Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1.Introduction =
21
22 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
23
24 (((
25 (((
26 (((
27
28
29 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
30 )))
31 )))
32
33 (((
34 (((
35 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
36 )))
37 )))
38
39 (((
40 (((
41 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
42 )))
43 )))
44
45 (((
46 (((
47 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
48 )))
49
50 (((
51 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
52
53
54 )))
55 )))
56 )))
57
58 [[image:1653267211009-519.png||height="419" width="724"]]
59
60
61 == 1.2 Specifications ==
62
63
64 **Hardware System:**
65
66 * STM32L072CZT6 MCU
67 * SX1276/78 Wireless Chip 
68 * Power Consumption (exclude RS485 device):
69 ** Idle: 32mA@12v
70 ** 20dB Transmit: 65mA@12v
71
72
73 **Interface for Model:**
74
75 * RS485
76 * Power Input 7~~ 24V DC. 
77
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * +14 dBm high efficiency PA.
87 * Programmable bit rate up to 300 kbps.
88 * High sensitivity: down to -148 dBm.
89 * Bullet-proof front end: IIP3 = -12.5 dBm.
90 * Excellent blocking immunity.
91 * Low RX current of 10.3 mA, 200 nA register retention.
92 * Fully integrated synthesizer with a resolution of 61 Hz.
93 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
94 * Built-in bit synchronizer for clock recovery.
95 * Preamble detection.
96 * 127 dB Dynamic Range RSSI.
97 * Automatic RF Sense and CAD with ultra-fast AFC.
98 * Packet engine up to 256 bytes with CRC
99
100
101
102
103 == 1.3 Features ==
104
105 * LoRaWAN Class A & Class C protocol (default Class C)
106 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
107 * AT Commands to change parameters
108 * Remote configure parameters via LoRa Downlink
109 * Firmware upgradable via program port
110 * Support multiply RS485 devices by flexible rules
111 * Support Modbus protocol
112 * Support Interrupt uplink (Since hardware version v1.2)
113
114
115
116
117 == 1.4 Applications ==
118
119 * Smart Buildings & Home Automation
120 * Logistics and Supply Chain Management
121 * Smart Metering
122 * Smart Agriculture
123 * Smart Cities
124 * Smart Factory
125
126
127
128
129 == 1.5 Firmware Change log ==
130
131 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
132
133
134 == 1.6 Hardware Change log ==
135
136 (((
137 (((
138 (((
139 v1.2: Add External Interrupt Pin.
140 )))
141
142 (((
143 v1.0: Release
144 )))
145
146
147 )))
148 )))
149
150 = 2. Power ON Device =
151
152 (((
153 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
154
155 * Power Source VIN to RS485-LN VIN+
156 * Power Source GND to RS485-LN VIN-
157
158 (((
159 Once there is power, the RS485-LN will be on.
160 )))
161
162 [[image:1653268091319-405.png]]
163
164
165 )))
166
167 = 3. Operation Mode =
168
169 == 3.1 How it works? ==
170
171 (((
172 (((
173 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
174 )))
175
176
177 )))
178
179 == 3.2 Example to join LoRaWAN network ==
180
181 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
182
183 [[image:1653268155545-638.png||height="334" width="724"]]
184
185
186 (((
187 (((
188 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
189 )))
190
191 (((
192 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
193 )))
194
195 [[image:1653268227651-549.png||height="592" width="720"]]
196
197 (((
198 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
199 )))
200
201 (((
202 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
203 )))
204
205 (((
206 Each RS485-LN is shipped with a sticker with unique device EUI:
207 )))
208 )))
209
210 [[image:1652953462722-299.png]]
211
212 (((
213 (((
214 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
215 )))
216
217 (((
218 Add APP EUI in the application.
219 )))
220 )))
221
222 [[image:image-20220519174512-1.png]]
223
224 [[image:image-20220519174512-2.png||height="323" width="720"]]
225
226 [[image:image-20220519174512-3.png||height="556" width="724"]]
227
228 [[image:image-20220519174512-4.png]]
