Version 60.5 by Xiaoling on 2022/06/14 11:07

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1.Introduction =
21
22 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
23
24 (((
25 (((
26 (((
27
28
29 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
30 )))
31 )))
32
33 (((
34 (((
35 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
36 )))
37 )))
38
39 (((
40 (((
41 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
42 )))
43 )))
44
45 (((
46 (((
47 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
48 )))
49
50 (((
51 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
52
53
54 )))
55 )))
56 )))
57
58 [[image:1653267211009-519.png||height="419" width="724"]]
59
60
61 == 1.2 Specifications ==
62
63
64 **Hardware System:**
65
66 * STM32L072CZT6 MCU
67 * SX1276/78 Wireless Chip 
68 * Power Consumption (exclude RS485 device):
69 ** Idle: 32mA@12v
70 ** 20dB Transmit: 65mA@12v
71
72
73
74 **Interface for Model:**
75
76 * RS485
77 * Power Input 7~~ 24V DC. 
78
79
80
81 **LoRa Spec:**
82
83 * Frequency Range:
84 ** Band 1 (HF): 862 ~~ 1020 Mhz
85 ** Band 2 (LF): 410 ~~ 528 Mhz
86 * 168 dB maximum link budget.
87 * +20 dBm - 100 mW constant RF output vs.
88 * +14 dBm high efficiency PA.
89 * Programmable bit rate up to 300 kbps.
90 * High sensitivity: down to -148 dBm.
91 * Bullet-proof front end: IIP3 = -12.5 dBm.
92 * Excellent blocking immunity.
93 * Low RX current of 10.3 mA, 200 nA register retention.
94 * Fully integrated synthesizer with a resolution of 61 Hz.
95 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
96 * Built-in bit synchronizer for clock recovery.
97 * Preamble detection.
98 * 127 dB Dynamic Range RSSI.
99 * Automatic RF Sense and CAD with ultra-fast AFC.
100 * Packet engine up to 256 bytes with CRC
101
102
103
104
105 == 1.3 Features ==
106
107 * LoRaWAN Class A & Class C protocol (default Class C)
108 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
109 * AT Commands to change parameters
110 * Remote configure parameters via LoRa Downlink
111 * Firmware upgradable via program port
112 * Support multiply RS485 devices by flexible rules
113 * Support Modbus protocol
114 * Support Interrupt uplink (Since hardware version v1.2)
115
116
117
118
119 == 1.4 Applications ==
120
121 * Smart Buildings & Home Automation
122 * Logistics and Supply Chain Management
123 * Smart Metering
124 * Smart Agriculture
125 * Smart Cities
126 * Smart Factory
127
128
129
130
131 == 1.5 Firmware Change log ==
132
133 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
134
135
136 == 1.6 Hardware Change log ==
137
138 (((
139 (((
140 (((
141 v1.2: Add External Interrupt Pin.
142 )))
143
144 (((
145 v1.0: Release
146 )))
147
148
149 )))
150 )))
151
152 = 2. Power ON Device =
153
154 (((
155 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
156
157 * Power Source VIN to RS485-LN VIN+
158 * Power Source GND to RS485-LN VIN-
159
160 (((
161 Once there is power, the RS485-LN will be on.
162 )))
163
164 [[image:1653268091319-405.png]]
165
166
167 )))
168
169 = 3. Operation Mode =
170
171 == 3.1 How it works? ==
172
173 (((
174 (((
175 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
176 )))
177
178
179 )))
180
181 == 3.2 Example to join LoRaWAN network ==
182
183 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
184
185 [[image:1653268155545-638.png||height="334" width="724"]]
186
187
188 (((
189 (((
190 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
191 )))
192
193 (((
194 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
195 )))
196
197 [[image:1653268227651-549.png||height="592" width="720"]]
198
199 (((
200 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
201 )))
202
203 (((
204 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
205 )))
206
207 (((
208 Each RS485-LN is shipped with a sticker with unique device EUI:
209 )))
210 )))
211
212 [[image:1652953462722-299.png]]
213
214 (((
215 (((
216 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
217 )))
218
219 (((
220 Add APP EUI in the application.
221 )))
222 )))
223
224 [[image:image-20220519174512-1.png]]
225
226 [[image:image-20220519174512-2.png||height="323" width="720"]]
227
228 [[image:image-20220519174512-3.png||height="556" width="724"]]
229
230 [[image:image-20220519174512-4.png]]
