Version 58.42 by Xiaoling on 2022/06/06 13:34

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21 = 1.Introduction =
22
23 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
24
25 (((
26 (((
27 (((
28 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
29 )))
30 )))
31
32 (((
33 (((
34 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
35 )))
36 )))
37
38 (((
39 (((
40 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42 )))
43
44 (((
45 (((
46 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
47 )))
48
49 (((
50 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
51 )))
52 )))
53 )))
54
55 [[image:1653267211009-519.png||height="419" width="724"]]
56
57
58 == 1.2 Specifications ==
59
60
61 **Hardware System:**
62
63 * STM32L072CZT6 MCU
64 * SX1276/78 Wireless Chip 
65 * Power Consumption (exclude RS485 device):
66 ** Idle: 32mA@12v
67 ** 20dB Transmit: 65mA@12v
68
69 **Interface for Model:**
70
71 * RS485
72 * Power Input 7~~ 24V DC. 
73
74 **LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC
94
95
96 == 1.3 Features ==
97
98 * LoRaWAN Class A & Class C protocol (default Class C)
99 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
100 * AT Commands to change parameters
101 * Remote configure parameters via LoRa Downlink
102 * Firmware upgradable via program port
103 * Support multiply RS485 devices by flexible rules
104 * Support Modbus protocol
105 * Support Interrupt uplink (Since hardware version v1.2)
106
107
108 == 1.4 Applications ==
109
110 * Smart Buildings & Home Automation
111 * Logistics and Supply Chain Management
112 * Smart Metering
113 * Smart Agriculture
114 * Smart Cities
115 * Smart Factory
116
117
118 == 1.5 Firmware Change log ==
119
120 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
121
122
123 == 1.6 Hardware Change log ==
124
125 (((
126 (((
127 (((
128 v1.2: Add External Interrupt Pin.
129 )))
130
131 (((
132 v1.0: Release
133 )))
134
135
136 )))
137 )))
138
139 = 2. Power ON Device =
140
141 (((
142 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
143
144 * Power Source VIN to RS485-LN VIN+
145 * Power Source GND to RS485-LN VIN-
146
147 (((
148 Once there is power, the RS485-LN will be on.
149 )))
150
151 [[image:1653268091319-405.png]]
152
153
154 )))
155
156 = 3. Operation Mode =
157
158 == 3.1 How it works? ==
159
160 (((
161 (((
162 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
163 )))
164
165
166 )))
167
168 == 3.2 Example to join LoRaWAN network ==
169
170 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
171
172 [[image:1653268155545-638.png||height="334" width="724"]]
173
174
175 (((
176 (((
177 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
178 )))
179
180 (((
181 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
182 )))
183
184 [[image:1653268227651-549.png||height="592" width="720"]]
185
186 (((
187 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
188 )))
189
190 (((
191 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
192 )))
193
194 (((
195 Each RS485-LN is shipped with a sticker with unique device EUI:
196 )))
197 )))
198
199 [[image:1652953462722-299.png]]
200
201 (((
202 (((
203 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
204 )))
205
206 (((
207 Add APP EUI in the application.
208 )))
209 )))
210
211 [[image:image-20220519174512-1.png]]
212
213 [[image:image-20220519174512-2.png||height="323" width="720"]]
214
215 [[image:image-20220519174512-3.png||height="556" width="724"]]
216
217 [[image:image-20220519174512-4.png]]
