Version 60.7 by Xiaoling on 2022/06/14 11:14

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1.Introduction =
21
22 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
23
24 (((
25 (((
26 (((
27
28
29 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
30 )))
31 )))
32
33 (((
34 (((
35 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
36 )))
37 )))
38
39 (((
40 (((
41 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
42 )))
43 )))
44
45 (((
46 (((
47 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
48 )))
49
50 (((
51 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
52
53
54 )))
55 )))
56 )))
57
58 [[image:1653267211009-519.png||height="419" width="724"]]
59
60
61 == 1.2 Specifications ==
62
63
64 **Hardware System:**
65
66 * STM32L072CZT6 MCU
67 * SX1276/78 Wireless Chip 
68 * Power Consumption (exclude RS485 device):
69 ** Idle: 32mA@12v
70 ** 20dB Transmit: 65mA@12v
71
72
73 **Interface for Model:**
74
75 * RS485
76 * Power Input 7~~ 24V DC. 
77
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * +14 dBm high efficiency PA.
87 * Programmable bit rate up to 300 kbps.
88 * High sensitivity: down to -148 dBm.
89 * Bullet-proof front end: IIP3 = -12.5 dBm.
90 * Excellent blocking immunity.
91 * Low RX current of 10.3 mA, 200 nA register retention.
92 * Fully integrated synthesizer with a resolution of 61 Hz.
93 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
94 * Built-in bit synchronizer for clock recovery.
95 * Preamble detection.
96 * 127 dB Dynamic Range RSSI.
97 * Automatic RF Sense and CAD with ultra-fast AFC.
98 * Packet engine up to 256 bytes with CRC
99
100
101
102 == 1.3 Features ==
103
104 * LoRaWAN Class A & Class C protocol (default Class C)
105 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
106 * AT Commands to change parameters
107 * Remote configure parameters via LoRa Downlink
108 * Firmware upgradable via program port
109 * Support multiply RS485 devices by flexible rules
110 * Support Modbus protocol
111 * Support Interrupt uplink (Since hardware version v1.2)
112
113
114
115 == 1.4 Applications ==
116
117 * Smart Buildings & Home Automation
118 * Logistics and Supply Chain Management
119 * Smart Metering
120 * Smart Agriculture
121 * Smart Cities
122 * Smart Factory
123
124
125
126 == 1.5 Firmware Change log ==
127
128 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
129
130
131 == 1.6 Hardware Change log ==
132
133 (((
134 (((
135 (((
136 v1.2: Add External Interrupt Pin.
137 )))
138
139 (((
140 v1.0: Release
141 )))
142
143
144 )))
145 )))
146
147 = 2. Power ON Device =
148
149 (((
150 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
151
152 * Power Source VIN to RS485-LN VIN+
153 * Power Source GND to RS485-LN VIN-
154
155 (((
156 Once there is power, the RS485-LN will be on.
157 )))
158
159 [[image:1653268091319-405.png]]
160
161
162 )))
163
164 = 3. Operation Mode =
165
166 == 3.1 How it works? ==
167
168 (((
169 (((
170 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
171 )))
172
173
174 )))
175
176 == 3.2 Example to join LoRaWAN network ==
177
178 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
179
180 [[image:1653268155545-638.png||height="334" width="724"]]
181
182
183 (((
184 (((
185 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
186 )))
187
188 (((
189 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
190 )))
191
192 [[image:1653268227651-549.png||height="592" width="720"]]
193
194
195 (((
196 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
197 )))
198
199 (((
200 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-LN.
201 )))
202
203 (((
204 Each RS485-LN is shipped with a sticker with unique device EUI:
205 )))
206 )))
207
208 [[image:1652953462722-299.png]]
209
210
211 (((
212 (((
213 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
214 )))
215
216 (((
217 **Add APP EUI in the application.**
218 )))
219 )))
220
221 [[image:image-20220519174512-1.png]]
222
223 [[image:image-20220519174512-2.png||height="323" width="720"]]
224
225 [[image:image-20220519174512-3.png||height="556" width="724"]]
226
227 [[image:image-20220519174512-4.png]]
