Version 60.6 by Xiaoling on 2022/06/14 11:13

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1.Introduction =
21
22 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
23
24 (((
25 (((
26 (((
27
28
29 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
30 )))
31 )))
32
33 (((
34 (((
35 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
36 )))
37 )))
38
39 (((
40 (((
41 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
42 )))
43 )))
44
45 (((
46 (((
47 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
48 )))
49
50 (((
51 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
52
53
54 )))
55 )))
56 )))
57
58 [[image:1653267211009-519.png||height="419" width="724"]]
59
60
61 == 1.2 Specifications ==
62
63
64 **Hardware System:**
65
66 * STM32L072CZT6 MCU
67 * SX1276/78 Wireless Chip 
68 * Power Consumption (exclude RS485 device):
69 ** Idle: 32mA@12v
70 ** 20dB Transmit: 65mA@12v
71
72
73
74 **Interface for Model:**
75
76 * RS485
77 * Power Input 7~~ 24V DC. 
78
79
80
81 **LoRa Spec:**
82
83 * Frequency Range:
84 ** Band 1 (HF): 862 ~~ 1020 Mhz
85 ** Band 2 (LF): 410 ~~ 528 Mhz
86 * 168 dB maximum link budget.
87 * +20 dBm - 100 mW constant RF output vs.
88 * +14 dBm high efficiency PA.
89 * Programmable bit rate up to 300 kbps.
90 * High sensitivity: down to -148 dBm.
91 * Bullet-proof front end: IIP3 = -12.5 dBm.
92 * Excellent blocking immunity.
93 * Low RX current of 10.3 mA, 200 nA register retention.
94 * Fully integrated synthesizer with a resolution of 61 Hz.
95 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
96 * Built-in bit synchronizer for clock recovery.
97 * Preamble detection.
98 * 127 dB Dynamic Range RSSI.
99 * Automatic RF Sense and CAD with ultra-fast AFC.
100 * Packet engine up to 256 bytes with CRC
101
102
103
104
105 == 1.3 Features ==
106
107 * LoRaWAN Class A & Class C protocol (default Class C)
108 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
109 * AT Commands to change parameters
110 * Remote configure parameters via LoRa Downlink
111 * Firmware upgradable via program port
112 * Support multiply RS485 devices by flexible rules
113 * Support Modbus protocol
114 * Support Interrupt uplink (Since hardware version v1.2)
115
116
117
118
119 == 1.4 Applications ==
120
121 * Smart Buildings & Home Automation
122 * Logistics and Supply Chain Management
123 * Smart Metering
124 * Smart Agriculture
125 * Smart Cities
126 * Smart Factory
127
128
129
130
131 == 1.5 Firmware Change log ==
132
133 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
134
135
136 == 1.6 Hardware Change log ==
137
138 (((
139 (((
140 (((
141 v1.2: Add External Interrupt Pin.
142 )))
143
144 (((
145 v1.0: Release
146 )))
147
148
149 )))
150 )))
151
152 = 2. Power ON Device =
153
154 (((
155 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
156
157 * Power Source VIN to RS485-LN VIN+
158 * Power Source GND to RS485-LN VIN-
159
160 (((
161 Once there is power, the RS485-LN will be on.
162 )))
163
164 [[image:1653268091319-405.png]]
165
166
167 )))
168
169 = 3. Operation Mode =
170
171 == 3.1 How it works? ==
172
173 (((
174 (((
175 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
176 )))
177
178
179 )))
180
181 == 3.2 Example to join LoRaWAN network ==
182
183 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
184
185 [[image:1653268155545-638.png||height="334" width="724"]]
186
187
188 (((
189 (((
190 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
191 )))
192
193 (((
194 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
195 )))
196
197 [[image:1653268227651-549.png||height="592" width="720"]]
198
199
200 (((
201 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
202 )))
203
204 (((
205 **(% style="color:blue" %)Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-LN.
