Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21 = 1.Introduction =
22
23 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
24
25 (((
26 (((
27 (((
28 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
29 )))
30 )))
31
32 (((
33 (((
34 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
35 )))
36 )))
37
38 (((
39 (((
40 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42 )))
43
44 (((
45 (((
46 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
47 )))
48
49 (((
50 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
51 )))
52 )))
53 )))
54
55 [[image:1653267211009-519.png||height="419" width="724"]]
56
57
58 == 1.2 Specifications ==
59
60
61 **Hardware System:**
62
63 * STM32L072CZT6 MCU
64 * SX1276/78 Wireless Chip 
65 * Power Consumption (exclude RS485 device):
66 ** Idle: 32mA@12v
67 ** 20dB Transmit: 65mA@12v
68
69 **Interface for Model:**
70
71 * RS485
72 * Power Input 7~~ 24V DC. 
73
74 **LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC
94
95
96
97 == 1.3 Features ==
98
99 * LoRaWAN Class A & Class C protocol (default Class C)
100 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
101 * AT Commands to change parameters
102 * Remote configure parameters via LoRa Downlink
103 * Firmware upgradable via program port
104 * Support multiply RS485 devices by flexible rules
105 * Support Modbus protocol
106 * Support Interrupt uplink (Since hardware version v1.2)
107
108
109
110 == 1.4 Applications ==
111
112 * Smart Buildings & Home Automation
113 * Logistics and Supply Chain Management
114 * Smart Metering
115 * Smart Agriculture
116 * Smart Cities
117 * Smart Factory
118
119
120
121 == 1.5 Firmware Change log ==
122
123 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
124
125
126 == 1.6 Hardware Change log ==
127
128 (((
129 (((
130 (((
131 v1.2: Add External Interrupt Pin.
132 )))
133
134 (((
135 v1.0: Release
136 )))
137
138
139 )))
140 )))
141
142 = 2. Power ON Device =
143
144 (((
145 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
146
147 * Power Source VIN to RS485-LN VIN+
148 * Power Source GND to RS485-LN VIN-
149
150 (((
151 Once there is power, the RS485-LN will be on.
152 )))
153
154 [[image:1653268091319-405.png]]
155
156
157 )))
158
159 = 3. Operation Mode =
160
161 == 3.1 How it works? ==
162
163 (((
164 (((
165 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
166 )))
167
168
169 )))
170
171 == 3.2 Example to join LoRaWAN network ==
172
173 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
174
175 [[image:1653268155545-638.png||height="334" width="724"]]
176
177
178 (((
179 (((
180 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
181 )))
182
183 (((
184 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
185 )))
186
187 [[image:1653268227651-549.png||height="592" width="720"]]
188
189 (((
190 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
191 )))
192
193 (((
194 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
195 )))
196
197 (((
198 Each RS485-LN is shipped with a sticker with unique device EUI:
199 )))
200 )))
201
202 [[image:1652953462722-299.png]]
203
204 (((
205 (((
206 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
207 )))
208
209 (((
210 Add APP EUI in the application.
211 )))
212 )))
213
214 [[image:image-20220519174512-1.png]]
215
216 [[image:image-20220519174512-2.png||height="323" width="720"]]
217
218 [[image:image-20220519174512-3.png||height="556" width="724"]]
219
220 [[image:image-20220519174512-4.png]]
221
222 You can also choose to create the device manually.
223
224 [[image:1652953542269-423.png||height="710" width="723"]]
225
226 Add APP KEY and DEV EUI
227
228 [[image:1652953553383-907.png||height="514" width="724"]]
229
230
231 (((
232 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
233 )))
234
235 [[image:1652953568895-172.png||height="232" width="724"]]
236
237
238 == 3.3 Configure Commands to read data ==
239
240 (((
241 (((
242 (((
243 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
244 )))
245 )))
246
247 (((
248 (((
249 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
250 )))
251
252
253 )))
254 )))
255
256 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
257
258 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
259
260 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
261 |=(% style="width: 110px;" %)(((
262 **AT Commands**
263 )))|=(% style="width: 190px;" %)(((
264 **Description**
265 )))|=(% style="width: 190px;" %)(((
266 **Example**
267 )))