228
229 You can also choose to create the device manually.
230
231 [[image:1652953542269-423.png||height="710" width="723"]]
232
233
234
235 **Add APP KEY and DEV EUI**
236
237 [[image:1652953553383-907.png||height="514" width="724"]]
238
239
240 (((
241 (% style="color:blue" %)**Step 2**(%%): Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
242 )))
243
244 [[image:1652953568895-172.png||height="232" width="724"]]
245
246
247 == 3.3 Configure Commands to read data ==
248
249 (((
250 (((
251 (((
252 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
253 )))
254 )))
255
256 (((
257 (((
258 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
259 )))
260
261
262 )))
263 )))
264
265 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
266
267 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
268
269 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
270 |=(% style="width: 110px;" %)(((
271 **AT Commands**
272 )))|=(% style="width: 190px;" %)(((
273 **Description**
274 )))|=(% style="width: 190px;" %)(((
275 **Example**
276 )))
277 |(% style="width:110px" %)(((
278 AT+BAUDR
279 )))|(% style="width:190px" %)(((
280 Set the baud rate (for RS485 connection). Default Value is: 9600.
281 )))|(% style="width:190px" %)(((
282 (((
283 AT+BAUDR=9600
284 )))
285
286 (((
287 Options: (1200,2400,4800,14400,19200,115200)
288 )))
289 )))
290 |(% style="width:110px" %)(((
291 AT+PARITY
292 )))|(% style="width:190px" %)(((
293 Set UART parity (for RS485 connection)
294 )))|(% style="width:190px" %)(((
295 (((
296 AT+PARITY=0
297 )))
298
299 (((
300 Option: 0: no parity, 1: odd parity, 2: even parity
301 )))
302 )))
303 |(% style="width:110px" %)(((
304 AT+STOPBIT
305 )))|(% style="width:190px" %)(((
306 (((
307 Set serial stopbit (for RS485 connection)
308 )))
309
310 (((
311
312 )))
313 )))|(% style="width:190px" %)(((
314 (((
315 AT+STOPBIT=0 for 1bit
316 )))
317
318 (((
319 AT+STOPBIT=1 for 1.5 bit
320 )))
321
322 (((
323 AT+STOPBIT=2 for 2 bits
324 )))
325 )))
326
327
328
329
330 === 3.3.2 Configure sensors ===
331
332 (((
333 (((
334 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
335 )))
336 )))
337
338 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
339 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
340 |AT+CFGDEV|(% style="width:110px" %)(((
341 (((
342 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
343 )))
344
345 (((
346 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
347 )))
348
349 (((
350 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
351 )))
352 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
353
354 === 3.3.3 Configure read commands for each sampling ===
355
356 (((
357 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
358
359 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
360
361 This section describes how to achieve above goals.
362
363 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
364
365
366 **Each RS485 commands include two parts:**
367
368 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
369
370 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
371
372 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
373
374
375 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
376
377
378 Below are examples for the how above AT Commands works.
379
380
381 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
382
383 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
384 |(% style="width:496px" %)(((
385 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
386
387 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
388
389 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
390 )))
391
392 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
393
394 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
395
396
397 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
398
399 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
400 |(% style="width:510px" %)(((
401 **AT+DATACUTx=a,b,c**
402
403 * **a: length for the return of AT+COMMAND**
404 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
405 * **c: define the position for valid value.  **
406 )))
407
408 **Examples:**
409
410 * Grab bytes:
411
412 [[image:image-20220602153621-1.png]]
413
414
415 * Grab a section.
416
417 [[image:image-20220602153621-2.png]]
418
419
420 * Grab different sections.
421
422 [[image:image-20220602153621-3.png]]
423
424
425 )))
426
427 === 3.3.4 Compose the uplink payload ===
428
429 (((
430 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
431
432
433 )))
434
435 (((
436 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
437
438
439 )))
440
441 (((
442 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
443 )))
444
445 (((
446 Final Payload is
447 )))
448
449 (((
450 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
451 )))
452
453 (((
454 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
455 )))
456
457 [[image:1653269759169-150.png||height="513" width="716"]]
458
459
460 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
461
462
463 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
464
465 Final Payload is
466
467 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
468
469
470 1. PAYVER: Defined by AT+PAYVER
471 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
472 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
473 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
474
475 [[image:image-20220602155039-4.png]]
476
477
478 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
479
480 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
481
482 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
483
484 DATA3=the rest of Valid value of RETURN10= **30**
485
486
487 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
488
489 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
490
491 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
492
493 * For US915 band, max 11 bytes for each uplink.
