Version 59.3 by Xiaoling on 2022/06/06 14:20

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21 = 1.Introduction =
22
23 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
24
25 (((
26 (((
27 (((
28 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
29 )))
30 )))
31
32 (((
33 (((
34 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
35 )))
36 )))
37
38 (((
39 (((
40 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42 )))
43
44 (((
45 (((
46 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
47 )))
48
49 (((
50 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
51 )))
52 )))
53 )))
54
55 [[image:1653267211009-519.png||height="419" width="724"]]
56
57
58 == 1.2 Specifications ==
59
60
61 **Hardware System:**
62
63 * STM32L072CZT6 MCU
64 * SX1276/78 Wireless Chip 
65 * Power Consumption (exclude RS485 device):
66 ** Idle: 32mA@12v
67 ** 20dB Transmit: 65mA@12v
68
69 **Interface for Model:**
70
71 * RS485
72 * Power Input 7~~ 24V DC. 
73
74 **LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC
94
95
96
97 == 1.3 Features ==
98
99 * LoRaWAN Class A & Class C protocol (default Class C)
100 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
101 * AT Commands to change parameters
102 * Remote configure parameters via LoRa Downlink
103 * Firmware upgradable via program port
104 * Support multiply RS485 devices by flexible rules
105 * Support Modbus protocol
106 * Support Interrupt uplink (Since hardware version v1.2)
107
108
109
110 == 1.4 Applications ==
111
112 * Smart Buildings & Home Automation
113 * Logistics and Supply Chain Management
114 * Smart Metering
115 * Smart Agriculture
116 * Smart Cities
117 * Smart Factory
118
119 == 1.5 Firmware Change log ==
120
121 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
122
123
124 == 1.6 Hardware Change log ==
125
126 (((
127 (((
128 (((
129 v1.2: Add External Interrupt Pin.
130 )))
131
132 (((
133 v1.0: Release
134 )))
135
136
137 )))
138 )))
139
140 = 2. Power ON Device =
141
142 (((
143 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
144
145 * Power Source VIN to RS485-LN VIN+
146 * Power Source GND to RS485-LN VIN-
147
148 (((
149 Once there is power, the RS485-LN will be on.
150 )))
151
152 [[image:1653268091319-405.png]]
153
154
155 )))
156
157 = 3. Operation Mode =
158
159 == 3.1 How it works? ==
160
161 (((
162 (((
163 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
164 )))
165
166
167 )))
168
169 == 3.2 Example to join LoRaWAN network ==
170
171 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
172
173 [[image:1653268155545-638.png||height="334" width="724"]]
174
175
176 (((
177 (((
178 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
179 )))
180
181 (((
182 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
183 )))
184
185 [[image:1653268227651-549.png||height="592" width="720"]]
186
187 (((
188 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
189 )))
190
191 (((
192 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
193 )))
194
195 (((
196 Each RS485-LN is shipped with a sticker with unique device EUI:
197 )))
198 )))
199
200 [[image:1652953462722-299.png]]
201
202 (((
203 (((
204 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
205 )))
206
207 (((
208 Add APP EUI in the application.
209 )))
210 )))
211
212 [[image:image-20220519174512-1.png]]
213
214 [[image:image-20220519174512-2.png||height="323" width="720"]]
215
216 [[image:image-20220519174512-3.png||height="556" width="724"]]
217
218 [[image:image-20220519174512-4.png]]
219
220 You can also choose to create the device manually.
221
222 [[image:1652953542269-423.png||height="710" width="723"]]
223
224 Add APP KEY and DEV EUI
225
226 [[image:1652953553383-907.png||height="514" width="724"]]
227
228
229 (((
230 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
231 )))
232
233 [[image:1652953568895-172.png||height="232" width="724"]]
234
235
236 == 3.3 Configure Commands to read data ==
237
238 (((
239 (((
240 (((
241 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
242 )))
243 )))
244
245 (((
246 (((
247 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
248 )))
249
250
251 )))
252 )))
253
254 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
255
256 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
257
258 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
259 |=(% style="width: 110px;" %)(((
260 **AT Commands**
261 )))|=(% style="width: 190px;" %)(((
262 **Description**
263 )))|=(% style="width: 190px;" %)(((
264 **Example**
265 )))