229
230 You can also choose to create the device manually.
231
232 [[image:1652953542269-423.png||height="710" width="723"]]
233
234 Add APP KEY and DEV EUI
235
236 [[image:1652953553383-907.png||height="514" width="724"]]
237
238
239 (((
240 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
241 )))
242
243 [[image:1652953568895-172.png||height="232" width="724"]]
244
245
246 == 3.3 Configure Commands to read data ==
247
248 (((
249 (((
250 (((
251 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
252 )))
253 )))
254
255 (((
256 (((
257 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
258 )))
259
260
261 )))
262 )))
263
264 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
265
266 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
267
268 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
269 |=(% style="width: 110px;" %)(((
270 **AT Commands**
271 )))|=(% style="width: 190px;" %)(((
272 **Description**
273 )))|=(% style="width: 190px;" %)(((
274 **Example**
275 )))
276 |(% style="width:110px" %)(((
277 AT+BAUDR
278 )))|(% style="width:190px" %)(((
279 Set the baud rate (for RS485 connection). Default Value is: 9600.
280 )))|(% style="width:190px" %)(((
281 (((
282 AT+BAUDR=9600
283 )))
284
285 (((
286 Options: (1200,2400,4800,14400,19200,115200)
287 )))
288 )))
289 |(% style="width:110px" %)(((
290 AT+PARITY
291 )))|(% style="width:190px" %)(((
292 Set UART parity (for RS485 connection)
293 )))|(% style="width:190px" %)(((
294 (((
295 AT+PARITY=0
296 )))
297
298 (((
299 Option: 0: no parity, 1: odd parity, 2: even parity
300 )))
301 )))
302 |(% style="width:110px" %)(((
303 AT+STOPBIT
304 )))|(% style="width:190px" %)(((
305 (((
306 Set serial stopbit (for RS485 connection)
307 )))
308
309 (((
310
311 )))
312 )))|(% style="width:190px" %)(((
313 (((
314 AT+STOPBIT=0 for 1bit
315 )))
316
317 (((
318 AT+STOPBIT=1 for 1.5 bit
319 )))
320
321 (((
322 AT+STOPBIT=2 for 2 bits
323 )))
324 )))
325
326 === 3.3.2 Configure sensors ===
327
328 (((
329 (((
330 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
331 )))
332 )))
333
334 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
335 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
336 |AT+CFGDEV|(% style="width:110px" %)(((
337 (((
338 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
339 )))
340
341 (((
342 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
343 )))
344
345 (((
346 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
347 )))
348 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
349
350 === 3.3.3 Configure read commands for each sampling ===
351
352 (((
353 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
354
355 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
356
357 This section describes how to achieve above goals.
358
359 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
360
361
362 **Each RS485 commands include two parts:**
363
364 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
365
366 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
367
368 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
369
370
371 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
372
373
374 Below are examples for the how above AT Commands works.
375
376
377 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
378
379 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
380 |(% style="width:496px" %)(((
381 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
382
383 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
384
385 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
386 )))
387
388 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
389
390 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
391
392
393 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
394
395 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
396 |(% style="width:510px" %)(((
397 **AT+DATACUTx=a,b,c**
398
399 * **a: length for the return of AT+COMMAND**
400 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
401 * **c: define the position for valid value.  **
402 )))
403
404 **Examples:**
405
406 * Grab bytes:
407
408 [[image:image-20220602153621-1.png]]
409
410
411 * Grab a section.
412
413 [[image:image-20220602153621-2.png]]
414
415
416 * Grab different sections.
417
418 [[image:image-20220602153621-3.png]]
419
420
421 )))
422
423 === 3.3.4 Compose the uplink payload ===
424
425 (((
426 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
427
428
429 )))
430
431 (((
432 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
433
434
435 )))
436
437 (((
438 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
439 )))
440
441 (((
442 Final Payload is
443 )))
444
445 (((
446 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
447 )))
448
449 (((
450 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
451 )))
452
453 [[image:1653269759169-150.png||height="513" width="716"]]
454
455
456 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
457
458
459 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
460
461 Final Payload is
462
463 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
464
465
466 1. PAYVER: Defined by AT+PAYVER
467 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
468 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
469 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
470
471 [[image:image-20220602155039-4.png]]
472
473
474 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
475
476 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
477
478 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
479
480 DATA3=the rest of Valid value of RETURN10= **30**
481
482
483 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
484
485 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
486
487 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
488
489 * For US915 band, max 11 bytes for each uplink.
490
491 ~* For all other bands: max 51 bytes for each uplink.