218
219 You can also choose to create the device manually.
220
221 [[image:1652953542269-423.png||height="710" width="723"]]
222
223 Add APP KEY and DEV EUI
224
225 [[image:1652953553383-907.png||height="514" width="724"]]
226
227
228 (((
229 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
230 )))
231
232 [[image:1652953568895-172.png||height="232" width="724"]]
233
234
235 == 3.3 Configure Commands to read data ==
236
237 (((
238 (((
239 (((
240 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
241 )))
242 )))
243
244 (((
245 (((
246 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
247 )))
248
249
250 )))
251 )))
252
253 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
254
255 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
256
257 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
258 |=(% style="width: 110px;" %)(((
259 **AT Commands**
260 )))|=(% style="width: 190px;" %)(((
261 **Description**
262 )))|=(% style="width: 190px;" %)(((
263 **Example**
264 )))
265 |(% style="width:110px" %)(((
266 AT+BAUDR
267 )))|(% style="width:190px" %)(((
268 Set the baud rate (for RS485 connection). Default Value is: 9600.
269 )))|(% style="width:190px" %)(((
270 (((
271 AT+BAUDR=9600
272 )))
273
274 (((
275 Options: (1200,2400,4800,14400,19200,115200)
276 )))
277 )))
278 |(% style="width:110px" %)(((
279 AT+PARITY
280 )))|(% style="width:190px" %)(((
281 Set UART parity (for RS485 connection)
282 )))|(% style="width:190px" %)(((
283 (((
284 AT+PARITY=0
285 )))
286
287 (((
288 Option: 0: no parity, 1: odd parity, 2: even parity
289 )))
290 )))
291 |(% style="width:110px" %)(((
292 AT+STOPBIT
293 )))|(% style="width:190px" %)(((
294 (((
295 Set serial stopbit (for RS485 connection)
296 )))
297
298 (((
299
300 )))
301 )))|(% style="width:190px" %)(((
302 (((
303 AT+STOPBIT=0 for 1bit
304 )))
305
306 (((
307 AT+STOPBIT=1 for 1.5 bit
308 )))
309
310 (((
311 AT+STOPBIT=2 for 2 bits
312 )))
313 )))
314
315
316
317 === 3.3.2 Configure sensors ===
318
319 (((
320 (((
321 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
322 )))
323 )))
324
325 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
326 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
327 |AT+CFGDEV|(% style="width:110px" %)(((
328 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
329
330 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
331
332 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
333 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
334
335 === 3.3.3 Configure read commands for each sampling ===
336
337 (((
338 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
339
340 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
341
342 This section describes how to achieve above goals.
343
344 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
345
346
347 **Each RS485 commands include two parts:**
348
349 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
350
351 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
352
353 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
354
355
356 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
357
358
359 Below are examples for the how above AT Commands works.
360
361
362 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
363
364 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
365 |(% style="width:496px" %)(((
366 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
367
368 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
369
370 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
371 )))
372
373 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
374
375 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
376
377
378 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
379
380 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
381 |(% style="width:510px" %)(((
382 **AT+DATACUTx=a,b,c**
383
384 * **a: length for the return of AT+COMMAND**
385 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
386 * **c: define the position for valid value.  **
387 )))
388
389 **Examples:**
390
391 * Grab bytes:
392
393 [[image:image-20220602153621-1.png]]
394
395
396 * Grab a section.
397
398 [[image:image-20220602153621-2.png]]
399
400
401 * Grab different sections.
402
403 [[image:image-20220602153621-3.png]]
404
405
406 )))
407
408 === 3.3.4 Compose the uplink payload ===
409
410 (((
411 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
412
413
414 )))
415
416 (((
417 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
418
419
420 )))
421
422 (((
423 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
424 )))
425
426 (((
427 Final Payload is
428 )))
429
430 (((
431 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
432 )))
433
434 (((
435 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
436 )))
437
438 [[image:1653269759169-150.png||height="513" width="716"]]
439
440
441 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
442
443
444 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
445
446 Final Payload is
447
448 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
449
450
451 1. PAYVER: Defined by AT+PAYVER
452 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
453 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
454 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
455
456 [[image:image-20220602155039-4.png]]
457
458
459 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
460
461 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
462
463 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
464
465 DATA3=the rest of Valid value of RETURN10= **30**
466
467
468 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
469
470 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
471
472 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
473
474 * For US915 band, max 11 bytes for each uplink.