266 |(% style="width:110px" %)(((
267 AT+BAUDR
268 )))|(% style="width:190px" %)(((
269 Set the baud rate (for RS485 connection). Default Value is: 9600.
270 )))|(% style="width:190px" %)(((
271 (((
272 AT+BAUDR=9600
273 )))
274
275 (((
276 Options: (1200,2400,4800,14400,19200,115200)
277 )))
278 )))
279 |(% style="width:110px" %)(((
280 AT+PARITY
281 )))|(% style="width:190px" %)(((
282 Set UART parity (for RS485 connection)
283 )))|(% style="width:190px" %)(((
284 (((
285 AT+PARITY=0
286 )))
287
288 (((
289 Option: 0: no parity, 1: odd parity, 2: even parity
290 )))
291 )))
292 |(% style="width:110px" %)(((
293 AT+STOPBIT
294 )))|(% style="width:190px" %)(((
295 (((
296 Set serial stopbit (for RS485 connection)
297 )))
298
299 (((
300
301 )))
302 )))|(% style="width:190px" %)(((
303 (((
304 AT+STOPBIT=0 for 1bit
305 )))
306
307 (((
308 AT+STOPBIT=1 for 1.5 bit
309 )))
310
311 (((
312 AT+STOPBIT=2 for 2 bits
313 )))
314 )))
315
316 === 3.3.2 Configure sensors ===
317
318 (((
319 (((
320 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
321 )))
322 )))
323
324 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
325 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
326 |AT+CFGDEV|(% style="width:110px" %)(((
327 (((
328 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
329 )))
330
331 (((
332 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
333 )))
334
335 (((
336 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
337 )))
338 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
339
340 === 3.3.3 Configure read commands for each sampling ===
341
342 (((
343 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
344
345 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
346
347 This section describes how to achieve above goals.
348
349 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
350
351
352 **Each RS485 commands include two parts:**
353
354 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
355
356 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
357
358 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
359
360
361 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
362
363
364 Below are examples for the how above AT Commands works.
365
366
367 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
368
369 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
370 |(% style="width:496px" %)(((
371 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
372
373 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
374
375 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
376 )))
377
378 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
379
380 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
381
382
383 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
384
385 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
386 |(% style="width:510px" %)(((
387 **AT+DATACUTx=a,b,c**
388
389 * **a: length for the return of AT+COMMAND**
390 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
391 * **c: define the position for valid value.  **
392 )))
393
394 **Examples:**
395
396 * Grab bytes:
397
398 [[image:image-20220602153621-1.png]]
399
400
401 * Grab a section.
402
403 [[image:image-20220602153621-2.png]]
404
405
406 * Grab different sections.
407
408 [[image:image-20220602153621-3.png]]
409
410
411 )))
412
413 === 3.3.4 Compose the uplink payload ===
414
415 (((
416 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
417
418
419 )))
420
421 (((
422 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
423
424
425 )))
426
427 (((
428 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
429 )))
430
431 (((
432 Final Payload is
433 )))
434
435 (((
436 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
437 )))
438
439 (((
440 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
441 )))
442
443 [[image:1653269759169-150.png||height="513" width="716"]]
444
445
446 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
447
448
449 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
450
451 Final Payload is
452
453 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
454
455
456 1. PAYVER: Defined by AT+PAYVER
457 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
458 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
459 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
460
461 [[image:image-20220602155039-4.png]]
462
463
464 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
465
466 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
467
468 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
469
470 DATA3=the rest of Valid value of RETURN10= **30**
471
472
473 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
474
475 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
476
477 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
478
479 * For US915 band, max 11 bytes for each uplink.
480
481 ~* For all other bands: max 51 bytes for each uplink.
482
483
484 Below are the uplink payloads:
485
486 [[image:1654157178836-407.png]]
487
488
489 === 3.3.5 Uplink on demand ===
490
491 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
492
493 Downlink control command:
494
495 **0x08 command**: Poll an uplink with current command set in RS485-LN.