231
232 You can also choose to create the device manually.
233
234 [[image:1652953542269-423.png||height="710" width="723"]]
235
236 Add APP KEY and DEV EUI
237
238 [[image:1652953553383-907.png||height="514" width="724"]]
239
240
241 (((
242 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
243 )))
244
245 [[image:1652953568895-172.png||height="232" width="724"]]
246
247
248 == 3.3 Configure Commands to read data ==
249
250 (((
251 (((
252 (((
253 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
254 )))
255 )))
256
257 (((
258 (((
259 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
260 )))
261
262
263 )))
264 )))
265
266 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
267
268 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
269
270 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
271 |=(% style="width: 110px;" %)(((
272 **AT Commands**
273 )))|=(% style="width: 190px;" %)(((
274 **Description**
275 )))|=(% style="width: 190px;" %)(((
276 **Example**
277 )))
278 |(% style="width:110px" %)(((
279 AT+BAUDR
280 )))|(% style="width:190px" %)(((
281 Set the baud rate (for RS485 connection). Default Value is: 9600.
282 )))|(% style="width:190px" %)(((
283 (((
284 AT+BAUDR=9600
285 )))
286
287 (((
288 Options: (1200,2400,4800,14400,19200,115200)
289 )))
290 )))
291 |(% style="width:110px" %)(((
292 AT+PARITY
293 )))|(% style="width:190px" %)(((
294 Set UART parity (for RS485 connection)
295 )))|(% style="width:190px" %)(((
296 (((
297 AT+PARITY=0
298 )))
299
300 (((
301 Option: 0: no parity, 1: odd parity, 2: even parity
302 )))
303 )))
304 |(% style="width:110px" %)(((
305 AT+STOPBIT
306 )))|(% style="width:190px" %)(((
307 (((
308 Set serial stopbit (for RS485 connection)
309 )))
310
311 (((
312
313 )))
314 )))|(% style="width:190px" %)(((
315 (((
316 AT+STOPBIT=0 for 1bit
317 )))
318
319 (((
320 AT+STOPBIT=1 for 1.5 bit
321 )))
322
323 (((
324 AT+STOPBIT=2 for 2 bits
325 )))
326 )))
327
328 === 3.3.2 Configure sensors ===
329
330 (((
331 (((
332 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
333 )))
334 )))
335
336 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
337 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
338 |AT+CFGDEV|(% style="width:110px" %)(((
339 (((
340 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
341 )))
342
343 (((
344 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
345 )))
346
347 (((
348 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
349 )))
350 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
351
352 === 3.3.3 Configure read commands for each sampling ===
353
354 (((
355 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
356
357 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
358
359 This section describes how to achieve above goals.
360
361 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
362
363
364 **Each RS485 commands include two parts:**
365
366 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
367
368 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
369
370 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
371
372
373 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
374
375
376 Below are examples for the how above AT Commands works.
377
378
379 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
380
381 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
382 |(% style="width:496px" %)(((
383 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
384
385 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
386
387 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
388 )))
389
390 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
391
392 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
393
394
395 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
396
397 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
398 |(% style="width:510px" %)(((
399 **AT+DATACUTx=a,b,c**
400
401 * **a: length for the return of AT+COMMAND**
402 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
403 * **c: define the position for valid value.  **
404 )))
405
406 **Examples:**
407
408 * Grab bytes:
409
410 [[image:image-20220602153621-1.png]]
411
412
413 * Grab a section.
414
415 [[image:image-20220602153621-2.png]]
416
417
418 * Grab different sections.
419
420 [[image:image-20220602153621-3.png]]
421
422
423 )))
424
425 === 3.3.4 Compose the uplink payload ===
426
427 (((
428 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
429
430
431 )))
432
433 (((
434 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
435
436
437 )))
438
439 (((
440 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
441 )))
442
443 (((
444 Final Payload is
445 )))
446
447 (((
448 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
449 )))
450
451 (((
452 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
453 )))
454
455 [[image:1653269759169-150.png||height="513" width="716"]]
456
457
458 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
459
460
461 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
462
463 Final Payload is
464
465 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
466
467
468 1. PAYVER: Defined by AT+PAYVER
469 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
470 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
471 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
472
473 [[image:image-20220602155039-4.png]]
474
475
476 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
477
478 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
479
480 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
481
482 DATA3=the rest of Valid value of RETURN10= **30**
483
484
485 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
486
487 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
488
489 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
490
491 * For US915 band, max 11 bytes for each uplink.