268 |(% style="width:110px" %)(((
269 AT+BAUDR
270 )))|(% style="width:190px" %)(((
271 Set the baud rate (for RS485 connection). Default Value is: 9600.
272 )))|(% style="width:190px" %)(((
273 (((
274 AT+BAUDR=9600
275 )))
276
277 (((
278 Options: (1200,2400,4800,14400,19200,115200)
279 )))
280 )))
281 |(% style="width:110px" %)(((
282 AT+PARITY
283 )))|(% style="width:190px" %)(((
284 Set UART parity (for RS485 connection)
285 )))|(% style="width:190px" %)(((
286 (((
287 AT+PARITY=0
288 )))
289
290 (((
291 Option: 0: no parity, 1: odd parity, 2: even parity
292 )))
293 )))
294 |(% style="width:110px" %)(((
295 AT+STOPBIT
296 )))|(% style="width:190px" %)(((
297 (((
298 Set serial stopbit (for RS485 connection)
299 )))
300
301 (((
302
303 )))
304 )))|(% style="width:190px" %)(((
305 (((
306 AT+STOPBIT=0 for 1bit
307 )))
308
309 (((
310 AT+STOPBIT=1 for 1.5 bit
311 )))
312
313 (((
314 AT+STOPBIT=2 for 2 bits
315 )))
316 )))
317
318
319
320 === 3.3.2 Configure sensors ===
321
322 (((
323 (((
324 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
325 )))
326 )))
327
328 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
329 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
330 |AT+CFGDEV|(% style="width:110px" %)(((
331 (((
332 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
333 )))
334
335 (((
336 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
337 )))
338
339 (((
340 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
341 )))
342 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
343
344
345
346 === 3.3.3 Configure read commands for each sampling ===
347
348 (((
349 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
350
351 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
352
353 This section describes how to achieve above goals.
354
355 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
356
357
358 **Each RS485 commands include two parts:**
359
360 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
361
362 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
363
364 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
365
366
367 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
368
369
370 Below are examples for the how above AT Commands works.
371
372
373 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
374
375 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
376 |(% style="width:496px" %)(((
377 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
378
379 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
380
381 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
382 )))
383
384 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
385
386 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
387
388
389 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
390
391 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
392 |(% style="width:510px" %)(((
393 **AT+DATACUTx=a,b,c**
394
395 * **a: length for the return of AT+COMMAND**
396 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
397 * **c: define the position for valid value.  **
398 )))
399
400 **Examples:**
401
402 * Grab bytes:
403
404 [[image:image-20220602153621-1.png]]
405
406
407 * Grab a section.
408
409 [[image:image-20220602153621-2.png]]
410
411
412 * Grab different sections.
413
414 [[image:image-20220602153621-3.png]]
415
416
417 )))
418
419 === 3.3.4 Compose the uplink payload ===
420
421 (((
422 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
423
424
425 )))
426
427 (((
428 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
429
430
431 )))
432
433 (((
434 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
435 )))
436
437 (((
438 Final Payload is
439 )))
440
441 (((
442 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
443 )))
444
445 (((
446 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
447 )))
448
449 [[image:1653269759169-150.png||height="513" width="716"]]
450
451
452 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
453
454
455 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
456
457 Final Payload is
458
459 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
460
461
462 1. PAYVER: Defined by AT+PAYVER
463 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
464 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
465 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
466
467 [[image:image-20220602155039-4.png]]
468
469
470 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
471
472 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
473
474 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
475
476 DATA3=the rest of Valid value of RETURN10= **30**
477
478
479 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
480
481 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
482
483 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
484
485 * For US915 band, max 11 bytes for each uplink.
486
487 ~* For all other bands: max 51 bytes for each uplink.
488
489
490 Below are the uplink payloads:
491
492 [[image:1654157178836-407.png]]
493
494
495 === 3.3.5 Uplink on demand ===
496
497 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
498
499 Downlink control command:
500
501 **0x08 command**: Poll an uplink with current command set in RS485-LN.