206 )))
207
208 (((
209 Each RS485-LN is shipped with a sticker with unique device EUI:
210 )))
211 )))
212
213 [[image:1652953462722-299.png]]
214
215
216 (((
217 (((
218 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
219 )))
220
221 (((
222 **Add APP EUI in the application.**
223 )))
224 )))
225
226 [[image:image-20220519174512-1.png]]
227
228 [[image:image-20220519174512-2.png||height="323" width="720"]]
229
230 [[image:image-20220519174512-3.png||height="556" width="724"]]
231
232 [[image:image-20220519174512-4.png]]
233
234 You can also choose to create the device manually.
235
236 [[image:1652953542269-423.png||height="710" width="723"]]
237
238
239
240 **Add APP KEY and DEV EUI**
241
242 [[image:1652953553383-907.png||height="514" width="724"]]
243
244
245 (((
246 **(% style="color:blue" %)Step 2**(%%): Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
247 )))
248
249 [[image:1652953568895-172.png||height="232" width="724"]]
250
251
252 == 3.3 Configure Commands to read data ==
253
254 (((
255 (((
256 (((
257 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
258 )))
259 )))
260
261 (((
262 (((
263 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
264 )))
265
266
267 )))
268 )))
269
270 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
271
272 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
273
274 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
275 |=(% style="width: 110px;" %)(((
276 **AT Commands**
277 )))|=(% style="width: 190px;" %)(((
278 **Description**
279 )))|=(% style="width: 190px;" %)(((
280 **Example**
281 )))
282 |(% style="width:110px" %)(((
283 AT+BAUDR
284 )))|(% style="width:190px" %)(((
285 Set the baud rate (for RS485 connection). Default Value is: 9600.
286 )))|(% style="width:190px" %)(((
287 (((
288 AT+BAUDR=9600
289 )))
290
291 (((
292 Options: (1200,2400,4800,14400,19200,115200)
293 )))
294 )))
295 |(% style="width:110px" %)(((
296 AT+PARITY
297 )))|(% style="width:190px" %)(((
298 Set UART parity (for RS485 connection)
299 )))|(% style="width:190px" %)(((
300 (((
301 AT+PARITY=0
302 )))
303
304 (((
305 Option: 0: no parity, 1: odd parity, 2: even parity
306 )))
307 )))
308 |(% style="width:110px" %)(((
309 AT+STOPBIT
310 )))|(% style="width:190px" %)(((
311 (((
312 Set serial stopbit (for RS485 connection)
313 )))
314
315 (((
316
317 )))
318 )))|(% style="width:190px" %)(((
319 (((
320 AT+STOPBIT=0 for 1bit
321 )))
322
323 (((
324 AT+STOPBIT=1 for 1.5 bit
325 )))
326
327 (((
328 AT+STOPBIT=2 for 2 bits
329 )))
330 )))
331
332 === 3.3.2 Configure sensors ===
333
334 (((
335 (((
336 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
337 )))
338 )))
339
340 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
341 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
342 |AT+CFGDEV|(% style="width:110px" %)(((
343 (((
344 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
345 )))
346
347 (((
348 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
349 )))
350
351 (((
352 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
353 )))
354 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
355
356 === 3.3.3 Configure read commands for each sampling ===
357
358 (((
359 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
360
361 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
362
363 This section describes how to achieve above goals.
364
365 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
366
367
368 **Each RS485 commands include two parts:**
369
370 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
371
372 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
373
374 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
375
376
377 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
378
379
380 Below are examples for the how above AT Commands works.
381
382
383 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
384
385 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
386 |(% style="width:496px" %)(((
387 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
388
389 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
390
391 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
392 )))
393
394 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
395
396 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
397
398
399 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
400
401 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
402 |(% style="width:510px" %)(((
403 **AT+DATACUTx=a,b,c**
404
405 * **a: length for the return of AT+COMMAND**
406 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
407 * **c: define the position for valid value.  **
408 )))
409
410 **Examples:**
411
412 * Grab bytes:
413
414 [[image:image-20220602153621-1.png]]
415
416
417 * Grab a section.
418
419 [[image:image-20220602153621-2.png]]
420
421
422 * Grab different sections.
423
424 [[image:image-20220602153621-3.png]]
425
426
427 )))
428
429 === 3.3.4 Compose the uplink payload ===
430
431 (((
432 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
433
434
435 )))
436
437 (((
438 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
439
440
441 )))
442
443 (((
444 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
445 )))
446
447 (((
448 Final Payload is
449 )))
450
451 (((
452 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
453 )))
454
455 (((
456 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
457 )))
458
459 [[image:1653269759169-150.png||height="513" width="716"]]
460
461
462 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
463
464
465 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
466
467 Final Payload is
468
469 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
470
471
472 1. PAYVER: Defined by AT+PAYVER
473 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
474 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
475 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
476
477 [[image:image-20220602155039-4.png]]
478
479
480 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
481
482 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
483
484 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
485
486 DATA3=the rest of Valid value of RETURN10= **30**
487
488
489 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
490
491 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
492
493 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
494
495 * For US915 band, max 11 bytes for each uplink.
