Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1.Introduction =
21
22 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
23
24 (((
25 (((
26 (((
27
28
29 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
30 )))
31 )))
32
33 (((
34 (((
35 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
36 )))
37 )))
38
39 (((
40 (((
41 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
42 )))
43 )))
44
45 (((
46 (((
47 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
48 )))
49
50 (((
51 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
52
53
54 )))
55 )))
56 )))
57
58 [[image:1653267211009-519.png||height="419" width="724"]]
59
60
61 == 1.2 Specifications ==
62
63
64 **Hardware System:**
65
66 * STM32L072CZT6 MCU
67 * SX1276/78 Wireless Chip 
68 * Power Consumption (exclude RS485 device):
69 ** Idle: 32mA@12v
70 ** 20dB Transmit: 65mA@12v
71
72
73 **Interface for Model:**
74
75 * RS485
76 * Power Input 7~~ 24V DC. 
77
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * +14 dBm high efficiency PA.
87 * Programmable bit rate up to 300 kbps.
88 * High sensitivity: down to -148 dBm.
89 * Bullet-proof front end: IIP3 = -12.5 dBm.
90 * Excellent blocking immunity.
91 * Low RX current of 10.3 mA, 200 nA register retention.
92 * Fully integrated synthesizer with a resolution of 61 Hz.
93 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
94 * Built-in bit synchronizer for clock recovery.
95 * Preamble detection.
96 * 127 dB Dynamic Range RSSI.
97 * Automatic RF Sense and CAD with ultra-fast AFC.
98 * Packet engine up to 256 bytes with CRC
99
100
101
102 == 1.3 Features ==
103
104 * LoRaWAN Class A & Class C protocol (default Class C)
105 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
106 * AT Commands to change parameters
107 * Remote configure parameters via LoRa Downlink
108 * Firmware upgradable via program port
109 * Support multiply RS485 devices by flexible rules
110 * Support Modbus protocol
111 * Support Interrupt uplink (Since hardware version v1.2)
112
113
114
115 == 1.4 Applications ==
116
117 * Smart Buildings & Home Automation
118 * Logistics and Supply Chain Management
119 * Smart Metering
120 * Smart Agriculture
121 * Smart Cities
122 * Smart Factory
123
124
125
126 == 1.5 Firmware Change log ==
127
128 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
129
130
131 == 1.6 Hardware Change log ==
132
133 (((
134 (((
135 (((
136 v1.2: Add External Interrupt Pin.
137 )))
138
139 (((
140 v1.0: Release
141 )))
142
143
144 )))
145 )))
146
147 = 2. Power ON Device =
148
149 (((
150 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
151
152 * Power Source VIN to RS485-LN VIN+
153 * Power Source GND to RS485-LN VIN-
154
155 (((
156 Once there is power, the RS485-LN will be on.
157 )))
158
159 [[image:1653268091319-405.png]]
160
161
162 )))
163
164 = 3. Operation Mode =
165
166 == 3.1 How it works? ==
167
168 (((
169 (((
170 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
171 )))
172
173
174 )))
175
176 == 3.2 Example to join LoRaWAN network ==
177
178 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
179
180 [[image:1653268155545-638.png||height="334" width="724"]]
181
182
183 (((
184 (((
185 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
186 )))
187
188 (((
189 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
190 )))
191
192 [[image:1653268227651-549.png||height="592" width="720"]]
193
194
195 (((
196 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
197 )))
198
199 (((
200 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-LN.
201 )))
202
203 (((
204 Each RS485-LN is shipped with a sticker with unique device EUI:
205 )))
206 )))
207
208 [[image:1652953462722-299.png]]
209
210
211 (((
212 (((
213 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
214 )))
215
216 (((
217 **Add APP EUI in the application.**
218 )))
219 )))
220
221 [[image:image-20220519174512-1.png]]
222
223 [[image:image-20220519174512-2.png||height="323" width="720"]]
224
225 [[image:image-20220519174512-3.png||height="556" width="724"]]
226
227 [[image:image-20220519174512-4.png]]