494
495 ~* For all other bands: max 51 bytes for each uplink.
496
497
498 Below are the uplink payloads:
499
500 [[image:1654157178836-407.png]]
501
502
503 === 3.3.5 Uplink on demand ===
504
505 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
506
507 Downlink control command:
508
509 **0x08 command**: Poll an uplink with current command set in RS485-LN.
510
511 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
512
513
514
515 === 3.3.6 Uplink on Interrupt ===
516
517 RS485-LN support external Interrupt uplink since hardware v1.2 release.
518
519 [[image:1654157342174-798.png]]
520
521 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
522
523
524 == 3.4 Uplink Payload ==
525
526
527 [[image:image-20220606110929-1.png]]
528
529 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
530
531
532 == 3.5 Configure RS485-BL via AT or Downlink ==
533
534 (((
535 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
536 )))
537
538 (((
539 There are two kinds of Commands:
540 )))
541
542 * (((
543 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
544 )))
545
546 * (((
547 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
548 )))
549
550 (((
551
552 )))
553
554
555 === 3.5.1 Common Commands ===
556
557 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
558
559
560 === 3.5.2 Sensor related commands ===
561
562 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
563
564 [[image:image-20220602163333-5.png||height="263" width="1160"]]
565
566 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
567
568
569 === 3.5.3 Sensor related commands ===
570
571
572
573
574 ==== **RS485 Debug Command** ====
575
576 (((
577 This command is used to configure the RS485 devices; they won’t be used during sampling.
578 )))
579
580 * (((
581 **AT Command**
582 )))
583
584 (% class="box infomessage" %)
585 (((
586 (((
587 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
588 )))
589 )))
590
591 (((
592 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
593 )))
594
595 * (((
596 **Downlink Payload**
597 )))
598
599 (((
600 Format: A8 MM NN XX XX XX XX YY
601 )))
602
603 (((
604 Where:
605 )))
606
607 * (((
608 MM: 1: add CRC-16/MODBUS ; 0: no CRC
609 )))
610 * (((
611 NN: The length of RS485 command
612 )))
613 * (((
614 XX XX XX XX: RS485 command total NN bytes
615 )))
616 * (((
617 (((
618 YY: How many bytes will be uplink from the return of this RS485 command,
619 )))
620
621 * (((
622 if YY=0, RS485-LN will execute the downlink command without uplink;
623 )))
624 * (((
625 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
626 )))
627 * (((
628 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
629 )))
630 )))
631
632 (((
633 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
634 )))
635
636 (((
637 To connect a Modbus Alarm with below commands.
638 )))
639
640 * (((
641 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
642 )))
643
644 * (((
645 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
646 )))
647
648 (((
649 So if user want to use downlink command to control to RS485 Alarm, he can use:
650 )))
651
652 (((
653 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
654 )))
655
656 (((
657 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
658 )))
659
660 (((
661 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
662 )))
663
664 (((
665
666 )))
667
668 (((
669 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
670 )))
671
672 (((
673 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
674 )))
675
676 (((
677
678 )))
679
680 (((
681 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
682 )))
683
684 (((
685 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
686 )))
687
688 (((
689 [[image:1654159460680-153.png]]
690 )))
691
692
693
694
695 ==== **Set Payload version** ====
696
697 (((
698 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
699 )))
700
701 * (((
702 **AT Command:**
703 )))
704
705 (% class="box infomessage" %)
706 (((
707 (((
708 **AT+PAYVER: Set PAYVER field = 1**
709 )))
710 )))
711
712 * (((
713 **Downlink Payload:**
714 )))
715
716 (((
717 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
718 )))
719
720 (((
721 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
722 )))
723
724
725
726
727 ==== **Set RS485 Sampling Commands** ====