496
497 ~* For all other bands: max 51 bytes for each uplink.
498
499
500 Below are the uplink payloads:
501
502 [[image:1654157178836-407.png]]
503
504
505 === 3.3.5 Uplink on demand ===
506
507 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
508
509 Downlink control command:
510
511 **0x08 command**: Poll an uplink with current command set in RS485-LN.
512
513 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
514
515
516
517 === 3.3.6 Uplink on Interrupt ===
518
519 RS485-LN support external Interrupt uplink since hardware v1.2 release.
520
521 [[image:1654157342174-798.png]]
522
523 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
524
525
526 == 3.4 Uplink Payload ==
527
528
529 [[image:image-20220606110929-1.png]]
530
531 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
532
533
534 == 3.5 Configure RS485-BL via AT or Downlink ==
535
536 (((
537 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
538 )))
539
540 (((
541 There are two kinds of Commands:
542 )))
543
544 * (((
545 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
546 )))
547
548 * (((
549 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
550 )))
551
552 (((
553
554 )))
555
556
557 === 3.5.1 Common Commands ===
558
559 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
560
561
562 === 3.5.2 Sensor related commands ===
563
564 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
565
566 [[image:image-20220602163333-5.png||height="263" width="1160"]]
567
568 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
569
570
571 === 3.5.3 Sensor related commands ===
572
573
574
575
576 ==== **RS485 Debug Command** ====
577
578 (((
579 This command is used to configure the RS485 devices; they won’t be used during sampling.
580 )))
581
582 * (((
583 **AT Command**
584 )))
585
586 (% class="box infomessage" %)
587 (((
588 (((
589 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
590 )))
591 )))
592
593 (((
594 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
595 )))
596
597 * (((
598 **Downlink Payload**
599 )))
600
601 (((
602 Format: A8 MM NN XX XX XX XX YY
603 )))
604
605 (((
606 Where:
607 )))
608
609 * (((
610 MM: 1: add CRC-16/MODBUS ; 0: no CRC
611 )))
612 * (((
613 NN: The length of RS485 command
614 )))
615 * (((
616 XX XX XX XX: RS485 command total NN bytes
617 )))
618 * (((
619 (((
620 YY: How many bytes will be uplink from the return of this RS485 command,
621 )))
622
623 * (((
624 if YY=0, RS485-LN will execute the downlink command without uplink;
625 )))
626 * (((
627 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
628 )))
629 * (((
630 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
631 )))
632 )))
633
634 (((
635 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
636 )))
637
638 (((
639 To connect a Modbus Alarm with below commands.
640 )))
641
642 * (((
643 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
644 )))
645
646 * (((
647 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
648 )))
649
650 (((
651 So if user want to use downlink command to control to RS485 Alarm, he can use:
652 )))
653
654 (((
655 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
656 )))
657
658 (((
659 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
660 )))
661
662 (((
663 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
664 )))
665
666 (((
667
668 )))
669
670 (((
671 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
672 )))
673
674 (((
675 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
676 )))
677
678 (((
679
680 )))
681
682 (((
683 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
684 )))
685
686 (((
687 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
688 )))
689
690 (((
691 [[image:1654159460680-153.png]]
692 )))
693
694
695
696
697 ==== **Set Payload version** ====
698
699 (((
700 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
701 )))
702
703 * (((
704 **AT Command:**
705 )))
706
707 (% class="box infomessage" %)
708 (((
709 (((
710 **AT+PAYVER: Set PAYVER field = 1**
711 )))
712 )))
713
714 * (((
715 **Downlink Payload:**
716 )))
717
718 (((
719 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
720 )))
721
722 (((
723 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
724 )))
725
726
727
728
729 ==== **Set RS485 Sampling Commands** ====