475
476 ~* For all other bands: max 51 bytes for each uplink.
477
478
479 Below are the uplink payloads:
480
481 [[image:1654157178836-407.png]]
482
483
484 === 3.3.5 Uplink on demand ===
485
486 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
487
488 Downlink control command:
489
490 **0x08 command**: Poll an uplink with current command set in RS485-LN.
491
492 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
493
494
495
496 === 3.3.6 Uplink on Interrupt ===
497
498 RS485-LN support external Interrupt uplink since hardware v1.2 release.
499
500 [[image:1654157342174-798.png]]
501
502 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
503
504
505 == 3.4 Uplink Payload ==
506
507
508 [[image:image-20220606110929-1.png]]
509
510 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
511
512
513 == 3.5 Configure RS485-BL via AT or Downlink ==
514
515 (((
516 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
517 )))
518
519 (((
520 There are two kinds of Commands:
521 )))
522
523 * (((
524 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
525 )))
526
527 * (((
528 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
529 )))
530
531 (((
532
533 )))
534
535
536 === 3.5.1 Common Commands ===
537
538 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
539
540
541 === 3.5.2 Sensor related commands ===
542
543 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
544
545 [[image:image-20220602163333-5.png||height="263" width="1160"]]
546
547 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
548
549
550 === 3.5.3 Sensor related commands ===
551
552
553
554
555 ==== **RS485 Debug Command** ====
556
557 (((
558 This command is used to configure the RS485 devices; they won’t be used during sampling.
559 )))
560
561 * (((
562 **AT Command**
563 )))
564
565 (% class="box infomessage" %)
566 (((
567 (((
568 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
569 )))
570 )))
571
572 (((
573 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
574 )))
575
576 * (((
577 **Downlink Payload**
578 )))
579
580 (((
581 Format: A8 MM NN XX XX XX XX YY
582 )))
583
584 (((
585 Where:
586 )))
587
588 * (((
589 MM: 1: add CRC-16/MODBUS ; 0: no CRC
590 )))
591 * (((
592 NN: The length of RS485 command
593 )))
594 * (((
595 XX XX XX XX: RS485 command total NN bytes
596 )))
597 * (((
598 (((
599 YY: How many bytes will be uplink from the return of this RS485 command,
600 )))
601
602 * (((
603 if YY=0, RS485-LN will execute the downlink command without uplink;
604 )))
605 * (((
606 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
607 )))
608 * (((
609 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
610 )))
611 )))
612
613 (((
614 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
615 )))
616
617 (((
618 To connect a Modbus Alarm with below commands.
619 )))
620
621 * (((
622 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
623 )))
624
625 * (((
626 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
627 )))
628
629 (((
630 So if user want to use downlink command to control to RS485 Alarm, he can use:
631 )))
632
633 (((
634 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
635 )))
636
637 (((
638 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
639 )))
640
641 (((
642 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
643 )))
644
645 (((
646
647 )))
648
649 (((
650 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
651 )))
652
653 (((
654 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
655 )))
656
657 (((
658
659 )))
660
661 (((
662 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
663 )))
664
665 (((
666 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
667 )))
668
669 (((
670 [[image:1654159460680-153.png]]
671 )))
672
673
674
675
676 ==== **Set Payload version** ====
677
678 (((
679 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
680 )))
681
682 * (((
683 **AT Command:**
684 )))
685
686 (% class="box infomessage" %)
687 (((
688 (((
689 **AT+PAYVER: Set PAYVER field = 1**
690 )))
691 )))
692
693 * (((
694 **Downlink Payload:**
695 )))
696
697 (((
698 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
699 )))
700
701 (((
702 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
