Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21 = 1.Introduction =
22
23 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
24
25 (((
26 (((
27 (((
28 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
29 )))
30 )))
31
32 (((
33 (((
34 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
35 )))
36 )))
37
38 (((
39 (((
40 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42 )))
43
44 (((
45 (((
46 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
47 )))
48
49 (((
50 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
51 )))
52 )))
53 )))
54
55 [[image:1653267211009-519.png||height="419" width="724"]]
56
57
58 == 1.2 Specifications ==
59
60
61 **Hardware System:**
62
63 * STM32L072CZT6 MCU
64 * SX1276/78 Wireless Chip 
65 * Power Consumption (exclude RS485 device):
66 ** Idle: 32mA@12v
67 ** 20dB Transmit: 65mA@12v
68
69 **Interface for Model:**
70
71 * RS485
72 * Power Input 7~~ 24V DC. 
73
74 **LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC
94
95
96
97 == 1.3 Features ==
98
99 * LoRaWAN Class A & Class C protocol (default Class C)
100 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
101 * AT Commands to change parameters
102 * Remote configure parameters via LoRa Downlink
103 * Firmware upgradable via program port
104 * Support multiply RS485 devices by flexible rules
105 * Support Modbus protocol
106 * Support Interrupt uplink (Since hardware version v1.2)
107
108
109
110 == 1.4 Applications ==
111
112 * Smart Buildings & Home Automation
113 * Logistics and Supply Chain Management
114 * Smart Metering
115 * Smart Agriculture
116 * Smart Cities
117 * Smart Factory
118
119
120
121 == 1.5 Firmware Change log ==
122
123 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
124
125
126 == 1.6 Hardware Change log ==
127
128 (((
129 (((
130 (((
131 v1.2: Add External Interrupt Pin.
132 )))
133
134 (((
135 v1.0: Release
136 )))
137
138
139 )))
140 )))
141
142 = 2. Power ON Device =
143
144 (((
145 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
146
147 * Power Source VIN to RS485-LN VIN+
148 * Power Source GND to RS485-LN VIN-
149
150 (((
151 Once there is power, the RS485-LN will be on.
152 )))
153
154 [[image:1653268091319-405.png]]
155
156
157 )))
158
159 = 3. Operation Mode =
160
161 == 3.1 How it works? ==
162
163 (((
164 (((
165 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
166 )))
167
168
169 )))
170
171 == 3.2 Example to join LoRaWAN network ==
172
173 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
174
175 [[image:1653268155545-638.png||height="334" width="724"]]
176
177
178 (((
179 (((
180 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
181 )))
182
183 (((
184 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
185 )))
186
187 [[image:1653268227651-549.png||height="592" width="720"]]
188
189 (((
190 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
191 )))
192
193 (((
194 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
195 )))
196
197 (((
198 Each RS485-LN is shipped with a sticker with unique device EUI:
199 )))
200 )))
201
202 [[image:1652953462722-299.png]]
203
204 (((
205 (((
206 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
207 )))
208
209 (((
210 Add APP EUI in the application.
211 )))
212 )))
213
214 [[image:image-20220519174512-1.png]]
215
216 [[image:image-20220519174512-2.png||height="323" width="720"]]
217
218 [[image:image-20220519174512-3.png||height="556" width="724"]]
219
220 [[image:image-20220519174512-4.png]]
221
222 You can also choose to create the device manually.
223
224 [[image:1652953542269-423.png||height="710" width="723"]]
225
226 Add APP KEY and DEV EUI
227
228 [[image:1652953553383-907.png||height="514" width="724"]]
229
230
231 (((
232 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
233 )))
234
235 [[image:1652953568895-172.png||height="232" width="724"]]
236
237
238 == 3.3 Configure Commands to read data ==
239
240 (((
241 (((
242 (((
243 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
244 )))
245 )))
246
247 (((
248 (((
249 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
250 )))
251
252
253 )))
254 )))
255
256 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
257
258 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
259
260 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
261 |=(% style="width: 110px;" %)(((
262 **AT Commands**
263 )))|=(% style="width: 190px;" %)(((
264 **Description**
265 )))|=(% style="width: 190px;" %)(((
266 **Example**
267 )))