492
493
494 Below are the uplink payloads:
495
496 [[image:1654157178836-407.png]]
497
498
499 === 3.3.5 Uplink on demand ===
500
501 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
502
503 Downlink control command:
504
505 **0x08 command**: Poll an uplink with current command set in RS485-LN.
506
507 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
508
509
510
511 === 3.3.6 Uplink on Interrupt ===
512
513 RS485-LN support external Interrupt uplink since hardware v1.2 release.
514
515 [[image:1654157342174-798.png]]
516
517 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
518
519
520 == 3.4 Uplink Payload ==
521
522
523 [[image:image-20220606110929-1.png]]
524
525 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
526
527
528 == 3.5 Configure RS485-BL via AT or Downlink ==
529
530 (((
531 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
532 )))
533
534 (((
535 There are two kinds of Commands:
536 )))
537
538 * (((
539 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
540 )))
541
542 * (((
543 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
544 )))
545
546 (((
547
548 )))
549
550
551 === 3.5.1 Common Commands ===
552
553 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
554
555
556 === 3.5.2 Sensor related commands ===
557
558 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
559
560 [[image:image-20220602163333-5.png||height="263" width="1160"]]
561
562 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
563
564
565 === 3.5.3 Sensor related commands ===
566
567
568
569
570 ==== **RS485 Debug Command** ====
571
572 (((
573 This command is used to configure the RS485 devices; they won’t be used during sampling.
574 )))
575
576 * (((
577 **AT Command**
578 )))
579
580 (% class="box infomessage" %)
581 (((
582 (((
583 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
584 )))
585 )))
586
587 (((
588 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
589 )))
590
591 * (((
592 **Downlink Payload**
593 )))
594
595 (((
596 Format: A8 MM NN XX XX XX XX YY
597 )))
598
599 (((
600 Where:
601 )))
602
603 * (((
604 MM: 1: add CRC-16/MODBUS ; 0: no CRC
605 )))
606 * (((
607 NN: The length of RS485 command
608 )))
609 * (((
610 XX XX XX XX: RS485 command total NN bytes
611 )))
612 * (((
613 (((
614 YY: How many bytes will be uplink from the return of this RS485 command,
615 )))
616
617 * (((
618 if YY=0, RS485-LN will execute the downlink command without uplink;
619 )))
620 * (((
621 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
622 )))
623 * (((
624 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
625 )))
626 )))
627
628 (((
629 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
630 )))
631
632 (((
633 To connect a Modbus Alarm with below commands.
634 )))
635
636 * (((
637 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
638 )))
639
640 * (((
641 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
642 )))
643
644 (((
645 So if user want to use downlink command to control to RS485 Alarm, he can use:
646 )))
647
648 (((
649 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
650 )))
651
652 (((
653 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
654 )))
655
656 (((
657 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
658 )))
659
660 (((
661
662 )))
663
664 (((
665 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
666 )))
667
668 (((
669 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
670 )))
671
672 (((
673
674 )))
675
676 (((
677 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
678 )))
679
680 (((
681 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
682 )))
683
684 (((
685 [[image:1654159460680-153.png]]
686 )))
687
688
689
690
691 ==== **Set Payload version** ====
692
693 (((
694 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
695 )))
696
697 * (((
698 **AT Command:**
699 )))
700
701 (% class="box infomessage" %)
702 (((
703 (((
704 **AT+PAYVER: Set PAYVER field = 1**
705 )))
706 )))
707
708 * (((
709 **Downlink Payload:**
710 )))
711
712 (((
713 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
714 )))
715
716 (((
717 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
718 )))
719
720
721
722
723 ==== **Set RS485 Sampling Commands** ====
724
725 (((