502
503 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
504
505
506
507 === 3.3.6 Uplink on Interrupt ===
508
509 RS485-LN support external Interrupt uplink since hardware v1.2 release.
510
511 [[image:1654157342174-798.png]]
512
513 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
514
515
516 == 3.4 Uplink Payload ==
517
518
519 [[image:image-20220606110929-1.png]]
520
521 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
522
523
524 == 3.5 Configure RS485-BL via AT or Downlink ==
525
526 (((
527 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
528 )))
529
530 (((
531 There are two kinds of Commands:
532 )))
533
534 * (((
535 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
536 )))
537
538 * (((
539 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
540 )))
541
542 (((
543
544 )))
545
546
547 === 3.5.1 Common Commands ===
548
549 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
550
551
552 === 3.5.2 Sensor related commands ===
553
554 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
555
556 [[image:image-20220602163333-5.png||height="263" width="1160"]]
557
558 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
559
560
561 === 3.5.3 Sensor related commands ===
562
563
564
565
566 ==== **RS485 Debug Command** ====
567
568 (((
569 This command is used to configure the RS485 devices; they won’t be used during sampling.
570 )))
571
572 * (((
573 **AT Command**
574 )))
575
576 (% class="box infomessage" %)
577 (((
578 (((
579 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
580 )))
581 )))
582
583 (((
584 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
585 )))
586
587 * (((
588 **Downlink Payload**
589 )))
590
591 (((
592 Format: A8 MM NN XX XX XX XX YY
593 )))
594
595 (((
596 Where:
597 )))
598
599 * (((
600 MM: 1: add CRC-16/MODBUS ; 0: no CRC
601 )))
602 * (((
603 NN: The length of RS485 command
604 )))
605 * (((
606 XX XX XX XX: RS485 command total NN bytes
607 )))
608 * (((
609 (((
610 YY: How many bytes will be uplink from the return of this RS485 command,
611 )))
612
613 * (((
614 if YY=0, RS485-LN will execute the downlink command without uplink;
615 )))
616 * (((
617 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
618 )))
619 * (((
620 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
621 )))
622 )))
623
624 (((
625 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
626 )))
627
628 (((
629 To connect a Modbus Alarm with below commands.
630 )))
631
632 * (((
633 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
634 )))
635
636 * (((
637 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
638 )))
639
640 (((
641 So if user want to use downlink command to control to RS485 Alarm, he can use:
642 )))
643
644 (((
645 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
646 )))
647
648 (((
649 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
650 )))
651
652 (((
653 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
654 )))
655
656 (((
657
658 )))
659
660 (((
661 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
662 )))
663
664 (((
665 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
666 )))
667
668 (((
669
670 )))
671
672 (((
673 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
674 )))
675
676 (((
677 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
678 )))
679
680 (((
681 [[image:1654159460680-153.png]]
682 )))
683
684
685
686
687 ==== **Set Payload version** ====
688
689 (((
690 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
691 )))
692
693 * (((
694 **AT Command:**
695 )))
696
697 (% class="box infomessage" %)
698 (((
699 (((
700 **AT+PAYVER: Set PAYVER field = 1**
701 )))
702 )))
703
704 * (((
705 **Downlink Payload:**
706 )))
707
708 (((
709 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
710 )))
711
712 (((
713 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
714 )))
715
716
717
718
719 ==== **Set RS485 Sampling Commands** ====
720
721 (((
722 AT+COMMANDx or AT+DATACUTx
723 )))
724
725 (((
726 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
727 )))
728
729 (((
730
731 )))
732
733 * (((