268 |(% style="width:110px" %)(((
269 AT+BAUDR
270 )))|(% style="width:190px" %)(((
271 Set the baud rate (for RS485 connection). Default Value is: 9600.
272 )))|(% style="width:190px" %)(((
273 (((
274 AT+BAUDR=9600
275 )))
276
277 (((
278 Options: (1200,2400,4800,14400,19200,115200)
279 )))
280 )))
281 |(% style="width:110px" %)(((
282 AT+PARITY
283 )))|(% style="width:190px" %)(((
284 Set UART parity (for RS485 connection)
285 )))|(% style="width:190px" %)(((
286 (((
287 AT+PARITY=0
288 )))
289
290 (((
291 Option: 0: no parity, 1: odd parity, 2: even parity
292 )))
293 )))
294 |(% style="width:110px" %)(((
295 AT+STOPBIT
296 )))|(% style="width:190px" %)(((
297 (((
298 Set serial stopbit (for RS485 connection)
299 )))
300
301 (((
302
303 )))
304 )))|(% style="width:190px" %)(((
305 (((
306 AT+STOPBIT=0 for 1bit
307 )))
308
309 (((
310 AT+STOPBIT=1 for 1.5 bit
311 )))
312
313 (((
314 AT+STOPBIT=2 for 2 bits
315 )))
316 )))
317
318
319 === 3.3.2 Configure sensors ===
320
321 (((
322 (((
323 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
324 )))
325 )))
326
327 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
328 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
329 |AT+CFGDEV|(% style="width:110px" %)(((
330 (((
331 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
332 )))
333
334 (((
335 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
336 )))
337
338 (((
339 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
340 )))
341 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
342
343 === 3.3.3 Configure read commands for each sampling ===
344
345 (((
346 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
347
348 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
349
350 This section describes how to achieve above goals.
351
352 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
353
354
355 **Each RS485 commands include two parts:**
356
357 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
358
359 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
360
361 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
362
363
364 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
365
366
367 Below are examples for the how above AT Commands works.
368
369
370 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
371
372 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
373 |(% style="width:496px" %)(((
374 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
375
376 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
377
378 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
379 )))
380
381 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
382
383 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
384
385
386 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
387
388 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
389 |(% style="width:510px" %)(((
390 **AT+DATACUTx=a,b,c**
391
392 * **a: length for the return of AT+COMMAND**
393 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
394 * **c: define the position for valid value.  **
395 )))
396
397 **Examples:**
398
399 * Grab bytes:
400
401 [[image:image-20220602153621-1.png]]
402
403
404 * Grab a section.
405
406 [[image:image-20220602153621-2.png]]
407
408
409 * Grab different sections.
410
411 [[image:image-20220602153621-3.png]]
412
413
414 )))
415
416 === 3.3.4 Compose the uplink payload ===
417
418 (((
419 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
420
421
422 )))
423
424 (((
425 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
426
427
428 )))
429
430 (((
431 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
432 )))
433
434 (((
435 Final Payload is
436 )))
437
438 (((
439 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
440 )))
441
442 (((
443 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
444 )))
445
446 [[image:1653269759169-150.png||height="513" width="716"]]
447
448
449 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
450
451
452 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
453
454 Final Payload is
455
456 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
457
458
459 1. PAYVER: Defined by AT+PAYVER
460 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
461 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
462 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
463
464 [[image:image-20220602155039-4.png]]
465
466
467 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
468
469 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
470
471 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
472
473 DATA3=the rest of Valid value of RETURN10= **30**
474
475
476 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
477
478 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
479
480 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
481
482 * For US915 band, max 11 bytes for each uplink.
483
484 ~* For all other bands: max 51 bytes for each uplink.
485
486
487 Below are the uplink payloads:
488
489 [[image:1654157178836-407.png]]
490
491
492 === 3.3.5 Uplink on demand ===
493
494 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
495
496 Downlink control command:
497
498 **0x08 command**: Poll an uplink with current command set in RS485-LN.