228
229 You can also choose to create the device manually.
230
231 [[image:1652953542269-423.png||height="710" width="723"]]
232
233
234
235 **Add APP KEY and DEV EUI**
236
237 [[image:1652953553383-907.png||height="514" width="724"]]
238
239
240 (((
241 (% style="color:blue" %)**Step 2**(%%): Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
242 )))
243
244 [[image:1652953568895-172.png||height="232" width="724"]]
245
246
247 == 3.3 Configure Commands to read data ==
248
249 (((
250 (((
251 (((
252 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
253 )))
254 )))
255
256 (((
257 (((
258 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
259 )))
260
261
262 )))
263 )))
264
265 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
266
267 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
268
269 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
270 |=(% style="width: 110px;" %)(((
271 **AT Commands**
272 )))|=(% style="width: 190px;" %)(((
273 **Description**
274 )))|=(% style="width: 190px;" %)(((
275 **Example**
276 )))
277 |(% style="width:110px" %)(((
278 AT+BAUDR
279 )))|(% style="width:190px" %)(((
280 Set the baud rate (for RS485 connection). Default Value is: 9600.
281 )))|(% style="width:190px" %)(((
282 (((
283 AT+BAUDR=9600
284 )))
285
286 (((
287 Options: (1200,2400,4800,14400,19200,115200)
288 )))
289 )))
290 |(% style="width:110px" %)(((
291 AT+PARITY
292 )))|(% style="width:190px" %)(((
293 Set UART parity (for RS485 connection)
294 )))|(% style="width:190px" %)(((
295 (((
296 AT+PARITY=0
297 )))
298
299 (((
300 Option: 0: no parity, 1: odd parity, 2: even parity
301 )))
302 )))
303 |(% style="width:110px" %)(((
304 AT+STOPBIT
305 )))|(% style="width:190px" %)(((
306 (((
307 Set serial stopbit (for RS485 connection)
308 )))
309
310 (((
311
312 )))
313 )))|(% style="width:190px" %)(((
314 (((
315 AT+STOPBIT=0 for 1bit
316 )))
317
318 (((
319 AT+STOPBIT=1 for 1.5 bit
320 )))
321
322 (((
323 AT+STOPBIT=2 for 2 bits
324 )))
325 )))
326
327
328
329
330 === 3.3.2 Configure sensors ===
331
332 (((
333 (((
334 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
335 )))
336 )))
337
338 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
339 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
340 |AT+CFGDEV|(% style="width:110px" %)(((
341 (((
342 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
343 )))
344
345 (((
346 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
347 )))
348
349 (((
350 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
351 )))
352 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
353
354
355
356
357 === 3.3.3 Configure read commands for each sampling ===
358
359 (((
360 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
361
362 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
363
364 This section describes how to achieve above goals.
365
366 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
367
368
369 **Each RS485 commands include two parts:**
370
371 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
372
373 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
374
375 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
376
377
378 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
379
380
381 Below are examples for the how above AT Commands works.
382
383
384 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
385
386 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
387 |(% style="width:496px" %)(((
388 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
389
390 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
391
392 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
393 )))
394
395 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
396
397 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
398
399
400 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
401
402 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
403 |(% style="width:510px" %)(((
404 **AT+DATACUTx=a,b,c**
405
406 * **a: length for the return of AT+COMMAND**
407 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
408 * **c: define the position for valid value.  **
409 )))
410
411 **Examples:**
412
413 * Grab bytes:
414
415 [[image:image-20220602153621-1.png]]
416
417
418 * Grab a section.
419
420 [[image:image-20220602153621-2.png]]
421
422
423 * Grab different sections.
424
425 [[image:image-20220602153621-3.png]]
426
427
428 )))
429
430 === 3.3.4 Compose the uplink payload ===
431
432 (((
433 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
434
435
436 )))
437
438 (((
439 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
440
441
442 )))
443
444 (((
445 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
446 )))
447
448 (((
449 Final Payload is
450 )))
451
452 (((
453 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
454 )))
455
456 (((
457 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
458 )))
459
460 [[image:1653269759169-150.png||height="513" width="716"]]
461
462
463 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
464
465
466 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
467
468 Final Payload is
469
470 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
471
472
473 1. PAYVER: Defined by AT+PAYVER
474 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
475 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
476 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
477
478 [[image:image-20220602155039-4.png]]
479
480
481 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
482
483 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
484
485 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
486
487 DATA3=the rest of Valid value of RETURN10= **30**
488
489
490 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
491
492 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
493
494 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
495
496 * For US915 band, max 11 bytes for each uplink.
