Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21 = 1.Introduction =
22
23 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
24
25 (((
26 (((
27 (((
28 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
29 )))
30 )))
31
32 (((
33 (((
34 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
35 )))
36 )))
37
38 (((
39 (((
40 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42 )))
43
44 (((
45 (((
46 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
47 )))
48
49 (((
50 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
51 )))
52 )))
53 )))
54
55 [[image:1653267211009-519.png||height="419" width="724"]]
56
57
58 == 1.2 Specifications ==
59
60
61 **Hardware System:**
62
63 * STM32L072CZT6 MCU
64 * SX1276/78 Wireless Chip 
65 * Power Consumption (exclude RS485 device):
66 ** Idle: 32mA@12v
67 ** 20dB Transmit: 65mA@12v
68
69 **Interface for Model:**
70
71 * RS485
72 * Power Input 7~~ 24V DC. 
73
74 **LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC
94
95
96
97 == 1.3 Features ==
98
99 * LoRaWAN Class A & Class C protocol (default Class C)
100 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
101 * AT Commands to change parameters
102 * Remote configure parameters via LoRa Downlink
103 * Firmware upgradable via program port
104 * Support multiply RS485 devices by flexible rules
105 * Support Modbus protocol
106 * Support Interrupt uplink (Since hardware version v1.2)
107
108
109
110 == 1.4 Applications ==
111
112 * Smart Buildings & Home Automation
113 * Logistics and Supply Chain Management
114 * Smart Metering
115 * Smart Agriculture
116 * Smart Cities
117 * Smart Factory
118
119
120
121 == 1.5 Firmware Change log ==
122
123 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
124
125
126 == 1.6 Hardware Change log ==
127
128 (((
129 (((
130 (((
131 v1.2: Add External Interrupt Pin.
132 )))
133
134 (((
135 v1.0: Release
136 )))
137
138
139 )))
140 )))
141
142 = 2. Power ON Device =
143
144 (((
145 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
146
147 * Power Source VIN to RS485-LN VIN+
148 * Power Source GND to RS485-LN VIN-
149
150 (((
151 Once there is power, the RS485-LN will be on.
152 )))
153
154 [[image:1653268091319-405.png]]
155
156
157 )))
158
159 = 3. Operation Mode =
160
161 == 3.1 How it works? ==
162
163 (((
164 (((
165 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
166 )))
167
168
169 )))
170
171 == 3.2 Example to join LoRaWAN network ==
172
173 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
174
175 [[image:1653268155545-638.png||height="334" width="724"]]
176
177
178 (((
179 (((
180 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
181 )))
182
183 (((
184 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
185 )))
186
187 [[image:1653268227651-549.png||height="592" width="720"]]
188
189 (((
190 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
191 )))
192
193 (((
194 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
195 )))
196
197 (((
198 Each RS485-LN is shipped with a sticker with unique device EUI:
199 )))
200 )))
201
202 [[image:1652953462722-299.png]]
203
204 (((
205 (((
206 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
207 )))
208
209 (((
210 Add APP EUI in the application.
211 )))
212 )))
213
214 [[image:image-20220519174512-1.png]]
215
216 [[image:image-20220519174512-2.png||height="323" width="720"]]
217
218 [[image:image-20220519174512-3.png||height="556" width="724"]]
219
220 [[image:image-20220519174512-4.png]]
221
222 You can also choose to create the device manually.
223
224 [[image:1652953542269-423.png||height="710" width="723"]]
225
226 Add APP KEY and DEV EUI
227
228 [[image:1652953553383-907.png||height="514" width="724"]]
229
230
231 (((
232 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
233 )))
234
235 [[image:1652953568895-172.png||height="232" width="724"]]
236
237
238 == 3.3 Configure Commands to read data ==
239
240 (((
241 (((
242 (((
243 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
244 )))
245 )))
246
247 (((
248 (((
249 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
250 )))
251
252
253 )))
254 )))
255
256 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
257
258 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
259
260 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
261 |=(% style="width: 110px;" %)(((
262 **AT Commands**
263 )))|=(% style="width: 190px;" %)(((
264 **Description**
265 )))|=(% style="width: 190px;" %)(((
266 **Example**
267 )))