496
497 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
498
499
500
501 === 3.3.6 Uplink on Interrupt ===
502
503 RS485-LN support external Interrupt uplink since hardware v1.2 release.
504
505 [[image:1654157342174-798.png]]
506
507 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
508
509
510 == 3.4 Uplink Payload ==
511
512
513 [[image:image-20220606110929-1.png]]
514
515 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
516
517
518 == 3.5 Configure RS485-BL via AT or Downlink ==
519
520 (((
521 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
522 )))
523
524 (((
525 There are two kinds of Commands:
526 )))
527
528 * (((
529 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
530 )))
531
532 * (((
533 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
534 )))
535
536 (((
537
538 )))
539
540
541 === 3.5.1 Common Commands ===
542
543 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
544
545
546 === 3.5.2 Sensor related commands ===
547
548 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
549
550 [[image:image-20220602163333-5.png||height="263" width="1160"]]
551
552 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
553
554
555 === 3.5.3 Sensor related commands ===
556
557
558
559
560 ==== **RS485 Debug Command** ====
561
562 (((
563 This command is used to configure the RS485 devices; they won’t be used during sampling.
564 )))
565
566 * (((
567 **AT Command**
568 )))
569
570 (% class="box infomessage" %)
571 (((
572 (((
573 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
574 )))
575 )))
576
577 (((
578 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
579 )))
580
581 * (((
582 **Downlink Payload**
583 )))
584
585 (((
586 Format: A8 MM NN XX XX XX XX YY
587 )))
588
589 (((
590 Where:
591 )))
592
593 * (((
594 MM: 1: add CRC-16/MODBUS ; 0: no CRC
595 )))
596 * (((
597 NN: The length of RS485 command
598 )))
599 * (((
600 XX XX XX XX: RS485 command total NN bytes
601 )))
602 * (((
603 (((
604 YY: How many bytes will be uplink from the return of this RS485 command,
605 )))
606
607 * (((
608 if YY=0, RS485-LN will execute the downlink command without uplink;
609 )))
610 * (((
611 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
612 )))
613 * (((
614 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
615 )))
616 )))
617
618 (((
619 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
620 )))
621
622 (((
623 To connect a Modbus Alarm with below commands.
624 )))
625
626 * (((
627 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
628 )))
629
630 * (((
631 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
632 )))
633
634 (((
635 So if user want to use downlink command to control to RS485 Alarm, he can use:
636 )))
637
638 (((
639 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
640 )))
641
642 (((
643 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
644 )))
645
646 (((
647 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
648 )))
649
650 (((
651
652 )))
653
654 (((
655 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
656 )))
657
658 (((
659 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
660 )))
661
662 (((
663
664 )))
665
666 (((
667 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
668 )))
669
670 (((
671 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
672 )))
673
674 (((
675 [[image:1654159460680-153.png]]
676 )))
677
678
679
680
681 ==== **Set Payload version** ====
682
683 (((
684 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
685 )))
686
687 * (((
688 **AT Command:**
689 )))
690
691 (% class="box infomessage" %)
692 (((
693 (((
694 **AT+PAYVER: Set PAYVER field = 1**
695 )))
696 )))
697
698 * (((
699 **Downlink Payload:**
700 )))
701
702 (((
703 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
704 )))
705
706 (((
707 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
708 )))
709
710
711
712
713 ==== **Set RS485 Sampling Commands** ====
714
715 (((
716 AT+COMMANDx or AT+DATACUTx
717 )))
718
719 (((
720 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
721 )))
722
723 (((
724
725 )))
726
727 * (((