497
498 ~* For all other bands: max 51 bytes for each uplink.
499
500
501 Below are the uplink payloads:
502
503 [[image:1654157178836-407.png]]
504
505
506 === 3.3.5 Uplink on demand ===
507
508 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
509
510 Downlink control command:
511
512 **0x08 command**: Poll an uplink with current command set in RS485-LN.
513
514 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
515
516
517
518 === 3.3.6 Uplink on Interrupt ===
519
520 RS485-LN support external Interrupt uplink since hardware v1.2 release.
521
522 [[image:1654157342174-798.png]]
523
524 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
525
526
527 == 3.4 Uplink Payload ==
528
529
530 [[image:image-20220606110929-1.png]]
531
532 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
533
534
535 == 3.5 Configure RS485-BL via AT or Downlink ==
536
537 (((
538 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
539 )))
540
541 (((
542 There are two kinds of Commands:
543 )))
544
545 * (((
546 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
547 )))
548
549 * (((
550 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
551 )))
552
553 (((
554
555 )))
556
557
558 === 3.5.1 Common Commands ===
559
560 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
561
562
563 === 3.5.2 Sensor related commands ===
564
565 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
566
567 [[image:image-20220602163333-5.png||height="263" width="1160"]]
568
569 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
570
571
572 === 3.5.3 Sensor related commands ===
573
574
575
576
577 ==== **RS485 Debug Command** ====
578
579 (((
580 This command is used to configure the RS485 devices; they won’t be used during sampling.
581 )))
582
583 * (((
584 **AT Command**
585 )))
586
587 (% class="box infomessage" %)
588 (((
589 (((
590 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
591 )))
592 )))
593
594 (((
595 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
596 )))
597
598 * (((
599 **Downlink Payload**
600 )))
601
602 (((
603 Format: A8 MM NN XX XX XX XX YY
604 )))
605
606 (((
607 Where:
608 )))
609
610 * (((
611 MM: 1: add CRC-16/MODBUS ; 0: no CRC
612 )))
613 * (((
614 NN: The length of RS485 command
615 )))
616 * (((
617 XX XX XX XX: RS485 command total NN bytes
618 )))
619 * (((
620 (((
621 YY: How many bytes will be uplink from the return of this RS485 command,
622 )))
623
624 * (((
625 if YY=0, RS485-LN will execute the downlink command without uplink;
626 )))
627 * (((
628 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
629 )))
630 * (((
631 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
632 )))
633 )))
634
635 (((
636 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
637 )))
638
639 (((
640 To connect a Modbus Alarm with below commands.
641 )))
642
643 * (((
644 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
645 )))
646
647 * (((
648 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
649 )))
650
651 (((
652 So if user want to use downlink command to control to RS485 Alarm, he can use:
653 )))
654
655 (((
656 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
657 )))
658
659 (((
660 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
661 )))
662
663 (((
664 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
665 )))
666
667 (((
668
669 )))
670
671 (((
672 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
673 )))
674
675 (((
676 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
677 )))
678
679 (((
680
681 )))
682
683 (((
684 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
685 )))
686
687 (((
688 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
689 )))
690
691 (((
692 [[image:1654159460680-153.png]]
693 )))
694
695
696
697
698 ==== **Set Payload version** ====
699
700 (((
701 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
702 )))
703
704 * (((
705 **AT Command:**
706 )))
707
708 (% class="box infomessage" %)
709 (((
710 (((
711 **AT+PAYVER: Set PAYVER field = 1**
712 )))
713 )))
714
715 * (((
716 **Downlink Payload:**
717 )))
718
719 (((
720 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
721 )))
722
723 (((
724 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
725 )))
726
727
728
729
730 ==== **Set RS485 Sampling Commands** ====