728
729 (((
730 AT+COMMANDx or AT+DATACUTx
731 )))
732
733 (((
734 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
735 )))
736
737 (((
738
739 )))
740
741 * (((
742 **AT Command:**
743 )))
744
745 (% class="box infomessage" %)
746 (((
747 (((
748 **AT+COMMANDx: Configure RS485 read command to sensor.**
749 )))
750 )))
751
752 (% class="box infomessage" %)
753 (((
754 (((
755 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
756 )))
757 )))
758
759 (((
760
761 )))
762
763 * (((
764 **Downlink Payload:**
765 )))
766
767 (((
768 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
769 )))
770
771 (((
772 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
773 )))
774
775 (((
776 Format: AF MM NN LL XX XX XX XX YY
777 )))
778
779 (((
780 Where:
781 )))
782
783 * (((
784 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
785 )))
786 * (((
787 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
788 )))
789 * (((
790 LL:  The length of AT+COMMAND or AT+DATACUT command
791 )))
792 * (((
793 XX XX XX XX: AT+COMMAND or AT+DATACUT command
794 )))
795 * (((
796 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
797 )))
798
799 (((
800 **Example:**
801 )))
802
803 (((
804 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
805 )))
806
807 (((
808 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
809 )))
810
811 (((
812 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
813 )))
814
815
816
817
818 ==== **Fast command to handle MODBUS device** ====
819
820 (((
821 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
822 )))
823
824 (((
825 This command is valid since v1.3 firmware version
826 )))
827
828 (((
829 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
830 )))
831
832 (((
833
834 )))
835
836 (((
837 **Example:**
838 )))
839
840 * (((
841 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
842 )))
843 * (((
844 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
845 )))
846 * (((
847 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
848 )))
849
850 [[image:image-20220602165351-6.png]]
851
852 [[image:image-20220602165351-7.png]]
853
854
855
856
857 ==== **RS485 command timeout** ====
858
859 (((
860 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
861 )))
862
863 (((
864 Default value: 0, range:  0 ~~ 65 seconds
865 )))
866
867 * (((
868 **AT Command:**
869 )))
870
871 (% class="box infomessage" %)
872 (((
873 (((
874 **AT+CMDDLaa=hex(bb cc)*1000**
875 )))
876 )))
877
878 (((
879 **Example:**
880 )))
881
882 (((
883 **AT+CMDDL1=1000** to send the open time to 1000ms
884 )))
885
886 (((
887
888 )))
889
890 * (((
891 **Downlink Payload:**
892 )))
893
894 (((
895 **0x AA aa bb cc**
896 )))
897
898 (((
899 Same as: AT+CMDDLaa=hex(bb cc)*1000
900 )))
901
902 (((
903 **Example:**
904 )))
905
906 (((
907 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
908 )))
909
910
911
912
913 ==== **Uplink payload mode** ====
914
915 (((
916 Define to use one uplink or multiple uplinks for the sampling.
917 )))
918
919 (((
920 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
921 )))
922
923 * (((
924 **AT Command:**
925 )))
926
927 (% class="box infomessage" %)
928 (((
929 (((
930 **AT+DATAUP=0**
931 )))
932 )))
933
934 (% class="box infomessage" %)
935 (((
936 (((
937 **AT+DATAUP=1**
938 )))
939 )))
940
941 (((
942
943 )))
944
945 * (((
946 **Downlink Payload:**
947 )))
948
949 (((
950 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
951 )))
952
953 (((
954 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
955 )))
956
957
958
959
960 ==== **Manually trigger an Uplink** ====
961
962 (((
963 Ask device to send an uplink immediately.
964 )))
965
966 * (((
967 **AT Command:**
968 )))
969
970 (((
971 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
972 )))
973
974 (((
975
976 )))
977
978 * (((
979 **Downlink Payload:**
980 )))
981
982 (((
983 **0x08 FF**, RS485-LN will immediately send an uplink.
984 )))
985
986
987
988
989 ==== **Clear RS485 Command** ====
990
991 (((
992 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
993 )))
994
995 * (((
996 **AT Command:**
997 )))
998
999 (((
1000 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
1001 )))
1002
1003 (((
1004 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1005 )))