734 **AT Command:**
735 )))
736
737 (% class="box infomessage" %)
738 (((
739 (((
740 **AT+COMMANDx: Configure RS485 read command to sensor.**
741 )))
742 )))
743
744 (% class="box infomessage" %)
745 (((
746 (((
747 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
748 )))
749 )))
750
751 (((
752
753 )))
754
755 * (((
756 **Downlink Payload:**
757 )))
758
759 (((
760 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
761 )))
762
763 (((
764 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
765 )))
766
767 (((
768 Format: AF MM NN LL XX XX XX XX YY
769 )))
770
771 (((
772 Where:
773 )))
774
775 * (((
776 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
777 )))
778 * (((
779 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
780 )))
781 * (((
782 LL:  The length of AT+COMMAND or AT+DATACUT command
783 )))
784 * (((
785 XX XX XX XX: AT+COMMAND or AT+DATACUT command
786 )))
787 * (((
788 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
789 )))
790
791 (((
792 **Example:**
793 )))
794
795 (((
796 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
797 )))
798
799 (((
800 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
801 )))
802
803 (((
804 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
805 )))
806
807
808
809
810 ==== **Fast command to handle MODBUS device** ====
811
812 (((
813 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
814 )))
815
816 (((
817 This command is valid since v1.3 firmware version
818 )))
819
820 (((
821 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
822 )))
823
824 (((
825
826 )))
827
828 (((
829 **Example:**
830 )))
831
832 * (((
833 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
834 )))
835 * (((
836 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
837 )))
838 * (((
839 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
840 )))
841
842 [[image:image-20220602165351-6.png]]
843
844 [[image:image-20220602165351-7.png]]
845
846
847
848
849 ==== **RS485 command timeout** ====
850
851 (((
852 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
853 )))
854
855 (((
856 Default value: 0, range:  0 ~~ 65 seconds
857 )))
858
859 * (((
860 **AT Command:**
861 )))
862
863 (% class="box infomessage" %)
864 (((
865 (((
866 **AT+CMDDLaa=hex(bb cc)*1000**
867 )))
868 )))
869
870 (((
871 **Example:**
872 )))
873
874 (((
875 **AT+CMDDL1=1000** to send the open time to 1000ms
876 )))
877
878 (((
879
880 )))
881
882 * (((
883 **Downlink Payload:**
884 )))
885
886 (((
887 **0x AA aa bb cc**
888 )))
889
890 (((
891 Same as: AT+CMDDLaa=hex(bb cc)*1000
892 )))
893
894 (((
895 **Example:**
896 )))
897
898 (((
899 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
900 )))
901
902
903
904
905 ==== **Uplink payload mode** ====
906
907 (((
908 Define to use one uplink or multiple uplinks for the sampling.
909 )))
910
911 (((
912 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
913 )))
914
915 * (((
916 **AT Command:**
917 )))
918
919 (% class="box infomessage" %)
920 (((
921 (((
922 **AT+DATAUP=0**
923 )))
924 )))
925
926 (% class="box infomessage" %)
927 (((
928 (((
929 **AT+DATAUP=1**
930 )))
931 )))
932
933 (((
934
935 )))
936
937 * (((
938 **Downlink Payload:**
939 )))
940
941 (((
942 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
943 )))
944
945 (((
946 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
947 )))
948
949
950
951
952 ==== **Manually trigger an Uplink** ====
953
954 (((
955 Ask device to send an uplink immediately.
956 )))
957
958 * (((
959 **AT Command:**
960 )))
961
962 (((
963 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
964 )))
965
966 (((
967
968 )))
969
970 * (((
971 **Downlink Payload:**
972 )))
973
974 (((
975 **0x08 FF**, RS485-LN will immediately send an uplink.
976 )))
977
978
979
980
981 ==== **Clear RS485 Command** ====
982
983 (((
984 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
985 )))
986
987 * (((
988 **AT Command:**
989 )))
990
991 (((
992 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
993 )))
994
995 (((
996 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
997 )))