492
493 ~* For all other bands: max 51 bytes for each uplink.
494
495
496 Below are the uplink payloads:
497
498 [[image:1654157178836-407.png]]
499
500
501 === 3.3.5 Uplink on demand ===
502
503 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
504
505 Downlink control command:
506
507 **0x08 command**: Poll an uplink with current command set in RS485-LN.
508
509 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
510
511
512
513 === 3.3.6 Uplink on Interrupt ===
514
515 RS485-LN support external Interrupt uplink since hardware v1.2 release.
516
517 [[image:1654157342174-798.png]]
518
519 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
520
521
522 == 3.4 Uplink Payload ==
523
524
525 [[image:image-20220606110929-1.png]]
526
527 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
528
529
530 == 3.5 Configure RS485-BL via AT or Downlink ==
531
532 (((
533 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
534 )))
535
536 (((
537 There are two kinds of Commands:
538 )))
539
540 * (((
541 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
542 )))
543
544 * (((
545 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
546 )))
547
548 (((
549
550 )))
551
552
553 === 3.5.1 Common Commands ===
554
555 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
556
557
558 === 3.5.2 Sensor related commands ===
559
560 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
561
562 [[image:image-20220602163333-5.png||height="263" width="1160"]]
563
564 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
565
566
567 === 3.5.3 Sensor related commands ===
568
569
570
571
572 ==== **RS485 Debug Command** ====
573
574 (((
575 This command is used to configure the RS485 devices; they won’t be used during sampling.
576 )))
577
578 * (((
579 **AT Command**
580 )))
581
582 (% class="box infomessage" %)
583 (((
584 (((
585 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
586 )))
587 )))
588
589 (((
590 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
591 )))
592
593 * (((
594 **Downlink Payload**
595 )))
596
597 (((
598 Format: A8 MM NN XX XX XX XX YY
599 )))
600
601 (((
602 Where:
603 )))
604
605 * (((
606 MM: 1: add CRC-16/MODBUS ; 0: no CRC
607 )))
608 * (((
609 NN: The length of RS485 command
610 )))
611 * (((
612 XX XX XX XX: RS485 command total NN bytes
613 )))
614 * (((
615 (((
616 YY: How many bytes will be uplink from the return of this RS485 command,
617 )))
618
619 * (((
620 if YY=0, RS485-LN will execute the downlink command without uplink;
621 )))
622 * (((
623 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
624 )))
625 * (((
626 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
627 )))
628 )))
629
630 (((
631 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
632 )))
633
634 (((
635 To connect a Modbus Alarm with below commands.
636 )))
637
638 * (((
639 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
640 )))
641
642 * (((
643 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
644 )))
645
646 (((
647 So if user want to use downlink command to control to RS485 Alarm, he can use:
648 )))
649
650 (((
651 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
652 )))
653
654 (((
655 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
656 )))
657
658 (((
659 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
660 )))
661
662 (((
663
664 )))
665
666 (((
667 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
668 )))
669
670 (((
671 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
672 )))
673
674 (((
675
676 )))
677
678 (((
679 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
680 )))
681
682 (((
683 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
684 )))
685
686 (((
687 [[image:1654159460680-153.png]]
688 )))
689
690
691
692
693 ==== **Set Payload version** ====
694
695 (((
696 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
697 )))
698
699 * (((
700 **AT Command:**
701 )))
702
703 (% class="box infomessage" %)
704 (((
705 (((
706 **AT+PAYVER: Set PAYVER field = 1**
707 )))
708 )))
709
710 * (((
711 **Downlink Payload:**
712 )))
713
714 (((
715 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
716 )))
717
718 (((
719 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
720 )))
721
722
723
724
725 ==== **Set RS485 Sampling Commands** ====