731
732 (((
733 AT+COMMANDx or AT+DATACUTx
734 )))
735
736 (((
737 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
738 )))
739
740 (((
741
742 )))
743
744 * (((
745 **AT Command:**
746 )))
747
748 (% class="box infomessage" %)
749 (((
750 (((
751 **AT+COMMANDx: Configure RS485 read command to sensor.**
752 )))
753 )))
754
755 (% class="box infomessage" %)
756 (((
757 (((
758 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
759 )))
760 )))
761
762 (((
763
764 )))
765
766 * (((
767 **Downlink Payload:**
768 )))
769
770 (((
771 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
772 )))
773
774 (((
775 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
776 )))
777
778 (((
779 Format: AF MM NN LL XX XX XX XX YY
780 )))
781
782 (((
783 Where:
784 )))
785
786 * (((
787 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
788 )))
789 * (((
790 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
791 )))
792 * (((
793 LL:  The length of AT+COMMAND or AT+DATACUT command
794 )))
795 * (((
796 XX XX XX XX: AT+COMMAND or AT+DATACUT command
797 )))
798 * (((
799 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
800 )))
801
802 (((
803 **Example:**
804 )))
805
806 (((
807 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
808 )))
809
810 (((
811 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
812 )))
813
814 (((
815 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
816 )))
817
818
819
820
821 ==== **Fast command to handle MODBUS device** ====
822
823 (((
824 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
825 )))
826
827 (((
828 This command is valid since v1.3 firmware version
829 )))
830
831 (((
832 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
833 )))
834
835 (((
836
837 )))
838
839 (((
840 **Example:**
841 )))
842
843 * (((
844 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
845 )))
846 * (((
847 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
848 )))
849 * (((
850 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
851 )))
852
853 [[image:image-20220602165351-6.png]]
854
855 [[image:image-20220602165351-7.png]]
856
857
858
859
860 ==== **RS485 command timeout** ====
861
862 (((
863 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
864 )))
865
866 (((
867 Default value: 0, range:  0 ~~ 65 seconds
868 )))
869
870 * (((
871 **AT Command:**
872 )))
873
874 (% class="box infomessage" %)
875 (((
876 (((
877 **AT+CMDDLaa=hex(bb cc)*1000**
878 )))
879 )))
880
881 (((
882 **Example:**
883 )))
884
885 (((
886 **AT+CMDDL1=1000** to send the open time to 1000ms
887 )))
888
889 (((
890
891 )))
892
893 * (((
894 **Downlink Payload:**
895 )))
896
897 (((
898 **0x AA aa bb cc**
899 )))
900
901 (((
902 Same as: AT+CMDDLaa=hex(bb cc)*1000
903 )))
904
905 (((
906 **Example:**
907 )))
908
909 (((
910 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
911 )))
912
913
914
915
916 ==== **Uplink payload mode** ====
917
918 (((
919 Define to use one uplink or multiple uplinks for the sampling.
920 )))
921
922 (((
923 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
924 )))
925
926 * (((
927 **AT Command:**
928 )))
929
930 (% class="box infomessage" %)
931 (((
932 (((
933 **AT+DATAUP=0**
934 )))
935 )))
936
937 (% class="box infomessage" %)
938 (((
939 (((
940 **AT+DATAUP=1**
941 )))
942 )))
943
944 (((
945
946 )))
947
948 * (((
949 **Downlink Payload:**
950 )))
951
952 (((
953 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
954 )))
955
956 (((
957 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
958 )))
959
960
961
962
963 ==== **Manually trigger an Uplink** ====
964
965 (((
966 Ask device to send an uplink immediately.
967 )))
968
969 * (((
970 **AT Command:**
971 )))
972
973 (((
974 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
975 )))
976
977 (((
978
979 )))
980
981 * (((
982 **Downlink Payload:**
983 )))
984
985 (((
986 **0x08 FF**, RS485-LN will immediately send an uplink.
987 )))
988
989
990
991
992 ==== **Clear RS485 Command** ====
993
994 (((
995 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
996 )))
997
998 * (((
999 **AT Command:**
1000 )))
1001
1002 (((
1003 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
1004 )))
1005
1006 (((
1007 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1008 )))
