (((
1065 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1066 )))
1067 )))
1068
1069 (((
1070 Set STOPBIT
1071 )))
1072
1073 (% class="box infomessage" %)
1074 (((
1075 (((
1076 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1077 )))
1078 )))
1079
1080 (((
1081
1082 )))
1083
1084 * (((
1085 **Downlink Payload:**
1086 )))
1087
1088 (((
1089 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1090 )))
1091
1092 (((
1093 **Example:**
1094 )))
1095
1096 * (((
1097 A7 01 00 60   same as AT+BAUDR=9600
1098 )))
1099 * (((
1100 A7 01 04 80  same as AT+BAUDR=115200
1101 )))
1102
1103 (((
1104 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1105 )))
1106
1107 (((
1108 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1109 )))
1110
1111
1112
1113
1114 == 3.6 Listening mode for RS485 network ==
1115
1116 (((
1117 This feature support since firmware v1.4
1118 )))
1119
1120 (((
1121 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1122 )))
1123
1124 [[image:image-20220602171200-8.png||height="567" width="1007"]]
1125
1126 (((
1127 To enable the listening mode, use can run the command AT+RXMODE.
1128 )))
1129
1130 (((
1131
1132 )))
1133
1134 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
1135 |=(% style="width: 100px;" %)(((
1136 **Command example**
1137 )))|=(% style="width: 400px;" %)(((
1138 **Function**
1139 )))
1140 |(% style="width:100px" %)(((
1141 AT+RXMODE=1,10
1142 )))|(% style="width:400px" %)(((
1143 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1144 )))
1145 |(% style="width:100px" %)(((
1146 AT+RXMODE=2,500
1147 )))|(% style="width:400px" %)(((
1148 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1149 )))
1150 |(% style="width:100px" %)(((
1151 AT+RXMODE=0,0
1152 )))|(% style="width:400px" %)(((
1153 Disable listening mode. This is the default settings.
1154 )))
1155 |(% style="width:100px" %)(((
1156
1157 )))|(% style="width:400px" %)(((
1158 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1159 )))
1160
1161 (((
1162 **Downlink Command:**
1163 )))
1164
1165 (((
1166 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
1167 )))
1168
1169 (((
1170
1171 )))
1172
1173 (((
1174 **Example**:
1175 )))
1176
1177 (((
1178 The RS485-LN is set to AT+RXMODE=2,1000
1179 )))
1180
1181 (((
1182 There is a two Modbus commands in the RS485 network as below:
1183 )))
1184
1185 (((
1186 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
1187 )))
1188
1189 (((
1190 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1191 )))
1192
1193 (((
1194 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1195 )))
1196
1197 (((
1198 [[image:image-20220602171200-9.png]]
1199 )))
1200
1201 (((
1202
1203 )))
1204
1205 (((
1206 (((
1207 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
1208 )))
1209 )))
1210
1211
1212 == 3.7 Buttons ==
1213
1214
1215 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1216 |=(% style="width: 50px;" %)**Button**|=(% style="width: 361px;" %)**Feature**
1217 |(% style="width:50px" %)**ACT**|(% style="width:361px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1218 |(% style="width:50px" %)**RST**|(% style="width:361px" %)Reboot RS485
1219 |(% style="width:50px" %)**PRO**|(% style="width:361px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
1220
1221 == 3.8 LEDs ==
1222
1223
1224 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1225 |=(% style="width: 50px;" %)**LEDs**|=(% style="width: 380px;" %)**Feature**
1226 |**PWR**|Always on if there is power
1227 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
1228
1229 = 4. Case Study =
1230
1231 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1232
1233
1234 = 5. Use AT Command =
1235
1236 == 5.1 Access AT Command ==
1237
1238 (((
1239 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1240 )))
1241
1242 [[image:1654162355560-817.png]]
1243
1244
1245 (((
1246 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1247 )))
1248
1249 [[image:1654162368066-342.png]]
1250
1251
1252 (((
1253 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1254 )))
1255
1256
1257
1258 == 5.2 Common AT Command Sequence ==
1259
1260 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1261
1262 If device has not joined network yet:
1263
1264 (% class="box infomessage" %)
1265 (((
1266 **AT+FDR**
1267 )))
1268
1269 (% class="box infomessage" %)
1270 (((
1271 **AT+NJM=0**
1272 )))
1273
1274 (% class="box infomessage" %)
1275 (((
1276 **ATZ**
1277 )))
1278
1279
1280 (((
1281 If device already joined network:
1282 )))
1283
1284 (% class="box infomessage" %)
1285 (((
1286 **AT+NJM=0**
1287 )))
1288
1289 (% class="box infomessage" %)
1290 (((
1291 **ATZ**
1292 )))
1293
1294
1295 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1296
1297
1298 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1299
1300 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1301