730
731 (((
732 AT+COMMANDx or AT+DATACUTx
733 )))
734
735 (((
736 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
737 )))
738
739 (((
740
741 )))
742
743 * (((
744 **AT Command:**
745 )))
746
747 (% class="box infomessage" %)
748 (((
749 (((
750 **AT+COMMANDx: Configure RS485 read command to sensor.**
751 )))
752 )))
753
754 (% class="box infomessage" %)
755 (((
756 (((
757 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
758 )))
759 )))
760
761 (((
762
763 )))
764
765 * (((
766 **Downlink Payload:**
767 )))
768
769 (((
770 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
771 )))
772
773 (((
774 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
775 )))
776
777 (((
778 Format: AF MM NN LL XX XX XX XX YY
779 )))
780
781 (((
782 Where:
783 )))
784
785 * (((
786 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
787 )))
788 * (((
789 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
790 )))
791 * (((
792 LL:  The length of AT+COMMAND or AT+DATACUT command
793 )))
794 * (((
795 XX XX XX XX: AT+COMMAND or AT+DATACUT command
796 )))
797 * (((
798 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
799 )))
800
801 (((
802 **Example:**
803 )))
804
805 (((
806 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
807 )))
808
809 (((
810 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
811 )))
812
813 (((
814 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
815 )))
816
817
818
819
820 ==== **Fast command to handle MODBUS device** ====
821
822 (((
823 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
824 )))
825
826 (((
827 This command is valid since v1.3 firmware version
828 )))
829
830 (((
831 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
832 )))
833
834 (((
835
836 )))
837
838 (((
839 **Example:**
840 )))
841
842 * (((
843 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
844 )))
845 * (((
846 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
847 )))
848 * (((
849 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
850 )))
851
852 [[image:image-20220602165351-6.png]]
853
854 [[image:image-20220602165351-7.png]]
855
856
857
858
859 ==== **RS485 command timeout** ====
860
861 (((
862 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
863 )))
864
865 (((
866 Default value: 0, range:  0 ~~ 65 seconds
867 )))
868
869 * (((
870 **AT Command:**
871 )))
872
873 (% class="box infomessage" %)
874 (((
875 (((
876 **AT+CMDDLaa=hex(bb cc)*1000**
877 )))
878 )))
879
880 (((
881 **Example:**
882 )))
883
884 (((
885 **AT+CMDDL1=1000** to send the open time to 1000ms
886 )))
887
888 (((
889
890 )))
891
892 * (((
893 **Downlink Payload:**
894 )))
895
896 (((
897 **0x AA aa bb cc**
898 )))
899
900 (((
901 Same as: AT+CMDDLaa=hex(bb cc)*1000
902 )))
903
904 (((
905 **Example:**
906 )))
907
908 (((
909 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
910 )))
911
912
913
914
915 ==== **Uplink payload mode** ====
916
917 (((
918 Define to use one uplink or multiple uplinks for the sampling.
919 )))
920
921 (((
922 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
923 )))
924
925 * (((
926 **AT Command:**
927 )))
928
929 (% class="box infomessage" %)
930 (((
931 (((
932 **AT+DATAUP=0**
933 )))
934 )))
935
936 (% class="box infomessage" %)
937 (((
938 (((
939 **AT+DATAUP=1**
940 )))
941 )))
942
943 (((
944
945 )))
946
947 * (((
948 **Downlink Payload:**
949 )))
950
951 (((
952 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
953 )))
954
955 (((
956 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
957 )))
958
959
960
961
962 ==== **Manually trigger an Uplink** ====
963
964 (((
965 Ask device to send an uplink immediately.
966 )))
967
968 * (((
969 **AT Command:**
970 )))
971
972 (((
973 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
974 )))
975
976 (((
977
978 )))
979
980 * (((
981 **Downlink Payload:**
982 )))
983
984 (((
985 **0x08 FF**, RS485-LN will immediately send an uplink.
986 )))
987
988
989
990
991 ==== **Clear RS485 Command** ====
992
993 (((
994 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
995 )))
996
997 * (((
998 **AT Command:**
999 )))
1000
1001 (((
1002 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
1003 )))
1004
1005 (((
1006 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1007 )))