499
500 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
501
502
503
504 === 3.3.6 Uplink on Interrupt ===
505
506 RS485-LN support external Interrupt uplink since hardware v1.2 release.
507
508 [[image:1654157342174-798.png]]
509
510 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
511
512
513 == 3.4 Uplink Payload ==
514
515
516 [[image:image-20220606110929-1.png]]
517
518 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
519
520
521 == 3.5 Configure RS485-BL via AT or Downlink ==
522
523 (((
524 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
525 )))
526
527 (((
528 There are two kinds of Commands:
529 )))
530
531 * (((
532 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
533 )))
534
535 * (((
536 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
537 )))
538
539 (((
540
541 )))
542
543
544 === 3.5.1 Common Commands ===
545
546 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
547
548
549 === 3.5.2 Sensor related commands ===
550
551 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
552
553 [[image:image-20220602163333-5.png||height="263" width="1160"]]
554
555 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
556
557
558 === 3.5.3 Sensor related commands ===
559
560
561
562
563 ==== **RS485 Debug Command** ====
564
565 (((
566 This command is used to configure the RS485 devices; they won’t be used during sampling.
567 )))
568
569 * (((
570 **AT Command**
571 )))
572
573 (% class="box infomessage" %)
574 (((
575 (((
576 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
577 )))
578 )))
579
580 (((
581 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
582 )))
583
584 * (((
585 **Downlink Payload**
586 )))
587
588 (((
589 Format: A8 MM NN XX XX XX XX YY
590 )))
591
592 (((
593 Where:
594 )))
595
596 * (((
597 MM: 1: add CRC-16/MODBUS ; 0: no CRC
598 )))
599 * (((
600 NN: The length of RS485 command
601 )))
602 * (((
603 XX XX XX XX: RS485 command total NN bytes
604 )))
605 * (((
606 (((
607 YY: How many bytes will be uplink from the return of this RS485 command,
608 )))
609
610 * (((
611 if YY=0, RS485-LN will execute the downlink command without uplink;
612 )))
613 * (((
614 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
615 )))
616 * (((
617 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
618 )))
619 )))
620
621 (((
622 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
623 )))
624
625 (((
626 To connect a Modbus Alarm with below commands.
627 )))
628
629 * (((
630 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
631 )))
632
633 * (((
634 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
635 )))
636
637 (((
638 So if user want to use downlink command to control to RS485 Alarm, he can use:
639 )))
640
641 (((
642 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
643 )))
644
645 (((
646 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
647 )))
648
649 (((
650 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
651 )))
652
653 (((
654
655 )))
656
657 (((
658 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
659 )))
660
661 (((
662 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
663 )))
664
665 (((
666
667 )))
668
669 (((
670 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
671 )))
672
673 (((
674 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
675 )))
676
677 (((
678 [[image:1654159460680-153.png]]
679 )))
680
681
682
683
684 ==== **Set Payload version** ====
685
686 (((
687 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
688 )))
689
690 * (((
691 **AT Command:**
692 )))
693
694 (% class="box infomessage" %)
695 (((
696 (((
697 **AT+PAYVER: Set PAYVER field = 1**
698 )))
699 )))
700
701 * (((
702 **Downlink Payload:**
703 )))
704
705 (((
706 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
707 )))
708
709 (((
710 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
711 )))
712
713
714
715
716 ==== **Set RS485 Sampling Commands** ====
717
718 (((
719 AT+COMMANDx or AT+DATACUTx
720 )))
721
722 (((
723 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
724 )))
725
726 (((
727
728 )))
729
730 * (((
