Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21 = 1.Introduction =
22
23 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
24
25 (((
26 (((
27 (((
28 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
29 )))
30 )))
31
32 (((
33 (((
34 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
35 )))
36 )))
37
38 (((
39 (((
40 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42 )))
43
44 (((
45 (((
46 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
47 )))
48
49 (((
50 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
51 )))
52 )))
53 )))
54
55 [[image:1653267211009-519.png||height="419" width="724"]]
56
57
58 == 1.2 Specifications ==
59
60
61 **Hardware System:**
62
63 * STM32L072CZT6 MCU
64 * SX1276/78 Wireless Chip 
65 * Power Consumption (exclude RS485 device):
66 ** Idle: 32mA@12v
67 ** 20dB Transmit: 65mA@12v
68
69 **Interface for Model:**
70
71 * RS485
72 * Power Input 7~~ 24V DC. 
73
74 **LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC
94
95
96 == 1.3 Features ==
97
98 * LoRaWAN Class A & Class C protocol (default Class C)
99 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
100 * AT Commands to change parameters
101 * Remote configure parameters via LoRa Downlink
102 * Firmware upgradable via program port
103 * Support multiply RS485 devices by flexible rules
104 * Support Modbus protocol
105 * Support Interrupt uplink (Since hardware version v1.2)
106
107
108 == 1.4 Applications ==
109
110 * Smart Buildings & Home Automation
111 * Logistics and Supply Chain Management
112 * Smart Metering
113 * Smart Agriculture
114 * Smart Cities
115 * Smart Factory
116
117
118 == 1.5 Firmware Change log ==
119
120 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
121
122
123 == 1.6 Hardware Change log ==
124
125 (((
126 (((
127 (((
128 v1.2: Add External Interrupt Pin.
129 )))
130
131 (((
132 v1.0: Release
133 )))
134
135
136 )))
137 )))
138
139 = 2. Power ON Device =
140
141 (((
142 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
143
144 * Power Source VIN to RS485-LN VIN+
145 * Power Source GND to RS485-LN VIN-
146
147 (((
148 Once there is power, the RS485-LN will be on.
149 )))
150
151 [[image:1653268091319-405.png]]
152
153
154 )))
155
156 = 3. Operation Mode =
157
158 == 3.1 How it works? ==
159
160 (((
161 (((
162 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
163 )))
164
165
166 )))
167
168 == 3.2 Example to join LoRaWAN network ==
169
170 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
171
172 [[image:1653268155545-638.png||height="334" width="724"]]
173
174
175 (((
176 (((
177 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
178 )))
179
180 (((
181 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
182 )))
183
184 [[image:1653268227651-549.png||height="592" width="720"]]
185
186 (((
187 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
188 )))
189
190 (((
191 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
192 )))
193
194 (((
195 Each RS485-LN is shipped with a sticker with unique device EUI:
196 )))
197 )))
198
199 [[image:1652953462722-299.png]]
200
201 (((
202 (((
203 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
204 )))
205
206 (((
207 Add APP EUI in the application.
208 )))
209 )))
210
211 [[image:image-20220519174512-1.png]]
212
213 [[image:image-20220519174512-2.png||height="323" width="720"]]
214
215 [[image:image-20220519174512-3.png||height="556" width="724"]]
216
217 [[image:image-20220519174512-4.png]]
218
219 You can also choose to create the device manually.
220
221 [[image:1652953542269-423.png||height="710" width="723"]]
222
223 Add APP KEY and DEV EUI
224
225 [[image:1652953553383-907.png||height="514" width="724"]]
226
227
228 (((
229 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
230 )))
231
232 [[image:1652953568895-172.png||height="232" width="724"]]
233
234
235 == 3.3 Configure Commands to read data ==
236
237 (((
238 (((
239 (((
240 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
241 )))
242 )))
243
244 (((
245 (((
246 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
247 )))
248
249
250 )))
251 )))
252
253 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
254
255 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
256
257 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
258 |=(% style="width: 110px;" %)(((
259 **AT Commands**
260 )))|=(% style="width: 190px;" %)(((
261 **Description**
262 )))|=(% style="width: 190px;" %)(((
263 **Example**
264 )))