726 AT+COMMANDx or AT+DATACUTx
727 )))
728
729 (((
730 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
731 )))
732
733 (((
734
735 )))
736
737 * (((
738 **AT Command:**
739 )))
740
741 (% class="box infomessage" %)
742 (((
743 (((
744 **AT+COMMANDx: Configure RS485 read command to sensor.**
745 )))
746 )))
747
748 (% class="box infomessage" %)
749 (((
750 (((
751 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
752 )))
753 )))
754
755 (((
756
757 )))
758
759 * (((
760 **Downlink Payload:**
761 )))
762
763 (((
764 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
765 )))
766
767 (((
768 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
769 )))
770
771 (((
772 Format: AF MM NN LL XX XX XX XX YY
773 )))
774
775 (((
776 Where:
777 )))
778
779 * (((
780 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
781 )))
782 * (((
783 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
784 )))
785 * (((
786 LL:  The length of AT+COMMAND or AT+DATACUT command
787 )))
788 * (((
789 XX XX XX XX: AT+COMMAND or AT+DATACUT command
790 )))
791 * (((
792 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
793 )))
794
795 (((
796 **Example:**
797 )))
798
799 (((
800 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
801 )))
802
803 (((
804 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
805 )))
806
807 (((
808 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
809 )))
810
811
812
813
814 ==== **Fast command to handle MODBUS device** ====
815
816 (((
817 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
818 )))
819
820 (((
821 This command is valid since v1.3 firmware version
822 )))
823
824 (((
825 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
826 )))
827
828 (((
829
830 )))
831
832 (((
833 **Example:**
834 )))
835
836 * (((
837 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
838 )))
839 * (((
840 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
841 )))
842 * (((
843 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
844 )))
845
846 [[image:image-20220602165351-6.png]]
847
848 [[image:image-20220602165351-7.png]]
849
850
851
852
853 ==== **RS485 command timeout** ====
854
855 (((
856 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
857 )))
858
859 (((
860 Default value: 0, range:  0 ~~ 65 seconds
861 )))
862
863 * (((
864 **AT Command:**
865 )))
866
867 (% class="box infomessage" %)
868 (((
869 (((
870 **AT+CMDDLaa=hex(bb cc)*1000**
871 )))
872 )))
873
874 (((
875 **Example:**
876 )))
877
878 (((
879 **AT+CMDDL1=1000** to send the open time to 1000ms
880 )))
881
882 (((
883
884 )))
885
886 * (((
887 **Downlink Payload:**
888 )))
889
890 (((
891 **0x AA aa bb cc**
892 )))
893
894 (((
895 Same as: AT+CMDDLaa=hex(bb cc)*1000
896 )))
897
898 (((
899 **Example:**
900 )))
901
902 (((
903 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
904 )))
905
906
907
908
909 ==== **Uplink payload mode** ====
910
911 (((
912 Define to use one uplink or multiple uplinks for the sampling.
913 )))
914
915 (((
916 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
917 )))
918
919 * (((
920 **AT Command:**
921 )))
922
923 (% class="box infomessage" %)
924 (((
925 (((
926 **AT+DATAUP=0**
927 )))
928 )))
929
930 (% class="box infomessage" %)
931 (((
932 (((
933 **AT+DATAUP=1**
934 )))
935 )))
936
937 (((
938
939 )))
940
941 * (((
942 **Downlink Payload:**
943 )))
944
945 (((
946 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
947 )))
948
949 (((
950 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
951 )))
952
953
954
955
956 ==== **Manually trigger an Uplink** ====
957
958 (((
959 Ask device to send an uplink immediately.
960 )))
961
962 * (((
963 **AT Command:**
964 )))
965
966 (((
967 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
968 )))
969
970 (((
971
972 )))
973
974 * (((
975 **Downlink Payload:**
976 )))
977
978 (((
979 **0x08 FF**, RS485-LN will immediately send an uplink.
980 )))
981
982
983
984
985 ==== **Clear RS485 Command** ====
986
987 (((
988 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
989 )))
990
991 * (((
992 **AT Command:**
993 )))
994
995 (((
996 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
997 )))
998
999 (((
1000 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1001 )))