728 **AT Command:**
729 )))
730
731 (% class="box infomessage" %)
732 (((
733 (((
734 **AT+COMMANDx: Configure RS485 read command to sensor.**
735 )))
736 )))
737
738 (% class="box infomessage" %)
739 (((
740 (((
741 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
742 )))
743 )))
744
745 (((
746
747 )))
748
749 * (((
750 **Downlink Payload:**
751 )))
752
753 (((
754 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
755 )))
756
757 (((
758 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
759 )))
760
761 (((
762 Format: AF MM NN LL XX XX XX XX YY
763 )))
764
765 (((
766 Where:
767 )))
768
769 * (((
770 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
771 )))
772 * (((
773 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
774 )))
775 * (((
776 LL:  The length of AT+COMMAND or AT+DATACUT command
777 )))
778 * (((
779 XX XX XX XX: AT+COMMAND or AT+DATACUT command
780 )))
781 * (((
782 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
783 )))
784
785 (((
786 **Example:**
787 )))
788
789 (((
790 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
791 )))
792
793 (((
794 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
795 )))
796
797 (((
798 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
799 )))
800
801
802
803
804 ==== **Fast command to handle MODBUS device** ====
805
806 (((
807 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
808 )))
809
810 (((
811 This command is valid since v1.3 firmware version
812 )))
813
814 (((
815 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
816 )))
817
818 (((
819
820 )))
821
822 (((
823 **Example:**
824 )))
825
826 * (((
827 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
828 )))
829 * (((
830 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
831 )))
832 * (((
833 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
834 )))
835
836 [[image:image-20220602165351-6.png]]
837
838 [[image:image-20220602165351-7.png]]
839
840
841
842
843 ==== **RS485 command timeout** ====
844
845 (((
846 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
847 )))
848
849 (((
850 Default value: 0, range:  0 ~~ 65 seconds
851 )))
852
853 * (((
854 **AT Command:**
855 )))
856
857 (% class="box infomessage" %)
858 (((
859 (((
860 **AT+CMDDLaa=hex(bb cc)*1000**
861 )))
862 )))
863
864 (((
865 **Example:**
866 )))
867
868 (((
869 **AT+CMDDL1=1000** to send the open time to 1000ms
870 )))
871
872 (((
873
874 )))
875
876 * (((
877 **Downlink Payload:**
878 )))
879
880 (((
881 **0x AA aa bb cc**
882 )))
883
884 (((
885 Same as: AT+CMDDLaa=hex(bb cc)*1000
886 )))
887
888 (((
889 **Example:**
890 )))
891
892 (((
893 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
894 )))
895
896
897
898
899 ==== **Uplink payload mode** ====
900
901 (((
902 Define to use one uplink or multiple uplinks for the sampling.
903 )))
904
905 (((
906 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
907 )))
908
909 * (((
910 **AT Command:**
911 )))
912
913 (% class="box infomessage" %)
914 (((
915 (((
916 **AT+DATAUP=0**
917 )))
918 )))
919
920 (% class="box infomessage" %)
921 (((
922 (((
923 **AT+DATAUP=1**
924 )))
925 )))
926
927 (((
928
929 )))
930
931 * (((
932 **Downlink Payload:**
933 )))
934
935 (((
936 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
937 )))
938
939 (((
940 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
941 )))
942
943
944
945
946 ==== **Manually trigger an Uplink** ====
947
948 (((
949 Ask device to send an uplink immediately.
950 )))
951
952 * (((
953 **AT Command:**
954 )))
955
956 (((
957 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
958 )))
959
960 (((
961
962 )))
963
964 * (((
965 **Downlink Payload:**
966 )))
967
968 (((
969 **0x08 FF**, RS485-LN will immediately send an uplink.
970 )))
971
972
973
974
975 ==== **Clear RS485 Command** ====
976
977 (((
978 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
979 )))
980
981 * (((
982 **AT Command:**
983 )))
984
985 (((
986 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
987 )))
988
989 (((
990 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
991 )))