1302 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1303
1304 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
1305
1306 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1307
1308 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1309
1310 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1311
1312 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1313
1314 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1315
1316 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1317
1318
1319 (% style="color:red" %)**Note:**
1320
1321 (((
1322 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1323 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1324 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1325 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1326 )))
1327
1328 [[image:1654162478620-421.png]]
1329
1330
1331 = 6. FAQ =
1332
1333 == 6.1 How to upgrade the image? ==
1334
1335 (((
1336 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
1337 )))
1338
1339 * (((
1340 Support new features
1341 )))
1342 * (((
1343 For bug fix
1344 )))
1345 * (((
1346 Change LoRaWAN bands.
1347 )))
1348
1349 (((
1350 Below shows the hardware connection for how to upload an image to RS485-LN:
1351 )))
1352
1353 [[image:1654162535040-878.png]]
1354
1355 (((
1356 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1357 )))
1358
1359 (((
1360 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1361 )))
1362
1363 (((
1364 **Step3: **Open flashloader; choose the correct COM port to update.
1365 )))
1366
1367 (((
1368 (((
1369 (((
1370 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1371 )))
1372 )))
1373 )))
1374
1375
1376 [[image:image-20220602175818-12.png]]
1377
1378
1379 [[image:image-20220602175848-13.png]]
1380
1381
1382 [[image:image-20220602175912-14.png]]
1383
1384
1385 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1386
1387 [[image:image-20220602175638-10.png]]
1388
1389
1390 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1391
1392 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1393
1394
1395 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1396
1397 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1398
1399
1400 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1401
1402 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1403
1404 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1405
1406
1407 = 7. Trouble Shooting =
1408
1409 == 7.1 Downlink doesn’t work, how to solve it? ==
1410
1411 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1412
1413
1414 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1415
1416 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1417
1418
1419 = 8. Order Info =
1420
1421 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1422
1423 (% style="color:blue" %)**XXX:**
1424
1425 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1426 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1427 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1428 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1429 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1430 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1431 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1432 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1433 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1434 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1435
1436 = 9.Packing Info =
1437
1438
1439 **Package Includes**:
1440
1441 * RS485-LN x 1
1442 * Stick Antenna for LoRa RF part x 1
1443 * Program cable x 1
1444
1445 **Dimension and weight**:
1446
1447 * Device Size: 13.5 x 7 x 3 cm
1448 * Device Weight: 105g
1449 * Package Size / pcs : 14.5 x 8 x 5 cm
1450 * Weight / pcs : 170g
1451
1452 = 10. FCC Caution for RS485LN-US915 =
1453
1454 (((
1455 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1456 )))
1457
1458 (((
1459 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1460 )))
1461
1462 (((
1463
1464 )))
1465
1466 (((
1467 **IMPORTANT NOTE:**
1468 )))
1469
1470 (((
1471 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1472 )))
1473
1474 (((
1475 —Reorient or relocate the receiving antenna.
1476 )))
1477
1478 (((
1479 —Increase the separation between the equipment and receiver.
1480 )))
1481
1482 (((
1483 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1484 )))
1485
1486 (((
1487 —Consult the dealer or an experienced radio/TV technician for help.
1488 )))
1489
1490 (((
1491
1492 )))
1493
1494 (((
1495 **FCC Radiation Exposure Statement:**
1496 )))
1497
1498 (((
1499 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1500 )))
1501
1502
1503 = 11. Support =
1504
1505 * (((
1506 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1507 )))
1508 * (((
1509 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1510 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0