731 **AT Command:**
732 )))
733
734 (% class="box infomessage" %)
735 (((
736 (((
737 **AT+COMMANDx: Configure RS485 read command to sensor.**
738 )))
739 )))
740
741 (% class="box infomessage" %)
742 (((
743 (((
744 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
745 )))
746 )))
747
748 (((
749
750 )))
751
752 * (((
753 **Downlink Payload:**
754 )))
755
756 (((
757 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
758 )))
759
760 (((
761 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
762 )))
763
764 (((
765 Format: AF MM NN LL XX XX XX XX YY
766 )))
767
768 (((
769 Where:
770 )))
771
772 * (((
773 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
774 )))
775 * (((
776 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
777 )))
778 * (((
779 LL:  The length of AT+COMMAND or AT+DATACUT command
780 )))
781 * (((
782 XX XX XX XX: AT+COMMAND or AT+DATACUT command
783 )))
784 * (((
785 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
786 )))
787
788 (((
789 **Example:**
790 )))
791
792 (((
793 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
794 )))
795
796 (((
797 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
798 )))
799
800 (((
801 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
802 )))
803
804
805
806
807 ==== **Fast command to handle MODBUS device** ====
808
809 (((
810 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
811 )))
812
813 (((
814 This command is valid since v1.3 firmware version
815 )))
816
817 (((
818 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
819 )))
820
821 (((
822
823 )))
824
825 (((
826 **Example:**
827 )))
828
829 * (((
830 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
831 )))
832 * (((
833 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
834 )))
835 * (((
836 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
837 )))
838
839 [[image:image-20220602165351-6.png]]
840
841 [[image:image-20220602165351-7.png]]
842
843
844
845
846 ==== **RS485 command timeout** ====
847
848 (((
849 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
850 )))
851
852 (((
853 Default value: 0, range:  0 ~~ 65 seconds
854 )))
855
856 * (((
857 **AT Command:**
858 )))
859
860 (% class="box infomessage" %)
861 (((
862 (((
863 **AT+CMDDLaa=hex(bb cc)*1000**
864 )))
865 )))
866
867 (((
868 **Example:**
869 )))
870
871 (((
872 **AT+CMDDL1=1000** to send the open time to 1000ms
873 )))
874
875 (((
876
877 )))
878
879 * (((
880 **Downlink Payload:**
881 )))
882
883 (((
884 **0x AA aa bb cc**
885 )))
886
887 (((
888 Same as: AT+CMDDLaa=hex(bb cc)*1000
889 )))
890
891 (((
892 **Example:**
893 )))
894
895 (((
896 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
897 )))
898
899
900
901
902 ==== **Uplink payload mode** ====
903
904 (((
905 Define to use one uplink or multiple uplinks for the sampling.
906 )))
907
908 (((
909 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
910 )))
911
912 * (((
913 **AT Command:**
914 )))
915
916 (% class="box infomessage" %)
917 (((
918 (((
919 **AT+DATAUP=0**
920 )))
921 )))
922
923 (% class="box infomessage" %)
924 (((
925 (((
926 **AT+DATAUP=1**
927 )))
928 )))
929
930 (((
931
932 )))
933
934 * (((
935 **Downlink Payload:**
936 )))
937
938 (((
939 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
940 )))
941
942 (((
943 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
944 )))
945
946
947
948
949 ==== **Manually trigger an Uplink** ====
950
951 (((
952 Ask device to send an uplink immediately.
953 )))
954
955 * (((
956 **AT Command:**
957 )))
958
959 (((
960 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
961 )))
962
963 (((
964
965 )))
966
967 * (((
968 **Downlink Payload:**
969 )))
970
971 (((
972 **0x08 FF**, RS485-LN will immediately send an uplink.
973 )))
974
975
976
977
978 ==== **Clear RS485 Command** ====
979
980 (((
981 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
982 )))
983
984 * (((
985 **AT Command:**
986 )))
987
988 (((
989 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
990 )))
991
992 (((
993 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
994 )))