1009
1010 (((
1011 Example screen shot after clear all RS485 commands. 
1012 )))
1013
1014 (((
1015
1016 )))
1017
1018 (((
1019 The uplink screen shot is:
1020 )))
1021
1022 [[image:1654160691922-496.png]]
1023
1024
1025 * (((
1026 **Downlink Payload:**
1027 )))
1028
1029 (((
1030 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1031 )))
1032
1033
1034
1035
1036 ==== **Set Serial Communication Parameters** ====
1037
1038 (((
1039 Set the Rs485 serial communication parameters:
1040 )))
1041
1042 * (((
1043 **AT Command:**
1044 )))
1045
1046 (((
1047 Set Baud Rate:
1048 )))
1049
1050 (% class="box infomessage" %)
1051 (((
1052 (((
1053 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1054 )))
1055 )))
1056
1057 (((
1058 Set UART Parity
1059 )))
1060
1061 (% class="box infomessage" %)
1062 (((
1063 (((
1064 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1065 )))
1066 )))
1067
1068 (((
1069 Set STOPBIT
1070 )))
1071
1072 (% class="box infomessage" %)
1073 (((
1074 (((
1075 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1076 )))
1077 )))
1078
1079 (((
1080
1081 )))
1082
1083 * (((
1084 **Downlink Payload:**
1085 )))
1086
1087 (((
1088 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1089 )))
1090
1091 (((
1092 **Example:**
1093 )))
1094
1095 * (((
1096 A7 01 00 60   same as AT+BAUDR=9600
1097 )))
1098 * (((
1099 A7 01 04 80  same as AT+BAUDR=115200
1100 )))
1101
1102 (((
1103 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1104 )))
1105
1106 (((
1107 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1108 )))
1109
1110
1111
1112
1113 == 3.6 Listening mode for RS485 network ==
1114
1115 (((
1116 This feature support since firmware v1.4
1117 )))
1118
1119 (((
1120 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1121 )))
1122
1123 [[image:image-20220602171200-8.png||height="567" width="1007"]]
1124
1125 (((
1126 To enable the listening mode, use can run the command AT+RXMODE.
1127 )))
1128
1129 (((
1130
1131 )))
1132
1133 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
1134 |=(% style="width: 100px;" %)(((
1135 **Command example**
1136 )))|=(% style="width: 400px;" %)(((
1137 **Function**
1138 )))
1139 |(% style="width:100px" %)(((
1140 AT+RXMODE=1,10
1141 )))|(% style="width:400px" %)(((
1142 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1143 )))
1144 |(% style="width:100px" %)(((
1145 AT+RXMODE=2,500
1146 )))|(% style="width:400px" %)(((
1147 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1148 )))
1149 |(% style="width:100px" %)(((
1150 AT+RXMODE=0,0
1151 )))|(% style="width:400px" %)(((
1152 Disable listening mode. This is the default settings.
1153 )))
1154 |(% style="width:100px" %)(((
1155
1156 )))|(% style="width:400px" %)(((
1157 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1158 )))
1159
1160 (((
1161 **Downlink Command:**
1162 )))
1163
1164 (((
1165 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
1166 )))
1167
1168 (((
1169
1170 )))
1171
1172 (((
1173 **Example**:
1174 )))
1175
1176 (((
1177 The RS485-LN is set to AT+RXMODE=2,1000
1178 )))
1179
1180 (((
1181 There is a two Modbus commands in the RS485 network as below:
1182 )))
1183
1184 (((
1185 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
1186 )))
1187
1188 (((
1189 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1190 )))
1191
1192 (((
1193 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1194 )))
1195
1196 (((
1197 [[image:image-20220602171200-9.png]]
1198 )))
1199
1200 (((
1201
1202 )))
1203
1204 (((
1205 (((
1206 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
1207 )))
1208 )))
1209
1210
1211 == 3.7 Buttons ==
1212
1213
1214 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1215 |=(% style="width: 50px;" %)**Button**|=(% style="width: 361px;" %)**Feature**
1216 |(% style="width:50px" %)**ACT**|(% style="width:361px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1217 |(% style="width:50px" %)**RST**|(% style="width:361px" %)Reboot RS485
1218 |(% style="width:50px" %)**PRO**|(% style="width:361px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
1219
1220 == 3.8 LEDs ==
1221
1222
1223 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1224 |=(% style="width: 50px;" %)**LEDs**|=(% style="width: 380px;" %)**Feature**
1225 |**PWR**|Always on if there is power
1226 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
1227
1228 = 4. Case Study =
1229
1230 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1231
1232
1233 = 5. Use AT Command =
1234
1235 == 5.1 Access AT Command ==
1236
1237 (((
1238 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1239 )))
1240
1241 [[image:1654162355560-817.png]]
1242
1243
1244 (((
1245 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1246 )))
1247
1248 [[image:1654162368066-342.png]]
1249
1250
1251 (((
1252 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1253 )))
1254
1255
1256
1257 == 5.2 Common AT Command Sequence ==
1258
1259 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1260
1261 If device has not joined network yet:
1262
1263 (% class="box infomessage" %)
1264 (((
1265 **AT+FDR**
1266 )))
1267
1268 (% class="box infomessage" %)
1269 (((
1270 **AT+NJM=0**
1271 )))
1272
1273 (% class="box infomessage" %)
1274 (((
1275 **ATZ**
1276 )))
1277
1278
1279 (((