726
727 (((
728 AT+COMMANDx or AT+DATACUTx
729 )))
730
731 (((
732 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
733 )))
734
735 (((
736
737 )))
738
739 * (((
740 **AT Command:**
741 )))
742
743 (% class="box infomessage" %)
744 (((
745 (((
746 **AT+COMMANDx: Configure RS485 read command to sensor.**
747 )))
748 )))
749
750 (% class="box infomessage" %)
751 (((
752 (((
753 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
754 )))
755 )))
756
757 (((
758
759 )))
760
761 * (((
762 **Downlink Payload:**
763 )))
764
765 (((
766 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
767 )))
768
769 (((
770 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
771 )))
772
773 (((
774 Format: AF MM NN LL XX XX XX XX YY
775 )))
776
777 (((
778 Where:
779 )))
780
781 * (((
782 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
783 )))
784 * (((
785 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
786 )))
787 * (((
788 LL:  The length of AT+COMMAND or AT+DATACUT command
789 )))
790 * (((
791 XX XX XX XX: AT+COMMAND or AT+DATACUT command
792 )))
793 * (((
794 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
795 )))
796
797 (((
798 **Example:**
799 )))
800
801 (((
802 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
803 )))
804
805 (((
806 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
807 )))
808
809 (((
810 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
811 )))
812
813
814
815
816 ==== **Fast command to handle MODBUS device** ====
817
818 (((
819 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
820 )))
821
822 (((
823 This command is valid since v1.3 firmware version
824 )))
825
826 (((
827 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
828 )))
829
830 (((
831
832 )))
833
834 (((
835 **Example:**
836 )))
837
838 * (((
839 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
840 )))
841 * (((
842 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
843 )))
844 * (((
845 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
846 )))
847
848 [[image:image-20220602165351-6.png]]
849
850 [[image:image-20220602165351-7.png]]
851
852
853
854
855 ==== **RS485 command timeout** ====
856
857 (((
858 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
859 )))
860
861 (((
862 Default value: 0, range:  0 ~~ 65 seconds
863 )))
864
865 * (((
866 **AT Command:**
867 )))
868
869 (% class="box infomessage" %)
870 (((
871 (((
872 **AT+CMDDLaa=hex(bb cc)*1000**
873 )))
874 )))
875
876 (((
877 **Example:**
878 )))
879
880 (((
881 **AT+CMDDL1=1000** to send the open time to 1000ms
882 )))
883
884 (((
885
886 )))
887
888 * (((
889 **Downlink Payload:**
890 )))
891
892 (((
893 **0x AA aa bb cc**
894 )))
895
896 (((
897 Same as: AT+CMDDLaa=hex(bb cc)*1000
898 )))
899
900 (((
901 **Example:**
902 )))
903
904 (((
905 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
906 )))
907
908
909
910
911 ==== **Uplink payload mode** ====
912
913 (((
914 Define to use one uplink or multiple uplinks for the sampling.
915 )))
916
917 (((
918 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
919 )))
920
921 * (((
922 **AT Command:**
923 )))
924
925 (% class="box infomessage" %)
926 (((
927 (((
928 **AT+DATAUP=0**
929 )))
930 )))
931
932 (% class="box infomessage" %)
933 (((
934 (((
935 **AT+DATAUP=1**
936 )))
937 )))
938
939 (((
940
941 )))
942
943 * (((
944 **Downlink Payload:**
945 )))
946
947 (((
948 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
949 )))
950
951 (((
952 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
953 )))
954
955
956
957
958 ==== **Manually trigger an Uplink** ====
959
960 (((
961 Ask device to send an uplink immediately.
962 )))
963
964 * (((
965 **AT Command:**
966 )))
967
968 (((
969 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
970 )))
971
972 (((
973
974 )))
975
976 * (((
977 **Downlink Payload:**
978 )))
979
980 (((
981 **0x08 FF**, RS485-LN will immediately send an uplink.
982 )))
983
984
985
986
987 ==== **Clear RS485 Command** ====
988
989 (((
990 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
991 )))
992
993 * (((
994 **AT Command:**
995 )))
996
997 (((
998 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
999 )))
1000
1001 (((
1002 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1003 )))