1008
1009 (((
1010 Example screen shot after clear all RS485 commands. 
1011 )))
1012
1013 (((
1014
1015 )))
1016
1017 (((
1018 The uplink screen shot is:
1019 )))
1020
1021 [[image:1654160691922-496.png]]
1022
1023
1024 * (((
1025 **Downlink Payload:**
1026 )))
1027
1028 (((
1029 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1030 )))
1031
1032
1033
1034
1035 ==== **Set Serial Communication Parameters** ====
1036
1037 (((
1038 Set the Rs485 serial communication parameters:
1039 )))
1040
1041 * (((
1042 **AT Command:**
1043 )))
1044
1045 (((
1046 Set Baud Rate:
1047 )))
1048
1049 (% class="box infomessage" %)
1050 (((
1051 (((
1052 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1053 )))
1054 )))
1055
1056 (((
1057 Set UART Parity
1058 )))
1059
1060 (% class="box infomessage" %)
1061 (((
1062 (((
1063 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1064 )))
1065 )))
1066
1067 (((
1068 Set STOPBIT
1069 )))
1070
1071 (% class="box infomessage" %)
1072 (((
1073 (((
1074 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1075 )))
1076 )))
1077
1078 (((
1079
1080 )))
1081
1082 * (((
1083 **Downlink Payload:**
1084 )))
1085
1086 (((
1087 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1088 )))
1089
1090 (((
1091 **Example:**
1092 )))
1093
1094 * (((
1095 A7 01 00 60   same as AT+BAUDR=9600
1096 )))
1097 * (((
1098 A7 01 04 80  same as AT+BAUDR=115200
1099 )))
1100
1101 (((
1102 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1103 )))
1104
1105 (((
1106 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1107 )))
1108
1109
1110
1111
1112 == 3.6 Listening mode for RS485 network ==
1113
1114 (((
1115 This feature support since firmware v1.4
1116 )))
1117
1118 (((
1119 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1120 )))
1121
1122 [[image:image-20220602171200-8.png||height="567" width="1007"]]
1123
1124 (((
1125 To enable the listening mode, use can run the command AT+RXMODE.
1126 )))
1127
1128 (((
1129
1130 )))
1131
1132 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
1133 |=(% style="width: 100px;" %)(((
1134 **Command example**
1135 )))|=(% style="width: 400px;" %)(((
1136 **Function**
1137 )))
1138 |(% style="width:100px" %)(((
1139 AT+RXMODE=1,10
1140 )))|(% style="width:400px" %)(((
1141 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1142 )))
1143 |(% style="width:100px" %)(((
1144 AT+RXMODE=2,500
1145 )))|(% style="width:400px" %)(((
1146 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1147 )))
1148 |(% style="width:100px" %)(((
1149 AT+RXMODE=0,0
1150 )))|(% style="width:400px" %)(((
1151 Disable listening mode. This is the default settings.
1152 )))
1153 |(% style="width:100px" %)(((
1154
1155 )))|(% style="width:400px" %)(((
1156 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1157 )))
1158
1159 (((
1160 **Downlink Command:**
1161 )))
1162
1163 (((
1164 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
1165 )))
1166
1167 (((
1168
1169 )))
1170
1171 (((
1172 **Example**:
1173 )))
1174
1175 (((
1176 The RS485-LN is set to AT+RXMODE=2,1000
1177 )))
1178
1179 (((
1180 There is a two Modbus commands in the RS485 network as below:
1181 )))
1182
1183 (((
1184 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
1185 )))
1186
1187 (((
1188 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1189 )))
1190
1191 (((
1192 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1193 )))
1194
1195 (((
1196 [[image:image-20220602171200-9.png]]
1197 )))
1198
1199 (((
1200
1201 )))
1202
1203 (((
1204 (((
1205 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
1206 )))
1207 )))
1208
1209
1210 == 3.7 Buttons ==
1211
1212
1213 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1214 |=(% style="width: 50px;" %)**Button**|=(% style="width: 361px;" %)**Feature**
1215 |(% style="width:50px" %)**ACT**|(% style="width:361px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1216 |(% style="width:50px" %)**RST**|(% style="width:361px" %)Reboot RS485
1217 |(% style="width:50px" %)**PRO**|(% style="width:361px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
1218
1219 == 3.8 LEDs ==
1220
1221
1222 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1223 |=(% style="width: 50px;" %)**LEDs**|=(% style="width: 380px;" %)**Feature**
1224 |**PWR**|Always on if there is power
1225 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
1226
1227 = 4. Case Study =
1228
1229 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1230
1231
1232 = 5. Use AT Command =
1233
1234 == 5.1 Access AT Command ==
1235
1236 (((
1237 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1238 )))
1239
1240 [[image:1654162355560-817.png]]
1241
1242
1243 (((
1244 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1245 )))
1246
1247 [[image:1654162368066-342.png]]
1248
1249
1250 (((
1251 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1252 )))
1253
1254
1255
1256 == 5.2 Common AT Command Sequence ==
1257
1258 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1259
1260 If device has not joined network yet:
1261
1262 (% class="box infomessage" %)
1263 (((
1264 **AT+FDR**
1265 )))
1266
1267 (% class="box infomessage" %)
1268 (((
1269 **AT+NJM=0**
1270 )))
1271
1272 (% class="box infomessage" %)
1273 (((
1274 **ATZ**
1275 )))
1276
1277
1278 (((