995
996 (((
997 Example screen shot after clear all RS485 commands. 
998 )))
999
1000 (((
1001
1002 )))
1003
1004 (((
1005 The uplink screen shot is:
1006 )))
1007
1008 [[image:1654160691922-496.png]]
1009
1010
1011 * (((
1012 **Downlink Payload:**
1013 )))
1014
1015 (((
1016 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1017 )))
1018
1019
1020
1021
1022 ==== **Set Serial Communication Parameters** ====
1023
1024 (((
1025 Set the Rs485 serial communication parameters:
1026 )))
1027
1028 * (((
1029 **AT Command:**
1030 )))
1031
1032 (((
1033 Set Baud Rate:
1034 )))
1035
1036 (% class="box infomessage" %)
1037 (((
1038 (((
1039 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1040 )))
1041 )))
1042
1043 (((
1044 Set UART Parity
1045 )))
1046
1047 (% class="box infomessage" %)
1048 (((
1049 (((
1050 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1051 )))
1052 )))
1053
1054 (((
1055 Set STOPBIT
1056 )))
1057
1058 (% class="box infomessage" %)
1059 (((
1060 (((
1061 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1062 )))
1063 )))
1064
1065 (((
1066
1067 )))
1068
1069 * (((
1070 **Downlink Payload:**
1071 )))
1072
1073 (((
1074 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1075 )))
1076
1077 (((
1078 **Example:**
1079 )))
1080
1081 * (((
1082 A7 01 00 60   same as AT+BAUDR=9600
1083 )))
1084 * (((
1085 A7 01 04 80  same as AT+BAUDR=115200
1086 )))
1087
1088 (((
1089 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1090 )))
1091
1092 (((
1093 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1094 )))
1095
1096
1097
1098
1099 == 3.6 Listening mode for RS485 network ==
1100
1101 (((
1102 This feature support since firmware v1.4
1103 )))
1104
1105 (((
1106 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1107 )))
1108
1109 [[image:image-20220602171200-8.png||height="567" width="1007"]]
1110
1111 (((
1112 To enable the listening mode, use can run the command AT+RXMODE.
1113 )))
1114
1115 (((
1116
1117 )))
1118
1119 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
1120 |=(% style="width: 100px;" %)(((
1121 **Command example**
1122 )))|=(% style="width: 400px;" %)(((
1123 **Function**
1124 )))
1125 |(% style="width:100px" %)(((
1126 AT+RXMODE=1,10
1127 )))|(% style="width:400px" %)(((
1128 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1129 )))
1130 |(% style="width:100px" %)(((
1131 AT+RXMODE=2,500
1132 )))|(% style="width:400px" %)(((
1133 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1134 )))
1135 |(% style="width:100px" %)(((
1136 AT+RXMODE=0,0
1137 )))|(% style="width:400px" %)(((
1138 Disable listening mode. This is the default settings.
1139 )))
1140 |(% style="width:100px" %)(((
1141
1142 )))|(% style="width:400px" %)(((
1143 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1144 )))
1145
1146 (((
1147 **Downlink Command:**
1148 )))
1149
1150 (((
1151 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
1152 )))
1153
1154 (((
1155
1156 )))
1157
1158 (((
1159 **Example**:
1160 )))
1161
1162 (((
1163 The RS485-LN is set to AT+RXMODE=2,1000
1164 )))
1165
1166 (((
1167 There is a two Modbus commands in the RS485 network as below:
1168 )))
1169
1170 (((
1171 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
1172 )))
1173
1174 (((
1175 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1176 )))
1177
1178 (((
1179 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1180 )))
1181
1182 (((
1183 [[image:image-20220602171200-9.png]]
1184 )))
1185
1186 (((
1187
1188 )))
1189
1190 (((
1191 (((
1192 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
1193 )))
1194 )))
1195
1196
1197 == 3.7 Buttons ==
1198
1199
1200 (% border="1" cellspacing="10" style="background-color:#f7faff; width:400px" %)
1201 |=(% style="width: 50px;" %)**Button**|=(% style="width: 350px;" %)**Feature**
1202 |(% style="width:50px" %)**ACT**|(% style="width:350px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1203 |(% style="width:50px" %)**RST**|(% style="width:350px" %)Reboot RS485
1204 |(% style="width:50px" %)**PRO**|(% style="width:350px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
1205
1206 == 3.8 LEDs ==
1207
1208
1209 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1210 |=(% style="width: 50px;" %)**LEDs**|=(% style="width: 380px;" %)**Feature**
1211 |**PWR**|Always on if there is power
1212 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
1213
1214 = 4. Case Study =
1215
1216 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1217
1218
1219 = 5. Use AT Command =
1220
1221 == 5.1 Access AT Command ==
1222
1223 (((
1224 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1225 )))
1226
1227 [[image:1654162355560-817.png]]
1228
1229
1230 (((
1231 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1232 )))
1233
1234 [[image:1654162368066-342.png]]
1235
1236
1237 (((
1238 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1239 )))
1240
1241
1242
1243 == 5.2 Common AT Command Sequence ==
1244
1245 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1246
1247 If device has not joined network yet:
1248
1249 (% class="box infomessage" %)
1250 (((
1251 **AT+FDR**
1252 )))
1253
1254 (% class="box infomessage" %)
1255 (((
1256 **AT+NJM=0**
1257 )))
1258
1259 (% class="box infomessage" %)
1260 (((
1261 **ATZ**
1262 )))
1263