268 |(% style="width:110px" %)(((
269 AT+BAUDR
270 )))|(% style="width:190px" %)(((
271 Set the baud rate (for RS485 connection). Default Value is: 9600.
272 )))|(% style="width:190px" %)(((
273 (((
274 AT+BAUDR=9600
275 )))
276
277 (((
278 Options: (1200,2400,4800,14400,19200,115200)
279 )))
280 )))
281 |(% style="width:110px" %)(((
282 AT+PARITY
283 )))|(% style="width:190px" %)(((
284 Set UART parity (for RS485 connection)
285 )))|(% style="width:190px" %)(((
286 (((
287 AT+PARITY=0
288 )))
289
290 (((
291 Option: 0: no parity, 1: odd parity, 2: even parity
292 )))
293 )))
294 |(% style="width:110px" %)(((
295 AT+STOPBIT
296 )))|(% style="width:190px" %)(((
297 (((
298 Set serial stopbit (for RS485 connection)
299 )))
300
301 (((
302
303 )))
304 )))|(% style="width:190px" %)(((
305 (((
306 AT+STOPBIT=0 for 1bit
307 )))
308
309 (((
310 AT+STOPBIT=1 for 1.5 bit
311 )))
312
313 (((
314 AT+STOPBIT=2 for 2 bits
315 )))
316 )))
317
318 === 3.3.2 Configure sensors ===
319
320 (((
321 (((
322 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
323 )))
324 )))
325
326 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
327 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
328 |AT+CFGDEV|(% style="width:110px" %)(((
329 (((
330 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
331 )))
332
333 (((
334 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
335 )))
336
337 (((
338 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
339 )))
340 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
341
342 === 3.3.3 Configure read commands for each sampling ===
343
344 (((
345 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
346
347 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
348
349 This section describes how to achieve above goals.
350
351 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
352
353
354 **Each RS485 commands include two parts:**
355
356 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
357
358 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
359
360 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
361
362
363 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
364
365
366 Below are examples for the how above AT Commands works.
367
368
369 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
370
371 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
372 |(% style="width:496px" %)(((
373 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
374
375 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
376
377 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
378 )))
379
380 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
381
382 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
383
384
385 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
386
387 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
388 |(% style="width:510px" %)(((
389 **AT+DATACUTx=a,b,c**
390
391 * **a: length for the return of AT+COMMAND**
392 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
393 * **c: define the position for valid value.  **
394 )))
395
396 **Examples:**
397
398 * Grab bytes:
399
400 [[image:image-20220602153621-1.png]]
401
402
403 * Grab a section.
404
405 [[image:image-20220602153621-2.png]]
406
407
408 * Grab different sections.
409
410 [[image:image-20220602153621-3.png]]
411
412
413 )))
414
415 === 3.3.4 Compose the uplink payload ===
416
417 (((
418 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
419
420
421 )))
422
423 (((
424 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
425
426
427 )))
428
429 (((
430 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
431 )))
432
433 (((
434 Final Payload is
435 )))
436
437 (((
438 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
439 )))
440
441 (((
442 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
443 )))
444
445 [[image:1653269759169-150.png||height="513" width="716"]]
446
447
448 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
449
450
451 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
452
453 Final Payload is
454
455 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
456
457
458 1. PAYVER: Defined by AT+PAYVER
459 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
460 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
461 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
462
463 [[image:image-20220602155039-4.png]]
464
465
466 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
467
468 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
469
470 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
471
472 DATA3=the rest of Valid value of RETURN10= **30**
473
474
475 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
476
477 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
478
479 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
480
481 * For US915 band, max 11 bytes for each uplink.
482
483 ~* For all other bands: max 51 bytes for each uplink.
484
485
486 Below are the uplink payloads:
487
488 [[image:1654157178836-407.png]]
489
490
491 === 3.3.5 Uplink on demand ===
492
493 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
494
495 Downlink control command:
496
497 **0x08 command**: Poll an uplink with current command set in RS485-LN.