265 |(% style="width:110px" %)(((
266 AT+BAUDR
267 )))|(% style="width:190px" %)(((
268 Set the baud rate (for RS485 connection). Default Value is: 9600.
269 )))|(% style="width:190px" %)(((
270 (((
271 AT+BAUDR=9600
272 )))
273
274 (((
275 Options: (1200,2400,4800,14400,19200,115200)
276 )))
277 )))
278 |(% style="width:110px" %)(((
279 AT+PARITY
280 )))|(% style="width:190px" %)(((
281 Set UART parity (for RS485 connection)
282 )))|(% style="width:190px" %)(((
283 (((
284 AT+PARITY=0
285 )))
286
287 (((
288 Option: 0: no parity, 1: odd parity, 2: even parity
289 )))
290 )))
291 |(% style="width:110px" %)(((
292 AT+STOPBIT
293 )))|(% style="width:190px" %)(((
294 (((
295 Set serial stopbit (for RS485 connection)
296 )))
297
298 (((
299
300 )))
301 )))|(% style="width:190px" %)(((
302 (((
303 AT+STOPBIT=0 for 1bit
304 )))
305
306 (((
307 AT+STOPBIT=1 for 1.5 bit
308 )))
309
310 (((
311 AT+STOPBIT=2 for 2 bits
312 )))
313 )))
314
315
316
317 === 3.3.2 Configure sensors ===
318
319 (((
320 (((
321 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
322 )))
323 )))
324
325 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
326 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
327 |AT+CFGDEV|(% style="width:110px" %)(((
328 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
329
330 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
331
332 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
333 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
334
335
336
337 === 3.3.3 Configure read commands for each sampling ===
338
339 (((
340 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
341
342 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
343
344 This section describes how to achieve above goals.
345
346 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
347
348
349 **Each RS485 commands include two parts:**
350
351 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
352
353 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
354
355 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
356
357
358 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
359
360
361 Below are examples for the how above AT Commands works.
362
363
364 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
365
366 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
367 |(% style="width:496px" %)(((
368 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
369
370 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
371
372 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
373 )))
374
375 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
376
377 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
378
379
380 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
381
382 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
383 |(% style="width:510px" %)(((
384 **AT+DATACUTx=a,b,c**
385
386 * **a: length for the return of AT+COMMAND**
387 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
388 * **c: define the position for valid value.  **
389 )))
390
391 **Examples:**
392
393 * Grab bytes:
394
395 [[image:image-20220602153621-1.png]]
396
397
398 * Grab a section.
399
400 [[image:image-20220602153621-2.png]]
401
402
403 * Grab different sections.
404
405 [[image:image-20220602153621-3.png]]
406
407
408 )))
409
410 === 3.3.4 Compose the uplink payload ===
411
412 (((
413 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
414
415
416 )))
417
418 (((
419 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
420
421
422 )))
423
424 (((
425 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
426 )))
427
428 (((
429 Final Payload is
430 )))
431
432 (((
433 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
434 )))
435
436 (((
437 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
438 )))
439
440 [[image:1653269759169-150.png||height="513" width="716"]]
441
442
443 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
444
445
446 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
447
448 Final Payload is
449
450 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
451
452
453 1. PAYVER: Defined by AT+PAYVER
454 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
455 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
456 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
457
458 [[image:image-20220602155039-4.png]]
459
460
461 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
462
463 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
464
465 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
466
467 DATA3=the rest of Valid value of RETURN10= **30**
468
469
470 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
471
472 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
473
474 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
475
476 * For US915 band, max 11 bytes for each uplink.
477
478 ~* For all other bands: max 51 bytes for each uplink.
479
480
481 Below are the uplink payloads:
482
483 [[image:1654157178836-407.png]]
484
485
486 === 3.3.5 Uplink on demand ===
487
488 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
489
490 Downlink control command:
491
492 **0x08 command**: Poll an uplink with current command set in RS485-LN.