1002
1003 (((
1004 Example screen shot after clear all RS485 commands. 
1005 )))
1006
1007 (((
1008
1009 )))
1010
1011 (((
1012 The uplink screen shot is:
1013 )))
1014
1015 [[image:1654160691922-496.png]]
1016
1017
1018 * (((
1019 **Downlink Payload:**
1020 )))
1021
1022 (((
1023 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1024 )))
1025
1026
1027
1028
1029 ==== **Set Serial Communication Parameters** ====
1030
1031 (((
1032 Set the Rs485 serial communication parameters:
1033 )))
1034
1035 * (((
1036 **AT Command:**
1037 )))
1038
1039 (((
1040 Set Baud Rate:
1041 )))
1042
1043 (% class="box infomessage" %)
1044 (((
1045 (((
1046 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1047 )))
1048 )))
1049
1050 (((
1051 Set UART Parity
1052 )))
1053
1054 (% class="box infomessage" %)
1055 (((
1056 (((
1057 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1058 )))
1059 )))
1060
1061 (((
1062 Set STOPBIT
1063 )))
1064
1065 (% class="box infomessage" %)
1066 (((
1067 (((
1068 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1069 )))
1070 )))
1071
1072 (((
1073
1074 )))
1075
1076 * (((
1077 **Downlink Payload:**
1078 )))
1079
1080 (((
1081 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1082 )))
1083
1084 (((
1085 **Example:**
1086 )))
1087
1088 * (((
1089 A7 01 00 60   same as AT+BAUDR=9600
1090 )))
1091 * (((
1092 A7 01 04 80  same as AT+BAUDR=115200
1093 )))
1094
1095 (((
1096 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1097 )))
1098
1099 (((
1100 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1101 )))
1102
1103
1104
1105
1106 == 3.6 Listening mode for RS485 network ==
1107
1108 (((
1109 This feature support since firmware v1.4
1110 )))
1111
1112 (((
1113 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1114 )))
1115
1116 [[image:image-20220602171200-8.png||height="567" width="1007"]]
1117
1118 (((
1119 To enable the listening mode, use can run the command AT+RXMODE.
1120 )))
1121
1122 (((
1123
1124 )))
1125
1126 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
1127 |=(% style="width: 100px;" %)(((
1128 **Command example**
1129 )))|=(% style="width: 400px;" %)(((
1130 **Function**
1131 )))
1132 |(% style="width:100px" %)(((
1133 AT+RXMODE=1,10
1134 )))|(% style="width:400px" %)(((
1135 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1136 )))
1137 |(% style="width:100px" %)(((
1138 AT+RXMODE=2,500
1139 )))|(% style="width:400px" %)(((
1140 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1141 )))
1142 |(% style="width:100px" %)(((
1143 AT+RXMODE=0,0
1144 )))|(% style="width:400px" %)(((
1145 Disable listening mode. This is the default settings.
1146 )))
1147 |(% style="width:100px" %)(((
1148
1149 )))|(% style="width:400px" %)(((
1150 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1151 )))
1152
1153 (((
1154 **Downlink Command:**
1155 )))
1156
1157 (((
1158 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
1159 )))
1160
1161 (((
1162
1163 )))
1164
1165 (((
1166 **Example**:
1167 )))
1168
1169 (((
1170 The RS485-LN is set to AT+RXMODE=2,1000
1171 )))
1172
1173 (((
1174 There is a two Modbus commands in the RS485 network as below:
1175 )))
1176
1177 (((
1178 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
1179 )))
1180
1181 (((
1182 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1183 )))
1184
1185 (((
1186 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1187 )))
1188
1189 (((
1190 [[image:image-20220602171200-9.png]]
1191 )))
1192
1193 (((
1194
1195 )))
1196
1197 (((
1198 (((
1199 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
1200 )))
1201 )))
1202
1203
1204 == 3.7 Buttons ==
1205
1206
1207 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1208 |=(% style="width: 50px;" %)**Button**|=(% style="width: 361px;" %)**Feature**
1209 |(% style="width:50px" %)**ACT**|(% style="width:361px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1210 |(% style="width:50px" %)**RST**|(% style="width:361px" %)Reboot RS485
1211 |(% style="width:50px" %)**PRO**|(% style="width:361px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
1212
1213 == 3.8 LEDs ==
1214
1215
1216 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1217 |=(% style="width: 50px;" %)**LEDs**|=(% style="width: 380px;" %)**Feature**
1218 |**PWR**|Always on if there is power
1219 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
1220
1221 = 4. Case Study =
1222
1223 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1224
1225
1226 = 5. Use AT Command =
1227
1228 == 5.1 Access AT Command ==
1229
1230 (((
1231 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1232 )))
1233
1234 [[image:1654162355560-817.png]]
1235
1236
1237 (((
1238 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1239 )))
1240
1241 [[image:1654162368066-342.png]]
1242
1243
1244 (((
1245 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1246 )))
1247
1248
1249
1250 == 5.2 Common AT Command Sequence ==
1251
1252 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1253
1254 If device has not joined network yet:
1255
1256 (% class="box infomessage" %)
1257 (((
1258 **AT+FDR**
1259 )))
1260
1261 (% class="box infomessage" %)
1262 (((
1263 **AT+NJM=0**
1264 )))
1265
1266 (% class="box infomessage" %)
1267 (((
1268 **ATZ**
1269 )))
1270
1271
1272 (((