998
999 (((
1000 Example screen shot after clear all RS485 commands. 
1001 )))
1002
1003 (((
1004
1005 )))
1006
1007 (((
1008 The uplink screen shot is:
1009 )))
1010
1011 [[image:1654160691922-496.png]]
1012
1013
1014 * (((
1015 **Downlink Payload:**
1016 )))
1017
1018 (((
1019 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1020 )))
1021
1022
1023
1024
1025 ==== **Set Serial Communication Parameters** ====
1026
1027 (((
1028 Set the Rs485 serial communication parameters:
1029 )))
1030
1031 * (((
1032 **AT Command:**
1033 )))
1034
1035 (((
1036 Set Baud Rate:
1037 )))
1038
1039 (% class="box infomessage" %)
1040 (((
1041 (((
1042 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1043 )))
1044 )))
1045
1046 (((
1047 Set UART Parity
1048 )))
1049
1050 (% class="box infomessage" %)
1051 (((
1052 (((
1053 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1054 )))
1055 )))
1056
1057 (((
1058 Set STOPBIT
1059 )))
1060
1061 (% class="box infomessage" %)
1062 (((
1063 (((
1064 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1065 )))
1066 )))
1067
1068 (((
1069
1070 )))
1071
1072 * (((
1073 **Downlink Payload:**
1074 )))
1075
1076 (((
1077 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1078 )))
1079
1080 (((
1081 **Example:**
1082 )))
1083
1084 * (((
1085 A7 01 00 60   same as AT+BAUDR=9600
1086 )))
1087 * (((
1088 A7 01 04 80  same as AT+BAUDR=115200
1089 )))
1090
1091 (((
1092 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1093 )))
1094
1095 (((
1096 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1097 )))
1098
1099
1100
1101
1102 == 3.6 Listening mode for RS485 network ==
1103
1104 (((
1105 This feature support since firmware v1.4
1106 )))
1107
1108 (((
1109 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1110 )))
1111
1112 [[image:image-20220602171200-8.png||height="567" width="1007"]]
1113
1114 (((
1115 To enable the listening mode, use can run the command AT+RXMODE.
1116 )))
1117
1118 (((
1119
1120 )))
1121
1122 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
1123 |=(% style="width: 100px;" %)(((
1124 **Command example**
1125 )))|=(% style="width: 400px;" %)(((
1126 **Function**
1127 )))
1128 |(% style="width:100px" %)(((
1129 AT+RXMODE=1,10
1130 )))|(% style="width:400px" %)(((
1131 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1132 )))
1133 |(% style="width:100px" %)(((
1134 AT+RXMODE=2,500
1135 )))|(% style="width:400px" %)(((
1136 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1137 )))
1138 |(% style="width:100px" %)(((
1139 AT+RXMODE=0,0
1140 )))|(% style="width:400px" %)(((
1141 Disable listening mode. This is the default settings.
1142 )))
1143 |(% style="width:100px" %)(((
1144
1145 )))|(% style="width:400px" %)(((
1146 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1147 )))
1148
1149 (((
1150 **Downlink Command:**
1151 )))
1152
1153 (((
1154 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
1155 )))
1156
1157 (((
1158
1159 )))
1160
1161 (((
1162 **Example**:
1163 )))
1164
1165 (((
1166 The RS485-LN is set to AT+RXMODE=2,1000
1167 )))
1168
1169 (((
1170 There is a two Modbus commands in the RS485 network as below:
1171 )))
1172
1173 (((
1174 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
1175 )))
1176
1177 (((
1178 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1179 )))
1180
1181 (((
1182 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1183 )))
1184
1185 (((
1186 [[image:image-20220602171200-9.png]]
1187 )))
1188
1189 (((
1190
1191 )))
1192
1193 (((
1194 (((
1195 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
1196 )))
1197 )))
1198
1199
1200 == 3.7 Buttons ==
1201
1202
1203 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1204 |=(% style="width: 50px;" %)**Button**|=(% style="width: 361px;" %)**Feature**
1205 |(% style="width:50px" %)**ACT**|(% style="width:361px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1206 |(% style="width:50px" %)**RST**|(% style="width:361px" %)Reboot RS485
1207 |(% style="width:50px" %)**PRO**|(% style="width:361px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
1208
1209
1210
1211 == 3.8 LEDs ==
1212
1213
1214 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1215 |=(% style="width: 50px;" %)**LEDs**|=(% style="width: 380px;" %)**Feature**
1216 |**PWR**|Always on if there is power
1217 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
1218
1219
1220 = 4. Case Study =
1221
1222 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1223
1224
1225 = 5. Use AT Command =
1226
1227 == 5.1 Access AT Command ==
1228
1229 (((
1230 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1231 )))
1232
1233 [[image:1654162355560-817.png]]
1234
1235
1236 (((
1237 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1238 )))
1239
1240 [[image:1654162368066-342.png]]
1241
1242
1243 (((
1244 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1245 )))
1246
1247
1248
1249 == 5.2 Common AT Command Sequence ==
1250
1251 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1252
1253 If device has not joined network yet:
1254
1255 (% class="box infomessage" %)
1256 (((
1257 **AT+FDR**
1258 )))
1259
1260 (% class="box infomessage" %)
1261 (((
1262 **AT+NJM=0**
1263 )))
1264
1265 (% class="box infomessage" %)
1266 (((
1267 **ATZ**
1268 )))
1269
1270