1004
1005 (((
1006 Example screen shot after clear all RS485 commands. 
1007 )))
1008
1009 (((
1010
1011 )))
1012
1013 (((
1014 The uplink screen shot is:
1015 )))
1016
1017 [[image:1654160691922-496.png]]
1018
1019
1020 * (((
1021 **Downlink Payload:**
1022 )))
1023
1024 (((
1025 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1026 )))
1027
1028
1029
1030
1031 ==== **Set Serial Communication Parameters** ====
1032
1033 (((
1034 Set the Rs485 serial communication parameters:
1035 )))
1036
1037 * (((
1038 **AT Command:**
1039 )))
1040
1041 (((
1042 Set Baud Rate:
1043 )))
1044
1045 (% class="box infomessage" %)
1046 (((
1047 (((
1048 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1049 )))
1050 )))
1051
1052 (((
1053 Set UART Parity
1054 )))
1055
1056 (% class="box infomessage" %)
1057 (((
1058 (((
1059 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1060 )))
1061 )))
1062
1063 (((
1064 Set STOPBIT
1065 )))
1066
1067 (% class="box infomessage" %)
1068 (((
1069 (((
1070 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1071 )))
1072 )))
1073
1074 (((
1075
1076 )))
1077
1078 * (((
1079 **Downlink Payload:**
1080 )))
1081
1082 (((
1083 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1084 )))
1085
1086 (((
1087 **Example:**
1088 )))
1089
1090 * (((
1091 A7 01 00 60   same as AT+BAUDR=9600
1092 )))
1093 * (((
1094 A7 01 04 80  same as AT+BAUDR=115200
1095 )))
1096
1097 (((
1098 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1099 )))
1100
1101 (((
1102 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1103 )))
1104
1105
1106
1107
1108 == 3.6 Listening mode for RS485 network ==
1109
1110 (((
1111 This feature support since firmware v1.4
1112 )))
1113
1114 (((
1115 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1116 )))
1117
1118 [[image:image-20220602171200-8.png||height="567" width="1007"]]
1119
1120 (((
1121 To enable the listening mode, use can run the command AT+RXMODE.
1122 )))
1123
1124 (((
1125
1126 )))
1127
1128 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
1129 |=(% style="width: 100px;" %)(((
1130 **Command example**
1131 )))|=(% style="width: 400px;" %)(((
1132 **Function**
1133 )))
1134 |(% style="width:100px" %)(((
1135 AT+RXMODE=1,10
1136 )))|(% style="width:400px" %)(((
1137 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1138 )))
1139 |(% style="width:100px" %)(((
1140 AT+RXMODE=2,500
1141 )))|(% style="width:400px" %)(((
1142 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1143 )))
1144 |(% style="width:100px" %)(((
1145 AT+RXMODE=0,0
1146 )))|(% style="width:400px" %)(((
1147 Disable listening mode. This is the default settings.
1148 )))
1149 |(% style="width:100px" %)(((
1150
1151 )))|(% style="width:400px" %)(((
1152 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1153 )))
1154
1155 (((
1156 **Downlink Command:**
1157 )))
1158
1159 (((
1160 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
1161 )))
1162
1163 (((
1164
1165 )))
1166
1167 (((
1168 **Example**:
1169 )))
1170
1171 (((
1172 The RS485-LN is set to AT+RXMODE=2,1000
1173 )))
1174
1175 (((
1176 There is a two Modbus commands in the RS485 network as below:
1177 )))
1178
1179 (((
1180 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
1181 )))
1182
1183 (((
1184 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1185 )))
1186
1187 (((
1188 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1189 )))
1190
1191 (((
1192 [[image:image-20220602171200-9.png]]
1193 )))
1194
1195 (((
1196
1197 )))
1198
1199 (((
1200 (((
1201 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
1202 )))
1203 )))
1204
1205
1206 == 3.7 Buttons ==
1207
1208
1209 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1210 |=(% style="width: 50px;" %)**Button**|=(% style="width: 361px;" %)**Feature**
1211 |(% style="width:50px" %)**ACT**|(% style="width:361px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1212 |(% style="width:50px" %)**RST**|(% style="width:361px" %)Reboot RS485
1213 |(% style="width:50px" %)**PRO**|(% style="width:361px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
1214
1215 == 3.8 LEDs ==
1216
1217
1218 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1219 |=(% style="width: 50px;" %)**LEDs**|=(% style="width: 380px;" %)**Feature**
1220 |**PWR**|Always on if there is power
1221 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
1222
1223 = 4. Case Study =
1224
1225 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1226
1227
1228 = 5. Use AT Command =
1229
1230 == 5.1 Access AT Command ==
1231
1232 (((
1233 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1234 )))
1235
1236 [[image:1654162355560-817.png]]
1237
1238
1239 (((
1240 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1241 )))
1242
1243 [[image:1654162368066-342.png]]
1244
1245
1246 (((
1247 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1248 )))
1249
1250
1251
1252 == 5.2 Common AT Command Sequence ==
1253
1254 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1255
1256 If device has not joined network yet:
1257
1258 (% class="box infomessage" %)
1259 (((
1260 **AT+FDR**
1261 )))
1262
1263 (% class="box infomessage" %)
1264 (((
1265 **AT+NJM=0**
1266 )))
1267
1268 (% class="box infomessage" %)
1269 (((
1270 **ATZ**
1271 )))
1272
1273
1274 (((