1006
1007 (((
1008 Example screen shot after clear all RS485 commands. 
1009 )))
1010
1011 (((
1012
1013 )))
1014
1015 (((
1016 The uplink screen shot is:
1017 )))
1018
1019 [[image:1654160691922-496.png]]
1020
1021
1022 * (((
1023 **Downlink Payload:**
1024 )))
1025
1026 (((
1027 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1028 )))
1029
1030
1031
1032
1033 ==== **Set Serial Communication Parameters** ====
1034
1035 (((
1036 Set the Rs485 serial communication parameters:
1037 )))
1038
1039 * (((
1040 **AT Command:**
1041 )))
1042
1043 (((
1044 Set Baud Rate:
1045 )))
1046
1047 (% class="box infomessage" %)
1048 (((
1049 (((
1050 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1051 )))
1052 )))
1053
1054 (((
1055 Set UART Parity
1056 )))
1057
1058 (% class="box infomessage" %)
1059 (((
1060 (((
1061 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1062 )))
1063 )))
1064
1065 (((
1066 Set STOPBIT
1067 )))
1068
1069 (% class="box infomessage" %)
1070 (((
1071 (((
1072 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1073 )))
1074 )))
1075
1076 (((
1077
1078 )))
1079
1080 * (((
1081 **Downlink Payload:**
1082 )))
1083
1084 (((
1085 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1086 )))
1087
1088 (((
1089 **Example:**
1090 )))
1091
1092 * (((
1093 A7 01 00 60   same as AT+BAUDR=9600
1094 )))
1095 * (((
1096 A7 01 04 80  same as AT+BAUDR=115200
1097 )))
1098
1099 (((
1100 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1101 )))
1102
1103 (((
1104 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1105 )))
1106
1107
1108
1109
1110 == 3.6 Listening mode for RS485 network ==
1111
1112 (((
1113 This feature support since firmware v1.4
1114 )))
1115
1116 (((
1117 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1118 )))
1119
1120 [[image:image-20220602171200-8.png||height="567" width="1007"]]
1121
1122 (((
1123 To enable the listening mode, use can run the command AT+RXMODE.
1124 )))
1125
1126 (((
1127
1128 )))
1129
1130 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
1131 |=(% style="width: 100px;" %)(((
1132 **Command example**
1133 )))|=(% style="width: 400px;" %)(((
1134 **Function**
1135 )))
1136 |(% style="width:100px" %)(((
1137 AT+RXMODE=1,10
1138 )))|(% style="width:400px" %)(((
1139 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1140 )))
1141 |(% style="width:100px" %)(((
1142 AT+RXMODE=2,500
1143 )))|(% style="width:400px" %)(((
1144 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1145 )))
1146 |(% style="width:100px" %)(((
1147 AT+RXMODE=0,0
1148 )))|(% style="width:400px" %)(((
1149 Disable listening mode. This is the default settings.
1150 )))
1151 |(% style="width:100px" %)(((
1152
1153 )))|(% style="width:400px" %)(((
1154 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1155 )))
1156
1157 (((
1158 **Downlink Command:**
1159 )))
1160
1161 (((
1162 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
1163 )))
1164
1165 (((
1166
1167 )))
1168
1169 (((
1170 **Example**:
1171 )))
1172
1173 (((
1174 The RS485-LN is set to AT+RXMODE=2,1000
1175 )))
1176
1177 (((
1178 There is a two Modbus commands in the RS485 network as below:
1179 )))
1180
1181 (((
1182 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
1183 )))
1184
1185 (((
1186 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1187 )))
1188
1189 (((
1190 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1191 )))
1192
1193 (((
1194 [[image:image-20220602171200-9.png]]
1195 )))
1196
1197 (((
1198
1199 )))
1200
1201 (((
1202 (((
1203 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
1204 )))
1205 )))
1206
1207
1208 == 3.7 Buttons ==
1209
1210
1211 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1212 |=(% style="width: 50px;" %)**Button**|=(% style="width: 361px;" %)**Feature**
1213 |(% style="width:50px" %)**ACT**|(% style="width:361px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1214 |(% style="width:50px" %)**RST**|(% style="width:361px" %)Reboot RS485
1215 |(% style="width:50px" %)**PRO**|(% style="width:361px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
1216
1217 == 3.8 LEDs ==
1218
1219
1220 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1221 |=(% style="width: 50px;" %)**LEDs**|=(% style="width: 380px;" %)**Feature**
1222 |**PWR**|Always on if there is power
1223 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
1224
1225 = 4. Case Study =
1226
1227 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1228
1229
1230 = 5. Use AT Command =
1231
1232 == 5.1 Access AT Command ==
1233
1234 (((
1235 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1236 )))
1237
1238 [[image:1654162355560-817.png]]
1239
1240
1241 (((
1242 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1243 )))
1244
1245 [[image:1654162368066-342.png]]
1246
1247
1248 (((
1249 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1250 )))
1251
1252
1253
1254 == 5.2 Common AT Command Sequence ==
1255
1256 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1257
1258 If device has not joined network yet:
1259
1260 (% class="box infomessage" %)
1261 (((
1262 **AT+FDR**
1263 )))
1264
1265 (% class="box infomessage" %)
1266 (((
1267 **AT+NJM=0**
1268 )))
1269
1270 (% class="box infomessage" %)
1271 (((
1272 **ATZ**
1273 )))
1274
1275
1276 (((