992
993 (((
994 Example screen shot after clear all RS485 commands. 
995 )))
996
997 (((
998
999 )))
1000
1001 (((
1002 The uplink screen shot is:
1003 )))
1004
1005 [[image:1654160691922-496.png]]
1006
1007
1008 * (((
1009 **Downlink Payload:**
1010 )))
1011
1012 (((
1013 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1014 )))
1015
1016
1017
1018
1019 ==== **Set Serial Communication Parameters** ====
1020
1021 (((
1022 Set the Rs485 serial communication parameters:
1023 )))
1024
1025 * (((
1026 **AT Command:**
1027 )))
1028
1029 (((
1030 Set Baud Rate:
1031 )))
1032
1033 (% class="box infomessage" %)
1034 (((
1035 (((
1036 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1037 )))
1038 )))
1039
1040 (((
1041 Set UART Parity
1042 )))
1043
1044 (% class="box infomessage" %)
1045 (((
1046 (((
1047 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1048 )))
1049 )))
1050
1051 (((
1052 Set STOPBIT
1053 )))
1054
1055 (% class="box infomessage" %)
1056 (((
1057 (((
1058 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1059 )))
1060 )))
1061
1062 (((
1063
1064 )))
1065
1066 * (((
1067 **Downlink Payload:**
1068 )))
1069
1070 (((
1071 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1072 )))
1073
1074 (((
1075 **Example:**
1076 )))
1077
1078 * (((
1079 A7 01 00 60   same as AT+BAUDR=9600
1080 )))
1081 * (((
1082 A7 01 04 80  same as AT+BAUDR=115200
1083 )))
1084
1085 (((
1086 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1087 )))
1088
1089 (((
1090 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1091 )))
1092
1093
1094
1095
1096 == 3.6 Listening mode for RS485 network ==
1097
1098 (((
1099 This feature support since firmware v1.4
1100 )))
1101
1102 (((
1103 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1104 )))
1105
1106 [[image:image-20220602171200-8.png||height="567" width="1007"]]
1107
1108 (((
1109 To enable the listening mode, use can run the command AT+RXMODE.
1110 )))
1111
1112 (((
1113
1114 )))
1115
1116 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
1117 |=(% style="width: 100px;" %)(((
1118 **Command example**
1119 )))|=(% style="width: 400px;" %)(((
1120 **Function**
1121 )))
1122 |(% style="width:100px" %)(((
1123 AT+RXMODE=1,10
1124 )))|(% style="width:400px" %)(((
1125 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1126 )))
1127 |(% style="width:100px" %)(((
1128 AT+RXMODE=2,500
1129 )))|(% style="width:400px" %)(((
1130 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1131 )))
1132 |(% style="width:100px" %)(((
1133 AT+RXMODE=0,0
1134 )))|(% style="width:400px" %)(((
1135 Disable listening mode. This is the default settings.
1136 )))
1137 |(% style="width:100px" %)(((
1138
1139 )))|(% style="width:400px" %)(((
1140 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1141 )))
1142
1143 (((
1144 **Downlink Command:**
1145 )))
1146
1147 (((
1148 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
1149 )))
1150
1151 (((
1152
1153 )))
1154
1155 (((
1156 **Example**:
1157 )))
1158
1159 (((
1160 The RS485-LN is set to AT+RXMODE=2,1000
1161 )))
1162
1163 (((
1164 There is a two Modbus commands in the RS485 network as below:
1165 )))
1166
1167 (((
1168 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
1169 )))
1170
1171 (((
1172 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1173 )))
1174
1175 (((
1176 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1177 )))
1178
1179 (((
1180 [[image:image-20220602171200-9.png]]
1181 )))
1182
1183 (((
1184
1185 )))
1186
1187 (((
1188 (((
1189 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
1190 )))
1191 )))
1192
1193
1194 == 3.7 Buttons ==
1195
1196
1197 (% border="1" cellspacing="10" style="background-color:#f7faff; width:400px" %)
1198 |=(% style="width: 50px;" %)**Button**|=(% style="width: 350px;" %)**Feature**
1199 |(% style="width:50px" %)**ACT**|(% style="width:350px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1200 |(% style="width:50px" %)**RST**|(% style="width:350px" %)Reboot RS485
1201 |(% style="width:50px" %)**PRO**|(% style="width:350px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
1202
1203 == 3.8 LEDs ==
1204
1205
1206 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1207 |=(% style="width: 50px;" %)**LEDs**|=(% style="width: 380px;" %)**Feature**
1208 |**PWR**|Always on if there is power
1209 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
1210
1211 = 4. Case Study =
1212
1213 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1214
1215
1216 = 5. Use AT Command =
1217
1218 == 5.1 Access AT Command ==
1219
1220 (((
1221 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1222 )))
1223
1224 [[image:1654162355560-817.png]]
1225
1226
1227 (((
1228 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1229 )))
1230
1231 [[image:1654162368066-342.png]]
1232
1233
1234 (((
1235 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1236 )))
1237
1238
1239
1240 == 5.2 Common AT Command Sequence ==
1241
1242 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1243
1244 If device has not joined network yet:
1245
1246 (% class="box infomessage" %)
1247 (((
1248 **AT+FDR**
1249 )))
1250
1251 (% class="box infomessage" %)
1252 (((
1253 **AT+NJM=0**
1254 )))
1255
1256 (% class="box infomessage" %)
1257 (((
1258 **ATZ**
1259 )))
1260