498
499 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
500
501
502
503 === 3.3.6 Uplink on Interrupt ===
504
505 RS485-LN support external Interrupt uplink since hardware v1.2 release.
506
507 [[image:1654157342174-798.png]]
508
509 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
510
511
512 == 3.4 Uplink Payload ==
513
514
515 [[image:image-20220606110929-1.png]]
516
517 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
518
519
520 == 3.5 Configure RS485-BL via AT or Downlink ==
521
522 (((
523 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
524 )))
525
526 (((
527 There are two kinds of Commands:
528 )))
529
530 * (((
531 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
532 )))
533
534 * (((
535 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
536 )))
537
538 (((
539
540 )))
541
542
543 === 3.5.1 Common Commands ===
544
545 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
546
547
548 === 3.5.2 Sensor related commands ===
549
550 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
551
552 [[image:image-20220602163333-5.png||height="263" width="1160"]]
553
554 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
555
556
557 === 3.5.3 Sensor related commands ===
558
559
560
561
562 ==== **RS485 Debug Command** ====
563
564 (((
565 This command is used to configure the RS485 devices; they won’t be used during sampling.
566 )))
567
568 * (((
569 **AT Command**
570 )))
571
572 (% class="box infomessage" %)
573 (((
574 (((
575 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
576 )))
577 )))
578
579 (((
580 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
581 )))
582
583 * (((
584 **Downlink Payload**
585 )))
586
587 (((
588 Format: A8 MM NN XX XX XX XX YY
589 )))
590
591 (((
592 Where:
593 )))
594
595 * (((
596 MM: 1: add CRC-16/MODBUS ; 0: no CRC
597 )))
598 * (((
599 NN: The length of RS485 command
600 )))
601 * (((
602 XX XX XX XX: RS485 command total NN bytes
603 )))
604 * (((
605 (((
606 YY: How many bytes will be uplink from the return of this RS485 command,
607 )))
608
609 * (((
610 if YY=0, RS485-LN will execute the downlink command without uplink;
611 )))
612 * (((
613 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
614 )))
615 * (((
616 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
617 )))
618 )))
619
620 (((
621 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
622 )))
623
624 (((
625 To connect a Modbus Alarm with below commands.
626 )))
627
628 * (((
629 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
630 )))
631
632 * (((
633 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
634 )))
635
636 (((
637 So if user want to use downlink command to control to RS485 Alarm, he can use:
638 )))
639
640 (((
641 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
642 )))
643
644 (((
645 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
646 )))
647
648 (((
649 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
650 )))
651
652 (((
653
654 )))
655
656 (((
657 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
658 )))
659
660 (((
661 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
662 )))
663
664 (((
665
666 )))
667
668 (((
669 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
670 )))
671
672 (((
673 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
674 )))
675
676 (((
677 [[image:1654159460680-153.png]]
678 )))
679
680
681
682
683 ==== **Set Payload version** ====
684
685 (((
686 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
687 )))
688
689 * (((
690 **AT Command:**
691 )))
692
693 (% class="box infomessage" %)
694 (((
695 (((
696 **AT+PAYVER: Set PAYVER field = 1**
697 )))
698 )))
699
700 * (((
701 **Downlink Payload:**
702 )))
703
704 (((
705 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
706 )))
707
708 (((
709 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
710 )))
711
712
713
714
715 ==== **Set RS485 Sampling Commands** ====
716
717 (((
718 AT+COMMANDx or AT+DATACUTx
719 )))
720
721 (((
722 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
723 )))
724
725 (((
726
727 )))
728
729 * (((