1280 If device already joined network:
1281 )))
1282
1283 (% class="box infomessage" %)
1284 (((
1285 **AT+NJM=0**
1286 )))
1287
1288 (% class="box infomessage" %)
1289 (((
1290 **ATZ**
1291 )))
1292
1293
1294 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1295
1296
1297 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1298
1299 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1300
1301 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1302
1303 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
1304
1305 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1306
1307 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1308
1309 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1310
1311 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1312
1313 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1314
1315 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1316
1317
1318 (% style="color:red" %)**Note:**
1319
1320 (((
1321 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1322 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1323 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1324 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1325 )))
1326
1327 [[image:1654162478620-421.png]]
1328
1329
1330 = 6. FAQ =
1331
1332 == 6.1 How to upgrade the image? ==
1333
1334 (((
1335 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
1336 )))
1337
1338 * (((
1339 Support new features
1340 )))
1341 * (((
1342 For bug fix
1343 )))
1344 * (((
1345 Change LoRaWAN bands.
1346 )))
1347
1348 (((
1349 Below shows the hardware connection for how to upload an image to RS485-LN:
1350 )))
1351
1352 [[image:1654162535040-878.png]]
1353
1354 (((
1355 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1356 )))
1357
1358 (((
1359 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1360 )))
1361
1362 (((
1363 **Step3: **Open flashloader; choose the correct COM port to update.
1364 )))
1365
1366 (((
1367 (((
1368 (((
1369 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1370 )))
1371 )))
1372 )))
1373
1374
1375 [[image:image-20220602175818-12.png]]
1376
1377
1378 [[image:image-20220602175848-13.png]]
1379
1380
1381 [[image:image-20220602175912-14.png]]
1382
1383
1384 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1385
1386 [[image:image-20220602175638-10.png]]
1387
1388
1389 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1390
1391 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1392
1393
1394 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1395
1396 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1397
1398
1399 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1400
1401 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1402
1403 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1404
1405
1406 = 7. Trouble Shooting =
1407
1408 == 7.1 Downlink doesn’t work, how to solve it? ==
1409
1410 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1411
1412
1413 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1414
1415 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1416
1417
1418 = 8. Order Info =
1419
1420 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1421
1422 (% style="color:blue" %)**XXX:**
1423
1424 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1425 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1426 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1427 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1428 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1429 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1430 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1431 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1432 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1433 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1434
1435 = 9.Packing Info =
1436
1437
1438 **Package Includes**:
1439
1440 * RS485-LN x 1
1441 * Stick Antenna for LoRa RF part x 1
1442 * Program cable x 1
1443
1444 **Dimension and weight**:
1445
1446 * Device Size: 13.5 x 7 x 3 cm
1447 * Device Weight: 105g
1448 * Package Size / pcs : 14.5 x 8 x 5 cm
1449 * Weight / pcs : 170g
1450
1451 = 10. FCC Caution for RS485LN-US915 =
1452
1453 (((
1454 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1455 )))
1456
1457 (((
1458 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1459 )))
1460
1461 (((
1462
1463 )))
1464
1465 (((
1466 **IMPORTANT NOTE:**
1467 )))
1468
1469 (((
1470 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1471 )))
1472
1473 (((
1474 —Reorient or relocate the receiving antenna.
1475 )))
1476
1477 (((
1478 —Increase the separation between the equipment and receiver.
1479 )))
1480
1481 (((
1482 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1483 )))
1484
1485 (((
1486 —Consult the dealer or an experienced radio/TV technician for help.
1487 )))
1488
1489 (((
1490
1491 )))
1492
1493 (((
1494 **FCC Radiation Exposure Statement:**
1495 )))
1496
1497 (((
1498 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1499 )))
1500
1501
1502 = 11. Support =
1503
1504 * (((
1505 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1506 )))
1507 * (((
1508 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1509 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0