1273 If device already joined network:
1274 )))
1275
1276 (% class="box infomessage" %)
1277 (((
1278 **AT+NJM=0**
1279 )))
1280
1281 (% class="box infomessage" %)
1282 (((
1283 **ATZ**
1284 )))
1285
1286
1287 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1288
1289
1290 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1291
1292 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1293
1294 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1295
1296 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
1297
1298 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1299
1300 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1301
1302 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1303
1304 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1305
1306 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1307
1308 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1309
1310
1311 (% style="color:red" %)**Note:**
1312
1313 (((
1314 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1315 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1316 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1317 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1318 )))
1319
1320 [[image:1654162478620-421.png]]
1321
1322
1323 = 6. FAQ =
1324
1325 == 6.1 How to upgrade the image? ==
1326
1327 (((
1328 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
1329 )))
1330
1331 * (((
1332 Support new features
1333 )))
1334 * (((
1335 For bug fix
1336 )))
1337 * (((
1338 Change LoRaWAN bands.
1339 )))
1340
1341 (((
1342 Below shows the hardware connection for how to upload an image to RS485-LN:
1343 )))
1344
1345 [[image:1654162535040-878.png]]
1346
1347 (((
1348 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1349 )))
1350
1351 (((
1352 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1353 )))
1354
1355 (((
1356 **Step3: **Open flashloader; choose the correct COM port to update.
1357 )))
1358
1359 (((
1360 (((
1361 (((
1362 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1363 )))
1364 )))
1365 )))
1366
1367
1368 [[image:image-20220602175818-12.png]]
1369
1370
1371 [[image:image-20220602175848-13.png]]
1372
1373
1374 [[image:image-20220602175912-14.png]]
1375
1376
1377 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1378
1379 [[image:image-20220602175638-10.png]]
1380
1381
1382 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1383
1384 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1385
1386
1387 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1388
1389 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1390
1391
1392 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1393
1394 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1395
1396 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1397
1398
1399 = 7. Trouble Shooting =
1400
1401 == 7.1 Downlink doesn’t work, how to solve it? ==
1402
1403 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1404
1405
1406 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1407
1408 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1409
1410
1411 = 8. Order Info =
1412
1413 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1414
1415 (% style="color:blue" %)**XXX:**
1416
1417 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1418 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1419 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1420 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1421 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1422 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1423 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1424 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1425 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1426 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1427
1428 = 9.Packing Info =
1429
1430
1431 **Package Includes**:
1432
1433 * RS485-LN x 1
1434 * Stick Antenna for LoRa RF part x 1
1435 * Program cable x 1
1436
1437 **Dimension and weight**:
1438
1439 * Device Size: 13.5 x 7 x 3 cm
1440 * Device Weight: 105g
1441 * Package Size / pcs : 14.5 x 8 x 5 cm
1442 * Weight / pcs : 170g
1443
1444 = 10. FCC Caution for RS485LN-US915 =
1445
1446 (((
1447 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1448 )))
1449
1450 (((
1451 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1452 )))
1453
1454 (((
1455
1456 )))
1457
1458 (((
1459 **IMPORTANT NOTE:**
1460 )))
1461
1462 (((
1463 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1464 )))
1465
1466 (((
1467 —Reorient or relocate the receiving antenna.
1468 )))
1469
1470 (((
1471 —Increase the separation between the equipment and receiver.
1472 )))
1473
1474 (((
1475 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1476 )))
1477
1478 (((
1479 —Consult the dealer or an experienced radio/TV technician for help.
1480 )))
1481
1482 (((
1483
1484 )))
1485
1486 (((
1487 **FCC Radiation Exposure Statement:**
1488 )))
1489
1490 (((
1491 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1492 )))
1493
1494
1495 = 11. Support =
1496
1497 * (((
1498 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1499 )))
1500 * (((
1501 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1502 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0