730 **AT Command:**
731 )))
732
733 (% class="box infomessage" %)
734 (((
735 (((
736 **AT+COMMANDx: Configure RS485 read command to sensor.**
737 )))
738 )))
739
740 (% class="box infomessage" %)
741 (((
742 (((
743 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
744 )))
745 )))
746
747 (((
748
749 )))
750
751 * (((
752 **Downlink Payload:**
753 )))
754
755 (((
756 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
757 )))
758
759 (((
760 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
761 )))
762
763 (((
764 Format: AF MM NN LL XX XX XX XX YY
765 )))
766
767 (((
768 Where:
769 )))
770
771 * (((
772 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
773 )))
774 * (((
775 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
776 )))
777 * (((
778 LL:  The length of AT+COMMAND or AT+DATACUT command
779 )))
780 * (((
781 XX XX XX XX: AT+COMMAND or AT+DATACUT command
782 )))
783 * (((
784 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
785 )))
786
787 (((
788 **Example:**
789 )))
790
791 (((
792 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
793 )))
794
795 (((
796 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
797 )))
798
799 (((
800 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
801 )))
802
803
804
805
806 ==== **Fast command to handle MODBUS device** ====
807
808 (((
809 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
810 )))
811
812 (((
813 This command is valid since v1.3 firmware version
814 )))
815
816 (((
817 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
818 )))
819
820 (((
821
822 )))
823
824 (((
825 **Example:**
826 )))
827
828 * (((
829 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
830 )))
831 * (((
832 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
833 )))
834 * (((
835 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
836 )))
837
838 [[image:image-20220602165351-6.png]]
839
840 [[image:image-20220602165351-7.png]]
841
842
843
844
845 ==== **RS485 command timeout** ====
846
847 (((
848 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
849 )))
850
851 (((
852 Default value: 0, range:  0 ~~ 65 seconds
853 )))
854
855 * (((
856 **AT Command:**
857 )))
858
859 (% class="box infomessage" %)
860 (((
861 (((
862 **AT+CMDDLaa=hex(bb cc)*1000**
863 )))
864 )))
865
866 (((
867 **Example:**
868 )))
869
870 (((
871 **AT+CMDDL1=1000** to send the open time to 1000ms
872 )))
873
874 (((
875
876 )))
877
878 * (((
879 **Downlink Payload:**
880 )))
881
882 (((
883 **0x AA aa bb cc**
884 )))
885
886 (((
887 Same as: AT+CMDDLaa=hex(bb cc)*1000
888 )))
889
890 (((
891 **Example:**
892 )))
893
894 (((
895 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
896 )))
897
898
899
900
901 ==== **Uplink payload mode** ====
902
903 (((
904 Define to use one uplink or multiple uplinks for the sampling.
905 )))
906
907 (((
908 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
909 )))
910
911 * (((
912 **AT Command:**
913 )))
914
915 (% class="box infomessage" %)
916 (((
917 (((
918 **AT+DATAUP=0**
919 )))
920 )))
921
922 (% class="box infomessage" %)
923 (((
924 (((
925 **AT+DATAUP=1**
926 )))
927 )))
928
929 (((
930
931 )))
932
933 * (((
934 **Downlink Payload:**
935 )))
936
937 (((
938 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
939 )))
940
941 (((
942 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
943 )))
944
945
946
947
948 ==== **Manually trigger an Uplink** ====
949
950 (((
951 Ask device to send an uplink immediately.
952 )))
953
954 * (((
955 **AT Command:**
956 )))
957
958 (((
959 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
960 )))
961
962 (((
963
964 )))
965
966 * (((
967 **Downlink Payload:**
968 )))
969
970 (((
971 **0x08 FF**, RS485-LN will immediately send an uplink.
972 )))
973
974
975
976
977 ==== **Clear RS485 Command** ====
978
979 (((
980 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
981 )))
982
983 * (((
984 **AT Command:**
985 )))
986
987 (((
988 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
989 )))
990
991 (((
992 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
993 )))