1271 (((
1272 If device already joined network:
1273 )))
1274
1275 (% class="box infomessage" %)
1276 (((
1277 **AT+NJM=0**
1278 )))
1279
1280 (% class="box infomessage" %)
1281 (((
1282 **ATZ**
1283 )))
1284
1285
1286 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1287
1288
1289 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1290
1291 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1292
1293 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1294
1295 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
1296
1297 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1298
1299 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1300
1301 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1302
1303 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1304
1305 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1306
1307 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1308
1309
1310 (% style="color:red" %)**Note:**
1311
1312 (((
1313 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1314 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1315 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1316 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1317 )))
1318
1319 [[image:1654162478620-421.png]]
1320
1321
1322 = 6. FAQ =
1323
1324 == 6.1 How to upgrade the image? ==
1325
1326 (((
1327 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
1328 )))
1329
1330 * (((
1331 Support new features
1332 )))
1333 * (((
1334 For bug fix
1335 )))
1336 * (((
1337 Change LoRaWAN bands.
1338 )))
1339
1340 (((
1341 Below shows the hardware connection for how to upload an image to RS485-LN:
1342 )))
1343
1344 [[image:1654162535040-878.png]]
1345
1346 (((
1347 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1348 )))
1349
1350 (((
1351 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1352 )))
1353
1354 (((
1355 **Step3: **Open flashloader; choose the correct COM port to update.
1356 )))
1357
1358 (((
1359 (((
1360 (((
1361 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1362 )))
1363 )))
1364 )))
1365
1366
1367 [[image:image-20220602175818-12.png]]
1368
1369
1370 [[image:image-20220602175848-13.png]]
1371
1372
1373 [[image:image-20220602175912-14.png]]
1374
1375
1376 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1377
1378 [[image:image-20220602175638-10.png]]
1379
1380
1381 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1382
1383 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1384
1385
1386 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1387
1388 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1389
1390
1391 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1392
1393 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1394
1395 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1396
1397
1398 = 7. Trouble Shooting =
1399
1400 == 7.1 Downlink doesn’t work, how to solve it? ==
1401
1402 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1403
1404
1405 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1406
1407 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1408
1409
1410 = 8. Order Info =
1411
1412 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1413
1414 (% style="color:blue" %)**XXX:**
1415
1416 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1417 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1418 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1419 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1420 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1421 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1422 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1423 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1424 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1425 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1426
1427 = 9.Packing Info =
1428
1429
1430 **Package Includes**:
1431
1432 * RS485-LN x 1
1433 * Stick Antenna for LoRa RF part x 1
1434 * Program cable x 1
1435
1436 **Dimension and weight**:
1437
1438 * Device Size: 13.5 x 7 x 3 cm
1439 * Device Weight: 105g
1440 * Package Size / pcs : 14.5 x 8 x 5 cm
1441 * Weight / pcs : 170g
1442
1443 = 10. FCC Caution for RS485LN-US915 =
1444
1445 (((
1446 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1447 )))
1448
1449 (((
1450 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1451 )))
1452
1453 (((
1454
1455 )))
1456
1457 (((
1458 **IMPORTANT NOTE:**
1459 )))
1460
1461 (((
1462 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1463 )))
1464
1465 (((
1466 —Reorient or relocate the receiving antenna.
1467 )))
1468
1469 (((
1470 —Increase the separation between the equipment and receiver.
1471 )))
1472
1473 (((
1474 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1475 )))
1476
1477 (((
1478 —Consult the dealer or an experienced radio/TV technician for help.
1479 )))
1480
1481 (((
1482
1483 )))
1484
1485 (((
1486 **FCC Radiation Exposure Statement:**
1487 )))
1488
1489 (((
1490 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1491 )))
1492
1493
1494 = 11. Support =
1495
1496 * (((
1497 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1498 )))
1499 * (((
1500 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1501 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0