1275 If device already joined network:
1276 )))
1277
1278 (% class="box infomessage" %)
1279 (((
1280 **AT+NJM=0**
1281 )))
1282
1283 (% class="box infomessage" %)
1284 (((
1285 **ATZ**
1286 )))
1287
1288
1289 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1290
1291
1292 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1293
1294 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1295
1296 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1297
1298 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
1299
1300 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1301
1302 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1303
1304 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1305
1306 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1307
1308 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1309
1310 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1311
1312
1313 (% style="color:red" %)**Note:**
1314
1315 (((
1316 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1317 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1318 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1319 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1320 )))
1321
1322 [[image:1654162478620-421.png]]
1323
1324
1325 = 6. FAQ =
1326
1327 == 6.1 How to upgrade the image? ==
1328
1329 (((
1330 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
1331 )))
1332
1333 * (((
1334 Support new features
1335 )))
1336 * (((
1337 For bug fix
1338 )))
1339 * (((
1340 Change LoRaWAN bands.
1341 )))
1342
1343 (((
1344 Below shows the hardware connection for how to upload an image to RS485-LN:
1345 )))
1346
1347 [[image:1654162535040-878.png]]
1348
1349 (((
1350 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1351 )))
1352
1353 (((
1354 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1355 )))
1356
1357 (((
1358 **Step3: **Open flashloader; choose the correct COM port to update.
1359 )))
1360
1361 (((
1362 (((
1363 (((
1364 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1365 )))
1366 )))
1367 )))
1368
1369
1370 [[image:image-20220602175818-12.png]]
1371
1372
1373 [[image:image-20220602175848-13.png]]
1374
1375
1376 [[image:image-20220602175912-14.png]]
1377
1378
1379 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1380
1381 [[image:image-20220602175638-10.png]]
1382
1383
1384 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1385
1386 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1387
1388
1389 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1390
1391 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1392
1393
1394 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1395
1396 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1397
1398 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1399
1400
1401 = 7. Trouble Shooting =
1402
1403 == 7.1 Downlink doesn’t work, how to solve it? ==
1404
1405 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1406
1407
1408 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1409
1410 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1411
1412
1413 = 8. Order Info =
1414
1415 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1416
1417 (% style="color:blue" %)**XXX:**
1418
1419 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1420 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1421 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1422 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1423 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1424 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1425 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1426 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1427 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1428 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1429
1430 = 9.Packing Info =
1431
1432
1433 **Package Includes**:
1434
1435 * RS485-LN x 1
1436 * Stick Antenna for LoRa RF part x 1
1437 * Program cable x 1
1438
1439 **Dimension and weight**:
1440
1441 * Device Size: 13.5 x 7 x 3 cm
1442 * Device Weight: 105g
1443 * Package Size / pcs : 14.5 x 8 x 5 cm
1444 * Weight / pcs : 170g
1445
1446 = 10. FCC Caution for RS485LN-US915 =
1447
1448 (((
1449 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1450 )))
1451
1452 (((
1453 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1454 )))
1455
1456 (((
1457
1458 )))
1459
1460 (((
1461 **IMPORTANT NOTE:**
1462 )))
1463
1464 (((
1465 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1466 )))
1467
1468 (((
1469 —Reorient or relocate the receiving antenna.
1470 )))
1471
1472 (((
1473 —Increase the separation between the equipment and receiver.
1474 )))
1475
1476 (((
1477 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1478 )))
1479
1480 (((
1481 —Consult the dealer or an experienced radio/TV technician for help.
1482 )))
1483
1484 (((
1485
1486 )))
1487
1488 (((
1489 **FCC Radiation Exposure Statement:**
1490 )))
1491
1492 (((
1493 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1494 )))
1495
1496
1497 = 11. Support =
1498
1499 * (((
1500 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1501 )))
1502 * (((
1503 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1504 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0