1279 If device already joined network:
1280 )))
1281
1282 (% class="box infomessage" %)
1283 (((
1284 **AT+NJM=0**
1285 )))
1286
1287 (% class="box infomessage" %)
1288 (((
1289 **ATZ**
1290 )))
1291
1292
1293 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1294
1295
1296 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1297
1298 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1299
1300 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1301
1302 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
1303
1304 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1305
1306 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1307
1308 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1309
1310 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1311
1312 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1313
1314 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1315
1316
1317 (% style="color:red" %)**Note:**
1318
1319 (((
1320 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1321 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1322 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1323 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1324 )))
1325
1326 [[image:1654162478620-421.png]]
1327
1328
1329 = 6. FAQ =
1330
1331 == 6.1 How to upgrade the image? ==
1332
1333 (((
1334 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
1335 )))
1336
1337 * (((
1338 Support new features
1339 )))
1340 * (((
1341 For bug fix
1342 )))
1343 * (((
1344 Change LoRaWAN bands.
1345 )))
1346
1347 (((
1348 Below shows the hardware connection for how to upload an image to RS485-LN:
1349 )))
1350
1351 [[image:1654162535040-878.png]]
1352
1353 (((
1354 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1355 )))
1356
1357 (((
1358 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1359 )))
1360
1361 (((
1362 **Step3: **Open flashloader; choose the correct COM port to update.
1363 )))
1364
1365 (((
1366 (((
1367 (((
1368 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1369 )))
1370 )))
1371 )))
1372
1373
1374 [[image:image-20220602175818-12.png]]
1375
1376
1377 [[image:image-20220602175848-13.png]]
1378
1379
1380 [[image:image-20220602175912-14.png]]
1381
1382
1383 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1384
1385 [[image:image-20220602175638-10.png]]
1386
1387
1388 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1389
1390 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1391
1392
1393 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1394
1395 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1396
1397
1398 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1399
1400 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1401
1402 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1403
1404
1405 = 7. Trouble Shooting =
1406
1407 == 7.1 Downlink doesn’t work, how to solve it? ==
1408
1409 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1410
1411
1412 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1413
1414 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1415
1416
1417 = 8. Order Info =
1418
1419 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1420
1421 (% style="color:blue" %)**XXX:**
1422
1423 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1424 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1425 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1426 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1427 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1428 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1429 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1430 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1431 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1432 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1433
1434 = 9.Packing Info =
1435
1436
1437 **Package Includes**:
1438
1439 * RS485-LN x 1
1440 * Stick Antenna for LoRa RF part x 1
1441 * Program cable x 1
1442
1443 **Dimension and weight**:
1444
1445 * Device Size: 13.5 x 7 x 3 cm
1446 * Device Weight: 105g
1447 * Package Size / pcs : 14.5 x 8 x 5 cm
1448 * Weight / pcs : 170g
1449
1450 = 10. FCC Caution for RS485LN-US915 =
1451
1452 (((
1453 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1454 )))
1455
1456 (((
1457 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1458 )))
1459
1460 (((
1461
1462 )))
1463
1464 (((
1465 **IMPORTANT NOTE:**
1466 )))
1467
1468 (((
1469 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1470 )))
1471
1472 (((
1473 —Reorient or relocate the receiving antenna.
1474 )))
1475
1476 (((
1477 —Increase the separation between the equipment and receiver.
1478 )))
1479
1480 (((
1481 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1482 )))
1483
1484 (((
1485 —Consult the dealer or an experienced radio/TV technician for help.
1486 )))
1487
1488 (((
1489
1490 )))
1491
1492 (((
1493 **FCC Radiation Exposure Statement:**
1494 )))
1495
1496 (((
1497 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1498 )))
1499
1500
1501 = 11. Support =
1502
1503 * (((
1504 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1505 )))
1506 * (((
1507 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1508 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0