1261
1262 (((
1263 If device already joined network:
1264 )))
1265
1266 (% class="box infomessage" %)
1267 (((
1268 **AT+NJM=0**
1269 )))
1270
1271 (% class="box infomessage" %)
1272 (((
1273 **ATZ**
1274 )))
1275
1276
1277 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1278
1279
1280 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1281
1282 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1283
1284 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1285
1286 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
1287
1288 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1289
1290 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1291
1292 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1293
1294 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1295
1296 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1297
1298 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1299
1300
1301 (% style="color:red" %)**Note:**
1302
1303 (((
1304 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1305 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1306 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1307 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1308 )))
1309
1310 [[image:1654162478620-421.png]]
1311
1312
1313 = 6. FAQ =
1314
1315 == 6.1 How to upgrade the image? ==
1316
1317 (((
1318 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
1319 )))
1320
1321 * (((
1322 Support new features
1323 )))
1324 * (((
1325 For bug fix
1326 )))
1327 * (((
1328 Change LoRaWAN bands.
1329 )))
1330
1331 (((
1332 Below shows the hardware connection for how to upload an image to RS485-LN:
1333 )))
1334
1335 [[image:1654162535040-878.png]]
1336
1337 (((
1338 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1339 )))
1340
1341 (((
1342 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1343 )))
1344
1345 (((
1346 **Step3: **Open flashloader; choose the correct COM port to update.
1347 )))
1348
1349 (((
1350 (((
1351 (((
1352 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1353 )))
1354 )))
1355 )))
1356
1357
1358 [[image:image-20220602175818-12.png]]
1359
1360
1361 [[image:image-20220602175848-13.png]]
1362
1363
1364 [[image:image-20220602175912-14.png]]
1365
1366
1367 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1368
1369 [[image:image-20220602175638-10.png]]
1370
1371
1372 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1373
1374 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1375
1376
1377 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1378
1379 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1380
1381
1382 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1383
1384 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1385
1386 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1387
1388
1389 = 7. Trouble Shooting =
1390
1391 == 7.1 Downlink doesn’t work, how to solve it? ==
1392
1393 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1394
1395
1396 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1397
1398 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1399
1400
1401 = 8. Order Info =
1402
1403 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1404
1405 (% style="color:blue" %)**XXX:**
1406
1407 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1408 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1409 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1410 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1411 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1412 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1413 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1414 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1415 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1416 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1417
1418 = 9.Packing Info =
1419
1420
1421 **Package Includes**:
1422
1423 * RS485-LN x 1
1424 * Stick Antenna for LoRa RF part x 1
1425 * Program cable x 1
1426
1427 **Dimension and weight**:
1428
1429 * Device Size: 13.5 x 7 x 3 cm
1430 * Device Weight: 105g
1431 * Package Size / pcs : 14.5 x 8 x 5 cm
1432 * Weight / pcs : 170g
1433
1434 = 10. FCC Caution for RS485LN-US915 =
1435
1436 (((
1437 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1438 )))
1439
1440 (((
1441 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1442 )))
1443
1444 (((
1445
1446 )))
1447
1448 (((
1449 **IMPORTANT NOTE:**
1450 )))
1451
1452 (((
1453 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1454 )))
1455
1456 (((
1457 —Reorient or relocate the receiving antenna.
1458 )))
1459
1460 (((
1461 —Increase the separation between the equipment and receiver.
1462 )))
1463
1464 (((
1465 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1466 )))
1467
1468 (((
1469 —Consult the dealer or an experienced radio/TV technician for help.
1470 )))
1471
1472 (((
1473
1474 )))
1475
1476 (((
1477 **FCC Radiation Exposure Statement:**
1478 )))
1479
1480 (((
1481 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1482 )))
1483
1484
1485 = 11. Support =
1486
1487 * (((
1488 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1489 )))
1490 * (((
1491 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1492 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0