493
494 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
495
496
497
498 === 3.3.6 Uplink on Interrupt ===
499
500 RS485-LN support external Interrupt uplink since hardware v1.2 release.
501
502 [[image:1654157342174-798.png]]
503
504 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
505
506
507 == 3.4 Uplink Payload ==
508
509
510 [[image:image-20220606110929-1.png]]
511
512 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
513
514
515 == 3.5 Configure RS485-BL via AT or Downlink ==
516
517 (((
518 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
519 )))
520
521 (((
522 There are two kinds of Commands:
523 )))
524
525 * (((
526 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
527 )))
528
529 * (((
530 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
531 )))
532
533 (((
534
535 )))
536
537
538 === 3.5.1 Common Commands ===
539
540 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
541
542
543 === 3.5.2 Sensor related commands ===
544
545 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
546
547 [[image:image-20220602163333-5.png||height="263" width="1160"]]
548
549 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
550
551
552 === 3.5.3 Sensor related commands ===
553
554
555
556
557 ==== **RS485 Debug Command** ====
558
559 (((
560 This command is used to configure the RS485 devices; they won’t be used during sampling.
561 )))
562
563 * (((
564 **AT Command**
565 )))
566
567 (% class="box infomessage" %)
568 (((
569 (((
570 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
571 )))
572 )))
573
574 (((
575 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
576 )))
577
578 * (((
579 **Downlink Payload**
580 )))
581
582 (((
583 Format: A8 MM NN XX XX XX XX YY
584 )))
585
586 (((
587 Where:
588 )))
589
590 * (((
591 MM: 1: add CRC-16/MODBUS ; 0: no CRC
592 )))
593 * (((
594 NN: The length of RS485 command
595 )))
596 * (((
597 XX XX XX XX: RS485 command total NN bytes
598 )))
599 * (((
600 (((
601 YY: How many bytes will be uplink from the return of this RS485 command,
602 )))
603
604 * (((
605 if YY=0, RS485-LN will execute the downlink command without uplink;
606 )))
607 * (((
608 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
609 )))
610 * (((
611 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
612 )))
613 )))
614
615 (((
616 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
617 )))
618
619 (((
620 To connect a Modbus Alarm with below commands.
621 )))
622
623 * (((
624 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
625 )))
626
627 * (((
628 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
629 )))
630
631 (((
632 So if user want to use downlink command to control to RS485 Alarm, he can use:
633 )))
634
635 (((
636 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
637 )))
638
639 (((
640 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
641 )))
642
643 (((
644 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
645 )))
646
647 (((
648
649 )))
650
651 (((
652 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
653 )))
654
655 (((
656 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
657 )))
658
659 (((
660
661 )))
662
663 (((
664 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
665 )))
666
667 (((
668 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
669 )))
670
671 (((
672 [[image:1654159460680-153.png]]
673 )))
674
675
676
677
678 ==== **Set Payload version** ====
679
680 (((
681 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
682 )))
683
684 * (((
685 **AT Command:**
686 )))
687
688 (% class="box infomessage" %)
689 (((
690 (((
691 **AT+PAYVER: Set PAYVER field = 1**
692 )))
693 )))
694
695 * (((
696 **Downlink Payload:**
697 )))
698
699 (((
700 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
701 )))
702
703 (((
704 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
705 )))
706
707
708
709
710 ==== **Set RS485 Sampling Commands** ====
711
712 (((
713 AT+COMMANDx or AT+DATACUTx
714 )))
715
716 (((
717 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
718 )))
719
720 (((
721
722 )))
723
724 * (((