994
995 (((
996 Example screen shot after clear all RS485 commands. 
997 )))
998
999 (((
1000
1001 )))
1002
1003 (((
1004 The uplink screen shot is:
1005 )))
1006
1007 [[image:1654160691922-496.png]]
1008
1009
1010 * (((
1011 **Downlink Payload:**
1012 )))
1013
1014 (((
1015 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1016 )))
1017
1018
1019
1020
1021 ==== **Set Serial Communication Parameters** ====
1022
1023 (((
1024 Set the Rs485 serial communication parameters:
1025 )))
1026
1027 * (((
1028 **AT Command:**
1029 )))
1030
1031 (((
1032 Set Baud Rate:
1033 )))
1034
1035 (% class="box infomessage" %)
1036 (((
1037 (((
1038 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1039 )))
1040 )))
1041
1042 (((
1043 Set UART Parity
1044 )))
1045
1046 (% class="box infomessage" %)
1047 (((
1048 (((
1049 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1050 )))
1051 )))
1052
1053 (((
1054 Set STOPBIT
1055 )))
1056
1057 (% class="box infomessage" %)
1058 (((
1059 (((
1060 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1061 )))
1062 )))
1063
1064 (((
1065
1066 )))
1067
1068 * (((
1069 **Downlink Payload:**
1070 )))
1071
1072 (((
1073 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1074 )))
1075
1076 (((
1077 **Example:**
1078 )))
1079
1080 * (((
1081 A7 01 00 60   same as AT+BAUDR=9600
1082 )))
1083 * (((
1084 A7 01 04 80  same as AT+BAUDR=115200
1085 )))
1086
1087 (((
1088 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1089 )))
1090
1091 (((
1092 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1093 )))
1094
1095
1096
1097
1098 == 3.6 Listening mode for RS485 network ==
1099
1100 (((
1101 This feature support since firmware v1.4
1102 )))
1103
1104 (((
1105 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1106 )))
1107
1108 [[image:image-20220602171200-8.png||height="567" width="1007"]]
1109
1110 (((
1111 To enable the listening mode, use can run the command AT+RXMODE.
1112 )))
1113
1114 (((
1115
1116 )))
1117
1118 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
1119 |=(% style="width: 100px;" %)(((
1120 **Command example**
1121 )))|=(% style="width: 400px;" %)(((
1122 **Function**
1123 )))
1124 |(% style="width:100px" %)(((
1125 AT+RXMODE=1,10
1126 )))|(% style="width:400px" %)(((
1127 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1128 )))
1129 |(% style="width:100px" %)(((
1130 AT+RXMODE=2,500
1131 )))|(% style="width:400px" %)(((
1132 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1133 )))
1134 |(% style="width:100px" %)(((
1135 AT+RXMODE=0,0
1136 )))|(% style="width:400px" %)(((
1137 Disable listening mode. This is the default settings.
1138 )))
1139 |(% style="width:100px" %)(((
1140
1141 )))|(% style="width:400px" %)(((
1142 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1143 )))
1144
1145 (((
1146 **Downlink Command:**
1147 )))
1148
1149 (((
1150 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
1151 )))
1152
1153 (((
1154
1155 )))
1156
1157 (((
1158 **Example**:
1159 )))
1160
1161 (((
1162 The RS485-LN is set to AT+RXMODE=2,1000
1163 )))
1164
1165 (((
1166 There is a two Modbus commands in the RS485 network as below:
1167 )))
1168
1169 (((
1170 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
1171 )))
1172
1173 (((
1174 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1175 )))
1176
1177 (((
1178 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1179 )))
1180
1181 (((
1182 [[image:image-20220602171200-9.png]]
1183 )))
1184
1185 (((
1186
1187 )))
1188
1189 (((
1190 (((
1191 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
1192 )))
1193 )))
1194
1195
1196 == 3.7 Buttons ==
1197
1198
1199 (% border="1" cellspacing="10" style="background-color:#f7faff; width:400px" %)
1200 |=(% style="width: 50px;" %)**Button**|=(% style="width: 350px;" %)**Feature**
1201 |(% style="width:50px" %)**ACT**|(% style="width:350px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1202 |(% style="width:50px" %)**RST**|(% style="width:350px" %)Reboot RS485
1203 |(% style="width:50px" %)**PRO**|(% style="width:350px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
1204
1205 == 3.8 LEDs ==
1206
1207
1208 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1209 |=(% style="width: 50px;" %)**LEDs**|=(% style="width: 380px;" %)**Feature**
1210 |**PWR**|Always on if there is power
1211 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
1212
1213 = 4. Case Study =
1214
1215 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1216
1217
1218 = 5. Use AT Command =
1219
1220 == 5.1 Access AT Command ==
1221
1222 (((
1223 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1224 )))
1225
1226 [[image:1654162355560-817.png]]
1227
1228
1229 (((
1230 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1231 )))
1232
1233 [[image:1654162368066-342.png]]
1234
1235
1236 (((
1237 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1238 )))
1239
1240
1241
1242 == 5.2 Common AT Command Sequence ==
1243
1244 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1245
1246 If device has not joined network yet:
1247
1248 (% class="box infomessage" %)
1249 (((
1250 **AT+FDR**
1251 )))
1252
1253 (% class="box infomessage" %)
1254 (((
1255 **AT+NJM=0**
1256 )))
1257
1258 (% class="box infomessage" %)
1259 (((
1260 **ATZ**
1261 )))
1262