1264
1265 (((
1266 If device already joined network:
1267 )))
1268
1269 (% class="box infomessage" %)
1270 (((
1271 **AT+NJM=0**
1272 )))
1273
1274 (% class="box infomessage" %)
1275 (((
1276 **ATZ**
1277 )))
1278
1279
1280 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1281
1282
1283 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1284
1285 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1286
1287 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1288
1289 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
1290
1291 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1292
1293 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1294
1295 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1296
1297 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1298
1299 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1300
1301 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1302
1303
1304 (% style="color:red" %)**Note:**
1305
1306 (((
1307 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1308 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1309 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1310 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1311 )))
1312
1313 [[image:1654162478620-421.png]]
1314
1315
1316 = 6. FAQ =
1317
1318 == 6.1 How to upgrade the image? ==
1319
1320 (((
1321 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
1322 )))
1323
1324 * (((
1325 Support new features
1326 )))
1327 * (((
1328 For bug fix
1329 )))
1330 * (((
1331 Change LoRaWAN bands.
1332 )))
1333
1334 (((
1335 Below shows the hardware connection for how to upload an image to RS485-LN:
1336 )))
1337
1338 [[image:1654162535040-878.png]]
1339
1340 (((
1341 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1342 )))
1343
1344 (((
1345 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1346 )))
1347
1348 (((
1349 **Step3: **Open flashloader; choose the correct COM port to update.
1350 )))
1351
1352 (((
1353 (((
1354 (((
1355 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1356 )))
1357 )))
1358 )))
1359
1360
1361 [[image:image-20220602175818-12.png]]
1362
1363
1364 [[image:image-20220602175848-13.png]]
1365
1366
1367 [[image:image-20220602175912-14.png]]
1368
1369
1370 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1371
1372 [[image:image-20220602175638-10.png]]
1373
1374
1375 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1376
1377 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1378
1379
1380 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1381
1382 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1383
1384
1385 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1386
1387 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1388
1389 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1390
1391
1392 = 7. Trouble Shooting =
1393
1394 == 7.1 Downlink doesn’t work, how to solve it? ==
1395
1396 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1397
1398
1399 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1400
1401 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1402
1403
1404 = 8. Order Info =
1405
1406 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1407
1408 (% style="color:blue" %)**XXX:**
1409
1410 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1411 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1412 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1413 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1414 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1415 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1416 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1417 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1418 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1419 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1420
1421 = 9.Packing Info =
1422
1423
1424 **Package Includes**:
1425
1426 * RS485-LN x 1
1427 * Stick Antenna for LoRa RF part x 1
1428 * Program cable x 1
1429
1430 **Dimension and weight**:
1431
1432 * Device Size: 13.5 x 7 x 3 cm
1433 * Device Weight: 105g
1434 * Package Size / pcs : 14.5 x 8 x 5 cm
1435 * Weight / pcs : 170g
1436
1437 = 10. FCC Caution for RS485LN-US915 =
1438
1439 (((
1440 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1441 )))
1442
1443 (((
1444 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1445 )))
1446
1447 (((
1448
1449 )))
1450
1451 (((
1452 **IMPORTANT NOTE:**
1453 )))
1454
1455 (((
1456 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1457 )))
1458
1459 (((
1460 —Reorient or relocate the receiving antenna.
1461 )))
1462
1463 (((
1464 —Increase the separation between the equipment and receiver.
1465 )))
1466
1467 (((
1468 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1469 )))
1470
1471 (((
1472 —Consult the dealer or an experienced radio/TV technician for help.
1473 )))
1474
1475 (((
1476
1477 )))
1478
1479 (((
1480 **FCC Radiation Exposure Statement:**
1481 )))
1482
1483 (((
1484 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1485 )))
1486
1487
1488 = 11. Support =
1489
1490 * (((
1491 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1492 )))
1493 * (((
1494 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1495 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0