725 **AT Command:**
726 )))
727
728 (% class="box infomessage" %)
729 (((
730 (((
731 **AT+COMMANDx: Configure RS485 read command to sensor.**
732 )))
733 )))
734
735 (% class="box infomessage" %)
736 (((
737 (((
738 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
739 )))
740 )))
741
742 (((
743
744 )))
745
746 * (((
747 **Downlink Payload:**
748 )))
749
750 (((
751 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
752 )))
753
754 (((
755 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
756 )))
757
758 (((
759 Format: AF MM NN LL XX XX XX XX YY
760 )))
761
762 (((
763 Where:
764 )))
765
766 * (((
767 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
768 )))
769 * (((
770 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
771 )))
772 * (((
773 LL:  The length of AT+COMMAND or AT+DATACUT command
774 )))
775 * (((
776 XX XX XX XX: AT+COMMAND or AT+DATACUT command
777 )))
778 * (((
779 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
780 )))
781
782 (((
783 **Example:**
784 )))
785
786 (((
787 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
788 )))
789
790 (((
791 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
792 )))
793
794 (((
795 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
796 )))
797
798
799
800
801 ==== **Fast command to handle MODBUS device** ====
802
803 (((
804 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
805 )))
806
807 (((
808 This command is valid since v1.3 firmware version
809 )))
810
811 (((
812 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
813 )))
814
815 (((
816
817 )))
818
819 (((
820 **Example:**
821 )))
822
823 * (((
824 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
825 )))
826 * (((
827 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
828 )))
829 * (((
830 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
831 )))
832
833 [[image:image-20220602165351-6.png]]
834
835 [[image:image-20220602165351-7.png]]
836
837
838
839
840 ==== **RS485 command timeout** ====
841
842 (((
843 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
844 )))
845
846 (((
847 Default value: 0, range:  0 ~~ 65 seconds
848 )))
849
850 * (((
851 **AT Command:**
852 )))
853
854 (% class="box infomessage" %)
855 (((
856 (((
857 **AT+CMDDLaa=hex(bb cc)*1000**
858 )))
859 )))
860
861 (((
862 **Example:**
863 )))
864
865 (((
866 **AT+CMDDL1=1000** to send the open time to 1000ms
867 )))
868
869 (((
870
871 )))
872
873 * (((
874 **Downlink Payload:**
875 )))
876
877 (((
878 **0x AA aa bb cc**
879 )))
880
881 (((
882 Same as: AT+CMDDLaa=hex(bb cc)*1000
883 )))
884
885 (((
886 **Example:**
887 )))
888
889 (((
890 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
891 )))
892
893
894
895
896 ==== **Uplink payload mode** ====
897
898 (((
899 Define to use one uplink or multiple uplinks for the sampling.
900 )))
901
902 (((
903 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
904 )))
905
906 * (((
907 **AT Command:**
908 )))
909
910 (% class="box infomessage" %)
911 (((
912 (((
913 **AT+DATAUP=0**
914 )))
915 )))
916
917 (% class="box infomessage" %)
918 (((
919 (((
920 **AT+DATAUP=1**
921 )))
922 )))
923
924 (((
925
926 )))
927
928 * (((
929 **Downlink Payload:**
930 )))
931
932 (((
933 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
934 )))
935
936 (((
937 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
938 )))
939
940
941
942
943 ==== **Manually trigger an Uplink** ====
944
945 (((
946 Ask device to send an uplink immediately.
947 )))
948
949 * (((
950 **AT Command:**
951 )))
952
953 (((
954 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
955 )))
956
957 (((
958
959 )))
960
961 * (((
962 **Downlink Payload:**
963 )))
964
965 (((
966 **0x08 FF**, RS485-LN will immediately send an uplink.
967 )))
968
969
970
971
972 ==== **Clear RS485 Command** ====
973
974 (((
975 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
976 )))
977
978 * (((
979 **AT Command:**
980 )))
981
982 (((
983 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
984 )))
985
986 (((
987 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
988 )))