1263
1264 (((
1265 If device already joined network:
1266 )))
1267
1268 (% class="box infomessage" %)
1269 (((
1270 **AT+NJM=0**
1271 )))
1272
1273 (% class="box infomessage" %)
1274 (((
1275 **ATZ**
1276 )))
1277
1278
1279 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1280
1281
1282 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1283
1284 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1285
1286 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1287
1288 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
1289
1290 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1291
1292 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1293
1294 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1295
1296 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1297
1298 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1299
1300 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1301
1302
1303 (% style="color:red" %)**Note:**
1304
1305 (((
1306 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1307 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1308 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1309 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1310 )))
1311
1312 [[image:1654162478620-421.png]]
1313
1314
1315 = 6. FAQ =
1316
1317 == 6.1 How to upgrade the image? ==
1318
1319 (((
1320 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
1321 )))
1322
1323 * (((
1324 Support new features
1325 )))
1326 * (((
1327 For bug fix
1328 )))
1329 * (((
1330 Change LoRaWAN bands.
1331 )))
1332
1333 (((
1334 Below shows the hardware connection for how to upload an image to RS485-LN:
1335 )))
1336
1337 [[image:1654162535040-878.png]]
1338
1339 (((
1340 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1341 )))
1342
1343 (((
1344 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1345 )))
1346
1347 (((
1348 **Step3: **Open flashloader; choose the correct COM port to update.
1349 )))
1350
1351 (((
1352 (((
1353 (((
1354 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1355 )))
1356 )))
1357 )))
1358
1359
1360 [[image:image-20220602175818-12.png]]
1361
1362
1363 [[image:image-20220602175848-13.png]]
1364
1365
1366 [[image:image-20220602175912-14.png]]
1367
1368
1369 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1370
1371 [[image:image-20220602175638-10.png]]
1372
1373
1374 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1375
1376 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1377
1378
1379 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1380
1381 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1382
1383
1384 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1385
1386 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1387
1388 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1389
1390
1391 = 7. Trouble Shooting =
1392
1393 == 7.1 Downlink doesn’t work, how to solve it? ==
1394
1395 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1396
1397
1398 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1399
1400 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1401
1402
1403 = 8. Order Info =
1404
1405 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1406
1407 (% style="color:blue" %)**XXX:**
1408
1409 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1410 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1411 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1412 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1413 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1414 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1415 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1416 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1417 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1418 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1419
1420 = 9.Packing Info =
1421
1422
1423 **Package Includes**:
1424
1425 * RS485-LN x 1
1426 * Stick Antenna for LoRa RF part x 1
1427 * Program cable x 1
1428
1429 **Dimension and weight**:
1430
1431 * Device Size: 13.5 x 7 x 3 cm
1432 * Device Weight: 105g
1433 * Package Size / pcs : 14.5 x 8 x 5 cm
1434 * Weight / pcs : 170g
1435
1436 = 10. FCC Caution for RS485LN-US915 =
1437
1438 (((
1439 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1440 )))
1441
1442 (((
1443 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1444 )))
1445
1446 (((
1447
1448 )))
1449
1450 (((
1451 **IMPORTANT NOTE:**
1452 )))
1453
1454 (((
1455 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1456 )))
1457
1458 (((
1459 —Reorient or relocate the receiving antenna.
1460 )))
1461
1462 (((
1463 —Increase the separation between the equipment and receiver.
1464 )))
1465
1466 (((
1467 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1468 )))
1469
1470 (((
1471 —Consult the dealer or an experienced radio/TV technician for help.
1472 )))
1473
1474 (((
1475
1476 )))
1477
1478 (((
1479 **FCC Radiation Exposure Statement:**
1480 )))
1481
1482 (((
1483 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1484 )))
1485
1486
1487 = 11. Support =
1488
1489 * (((
1490 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1491 )))
1492 * (((
1493 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1494 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0