1277 If device already joined network:
1278 )))
1279
1280 (% class="box infomessage" %)
1281 (((
1282 **AT+NJM=0**
1283 )))
1284
1285 (% class="box infomessage" %)
1286 (((
1287 **ATZ**
1288 )))
1289
1290
1291 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1292
1293
1294 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1295
1296 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1297
1298 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1299
1300 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
1301
1302 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1303
1304 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1305
1306 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1307
1308 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1309
1310 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1311
1312 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1313
1314
1315 (% style="color:red" %)**Note:**
1316
1317 (((
1318 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1319 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1320 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1321 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1322 )))
1323
1324 [[image:1654162478620-421.png]]
1325
1326
1327 = 6. FAQ =
1328
1329 == 6.1 How to upgrade the image? ==
1330
1331 (((
1332 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
1333 )))
1334
1335 * (((
1336 Support new features
1337 )))
1338 * (((
1339 For bug fix
1340 )))
1341 * (((
1342 Change LoRaWAN bands.
1343 )))
1344
1345 (((
1346 Below shows the hardware connection for how to upload an image to RS485-LN:
1347 )))
1348
1349 [[image:1654162535040-878.png]]
1350
1351 (((
1352 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1353 )))
1354
1355 (((
1356 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1357 )))
1358
1359 (((
1360 **Step3: **Open flashloader; choose the correct COM port to update.
1361 )))
1362
1363 (((
1364 (((
1365 (((
1366 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1367 )))
1368 )))
1369 )))
1370
1371
1372 [[image:image-20220602175818-12.png]]
1373
1374
1375 [[image:image-20220602175848-13.png]]
1376
1377
1378 [[image:image-20220602175912-14.png]]
1379
1380
1381 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1382
1383 [[image:image-20220602175638-10.png]]
1384
1385
1386 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1387
1388 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1389
1390
1391 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1392
1393 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1394
1395
1396 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1397
1398 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1399
1400 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1401
1402
1403 = 7. Trouble Shooting =
1404
1405 == 7.1 Downlink doesn’t work, how to solve it? ==
1406
1407 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1408
1409
1410 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1411
1412 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1413
1414
1415 = 8. Order Info =
1416
1417 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1418
1419 (% style="color:blue" %)**XXX:**
1420
1421 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1422 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1423 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1424 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1425 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1426 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1427 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1428 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1429 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1430 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1431
1432 = 9.Packing Info =
1433
1434
1435 **Package Includes**:
1436
1437 * RS485-LN x 1
1438 * Stick Antenna for LoRa RF part x 1
1439 * Program cable x 1
1440
1441 **Dimension and weight**:
1442
1443 * Device Size: 13.5 x 7 x 3 cm
1444 * Device Weight: 105g
1445 * Package Size / pcs : 14.5 x 8 x 5 cm
1446 * Weight / pcs : 170g
1447
1448 = 10. FCC Caution for RS485LN-US915 =
1449
1450 (((
1451 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1452 )))
1453
1454 (((
1455 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1456 )))
1457
1458 (((
1459
1460 )))
1461
1462 (((
1463 **IMPORTANT NOTE:**
1464 )))
1465
1466 (((
1467 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1468 )))
1469
1470 (((
1471 —Reorient or relocate the receiving antenna.
1472 )))
1473
1474 (((
1475 —Increase the separation between the equipment and receiver.
1476 )))
1477
1478 (((
1479 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1480 )))
1481
1482 (((
1483 —Consult the dealer or an experienced radio/TV technician for help.
1484 )))
1485
1486 (((
1487
1488 )))
1489
1490 (((
1491 **FCC Radiation Exposure Statement:**
1492 )))
1493
1494 (((
1495 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1496 )))
1497
1498
1499 = 11. Support =
1500
1501 * (((
1502 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1503 )))
1504 * (((
1505 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1506 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0