989
990 (((
991 Example screen shot after clear all RS485 commands. 
992 )))
993
994 (((
995
996 )))
997
998 (((
999 The uplink screen shot is:
1000 )))
1001
1002 [[image:1654160691922-496.png]]
1003
1004
1005 * (((
1006 **Downlink Payload:**
1007 )))
1008
1009 (((
1010 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1011 )))
1012
1013
1014
1015
1016 ==== **Set Serial Communication Parameters** ====
1017
1018 (((
1019 Set the Rs485 serial communication parameters:
1020 )))
1021
1022 * (((
1023 **AT Command:**
1024 )))
1025
1026 (((
1027 Set Baud Rate:
1028 )))
1029
1030 (% class="box infomessage" %)
1031 (((
1032 (((
1033 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1034 )))
1035 )))
1036
1037 (((
1038 Set UART Parity
1039 )))
1040
1041 (% class="box infomessage" %)
1042 (((
1043 (((
1044 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1045 )))
1046 )))
1047
1048 (((
1049 Set STOPBIT
1050 )))
1051
1052 (% class="box infomessage" %)
1053 (((
1054 (((
1055 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1056 )))
1057 )))
1058
1059 (((
1060
1061 )))
1062
1063 * (((
1064 **Downlink Payload:**
1065 )))
1066
1067 (((
1068 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1069 )))
1070
1071 (((
1072 **Example:**
1073 )))
1074
1075 * (((
1076 A7 01 00 60   same as AT+BAUDR=9600
1077 )))
1078 * (((
1079 A7 01 04 80  same as AT+BAUDR=115200
1080 )))
1081
1082 (((
1083 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1084 )))
1085
1086 (((
1087 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1088 )))
1089
1090
1091
1092
1093 == 3.6 Listening mode for RS485 network ==
1094
1095 (((
1096 This feature support since firmware v1.4
1097 )))
1098
1099 (((
1100 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1101 )))
1102
1103 [[image:image-20220602171200-8.png||height="567" width="1007"]]
1104
1105 (((
1106 To enable the listening mode, use can run the command AT+RXMODE.
1107 )))
1108
1109 (((
1110
1111 )))
1112
1113 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
1114 |=(% style="width: 100px;" %)(((
1115 **Command example**
1116 )))|=(% style="width: 400px;" %)(((
1117 **Function**
1118 )))
1119 |(% style="width:100px" %)(((
1120 AT+RXMODE=1,10
1121 )))|(% style="width:400px" %)(((
1122 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1123 )))
1124 |(% style="width:100px" %)(((
1125 AT+RXMODE=2,500
1126 )))|(% style="width:400px" %)(((
1127 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1128 )))
1129 |(% style="width:100px" %)(((
1130 AT+RXMODE=0,0
1131 )))|(% style="width:400px" %)(((
1132 Disable listening mode. This is the default settings.
1133 )))
1134 |(% style="width:100px" %)(((
1135
1136 )))|(% style="width:400px" %)(((
1137 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1138 )))
1139
1140 (((
1141 **Downlink Command:**
1142 )))
1143
1144 (((
1145 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
1146 )))
1147
1148 (((
1149
1150 )))
1151
1152 (((
1153 **Example**:
1154 )))
1155
1156 (((
1157 The RS485-LN is set to AT+RXMODE=2,1000
1158 )))
1159
1160 (((
1161 There is a two Modbus commands in the RS485 network as below:
1162 )))
1163
1164 (((
1165 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
1166 )))
1167
1168 (((
1169 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1170 )))
1171
1172 (((
1173 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1174 )))
1175
1176 (((
1177 [[image:image-20220602171200-9.png]]
1178 )))
1179
1180 (((
1181
1182 )))
1183
1184 (((
1185 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
1186 )))
1187
1188
1189 == 3.7 Buttons ==
1190
1191
1192 (% border="1" cellspacing="10" style="background-color:#f7faff; width:400px" %)
1193 |=(% style="width: 50px;" %)**Button**|=(% style="width: 350px;" %)**Feature**
1194 |(% style="width:50px" %)**ACT**|(% style="width:350px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1195 |(% style="width:50px" %)**RST**|(% style="width:350px" %)Reboot RS485
1196 |(% style="width:50px" %)**PRO**|(% style="width:350px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
1197
1198 == 3.8 LEDs ==
1199
1200
1201 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1202 |=(% style="width: 50px;" %)**LEDs**|=(% style="width: 380px;" %)**Feature**
1203 |**PWR**|Always on if there is power
1204 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
1205
1206 = 4. Case Study =
1207
1208 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1209
1210
1211 = 5. Use AT Command =
1212
1213 == 5.1 Access AT Command ==
1214
1215 (((
1216 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1217 )))
1218
1219 [[image:1654162355560-817.png]]
1220
1221
1222 (((
1223 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1224 )))
1225
1226 [[image:1654162368066-342.png]]
1227
1228
1229 (((
1230 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1231 )))
1232
1233
1234
1235 == 5.2 Common AT Command Sequence ==
1236
1237 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1238
1239 If device has not joined network yet:
1240
1241 (% class="box infomessage" %)
1242 (((
1243 **AT+FDR**
1244 )))
1245
1246 (% class="box infomessage" %)
1247 (((
1248 **AT+NJM=0**
1249 )))
1250
1251 (% class="box infomessage" %)
1252 (((
1253 **ATZ**
1254 )))
1255
1256
1257 If device already joined network:
1258
1259 (% class="box infomessage" %)
1260 (((
1261 **AT+NJM=0**
1262 )))
1263
1264 (% class="box infomessage" %)
1265 (((
1266 **ATZ**
1267 )))
1268
1269
1270 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1271
1272
1273 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1274
1275 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1276
1277 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1278
1279 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
1280
1281 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1282
1283 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1284
1285 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1286
1287 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1288
1289 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1290
1291 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1292
1293
1294 (% style="color:red" %)**Note:**
1295
1296 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1297 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1298 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1299 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1300
1301 [[image:1654162478620-421.png]]
1302
1303
1304 = 6. FAQ =
1305
1306 == 6.1 How to upgrade the image? ==
1307
1308 (((
1309 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
1310 )))
1311
1312 * (((
1313 Support new features
1314 )))
1315 * (((
1316 For bug fix
1317 )))
1318 * (((
1319 Change LoRaWAN bands.
1320 )))
1321
1322 (((
1323 Below shows the hardware connection for how to upload an image to RS485-LN:
1324 )))
1325
1326 [[image:1654162535040-878.png]]
1327
1328 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1329
1330 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1331
1332 **Step3: **Open flashloader; choose the correct COM port to update.
1333
1334 (((
1335 (((
1336 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1337 )))
1338 )))
1339
1340
1341 [[image:image-20220602175818-12.png]]
1342
1343
1344 [[image:image-20220602175848-13.png]]
1345
1346
1347 [[image:image-20220602175912-14.png]]
1348
1349
1350 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1351
1352 [[image:image-20220602175638-10.png]]
1353
1354
1355 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1356
1357 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1358
1359
1360 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1361
1362 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1363
1364
1365 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1366
1367 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1368
1369 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1370
1371
1372 = 7. Trouble Shooting =
1373
1374 == 7.1 Downlink doesn’t work, how to solve it? ==
1375
1376 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1377
1378
1379 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1380
1381 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1382
1383
1384 = 8. Order Info =
1385
1386 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1387
1388 (% style="color:blue" %)**XXX:**
1389
1390 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1391 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1392 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1393 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1394 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1395 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1396 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1397 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1398 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1399 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1400
1401 = 9.Packing Info =
1402
1403
1404 **Package Includes**:
1405
1406 * RS485-LN x 1
1407 * Stick Antenna for LoRa RF part x 1
1408 * Program cable x 1
1409
1410 **Dimension and weight**:
1411
1412 * Device Size: 13.5 x 7 x 3 cm
1413 * Device Weight: 105g
1414 * Package Size / pcs : 14.5 x 8 x 5 cm
1415 * Weight / pcs : 170g
1416
1417 = 10. FCC Caution for RS485LN-US915 =
1418
1419 (((
1420 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1421 )))
1422
1423 (((
1424 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1425 )))
1426
1427 (((
1428
1429 )))
1430
1431 (((
1432 **IMPORTANT NOTE:**
1433 )))
1434
1435 (((
1436 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1437 )))
1438
1439 (((
1440 —Reorient or relocate the receiving antenna.
1441 )))
1442
1443 (((
1444 —Increase the separation between the equipment and receiver.
1445 )))
1446
1447 (((
1448 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1449 )))
1450
1451 (((
1452 —Consult the dealer or an experienced radio/TV technician for help.
1453 )))
1454
1455 (((
1456
1457 )))
1458
1459 (((
1460 **FCC Radiation Exposure Statement:**
1461 )))
1462
1463 (((
1464 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1465 )))
1466
1467
1468 = 11. Support =
1469
1470 * (((
1471 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1472 )))
1473 * (((
1474 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1475 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0