703 )))
704
705
706
707
708 ==== **Set RS485 Sampling Commands** ====
709
710 (((
711 AT+COMMANDx or AT+DATACUTx
712 )))
713
714 (((
715 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
716 )))
717
718 (((
719
720 )))
721
722 * (((
723 **AT Command:**
724 )))
725
726 (% class="box infomessage" %)
727 (((
728 (((
729 **AT+COMMANDx: Configure RS485 read command to sensor.**
730 )))
731 )))
732
733 (% class="box infomessage" %)
734 (((
735 (((
736 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
737 )))
738 )))
739
740 (((
741
742 )))
743
744 * (((
745 **Downlink Payload:**
746 )))
747
748 (((
749 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
750 )))
751
752 (((
753 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
754 )))
755
756 (((
757 Format: AF MM NN LL XX XX XX XX YY
758 )))
759
760 (((
761 Where:
762 )))
763
764 * (((
765 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
766 )))
767 * (((
768 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
769 )))
770 * (((
771 LL:  The length of AT+COMMAND or AT+DATACUT command
772 )))
773 * (((
774 XX XX XX XX: AT+COMMAND or AT+DATACUT command
775 )))
776 * (((
777 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
778 )))
779
780 (((
781 **Example:**
782 )))
783
784 (((
785 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
786 )))
787
788 (((
789 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
790 )))
791
792 (((
793 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
794 )))
795
796
797
798
799 ==== **Fast command to handle MODBUS device** ====
800
801 (((
802 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
803 )))
804
805 (((
806 This command is valid since v1.3 firmware version
807 )))
808
809 (((
810 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
811 )))
812
813 (((
814
815 )))
816
817 (((
818 **Example:**
819 )))
820
821 * (((
822 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
823 )))
824 * (((
825 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
826 )))
827 * (((
828 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
829 )))
830
831 [[image:image-20220602165351-6.png]]
832
833 [[image:image-20220602165351-7.png]]
834
835
836
837
838 ==== **RS485 command timeout** ====
839
840 (((
841 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
842 )))
843
844 (((
845 Default value: 0, range:  0 ~~ 65 seconds
846 )))
847
848 * (((
849 **AT Command:**
850 )))
851
852 (% class="box infomessage" %)
853 (((
854 (((
855 **AT+CMDDLaa=hex(bb cc)*1000**
856 )))
857 )))
858
859 (((
860 **Example:**
861 )))
862
863 (((
864 **AT+CMDDL1=1000** to send the open time to 1000ms
865 )))
866
867 (((
868
869 )))
870
871 * (((
872 **Downlink Payload:**
873 )))
874
875 (((
876 **0x AA aa bb cc**
877 )))
878
879 (((
880 Same as: AT+CMDDLaa=hex(bb cc)*1000
881 )))
882
883 (((
884 **Example:**
885 )))
886
887 (((
888 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
889 )))
890
891
892
893
894 ==== **Uplink payload mode** ====
895
896 (((
897 Define to use one uplink or multiple uplinks for the sampling.
898 )))
899
900 (((
901 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
902 )))
903
904 * (((
905 **AT Command:**
906 )))
907
908 (% class="box infomessage" %)
909 (((
910 (((
911 **AT+DATAUP=0**
912 )))
913 )))
914
915 (% class="box infomessage" %)
916 (((
917 (((
918 **AT+DATAUP=1**
919 )))
920 )))
921
922 (((
923
924 )))
925
926 * (((
927 **Downlink Payload:**
928 )))
929
930 (((
931 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
932 )))
933
934 (((
935 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
936 )))
937
938
939
940
941 ==== **Manually trigger an Uplink** ====
942
943 (((
944 Ask device to send an uplink immediately.
945 )))
946
947 * (((
948 **AT Command:**
949 )))
950
951 (((
952 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
953 )))
954
955 (((
956
957 )))
958
959 * (((
960 **Downlink Payload:**
961 )))
962
963 (((
964 **0x08 FF**, RS485-LN will immediately send an uplink.
965 )))
966
967
968
969
970 ==== **Clear RS485 Command** ====
971
972 (((
973 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
974 )))
975
976 * (((
977 **AT Command:**
978 )))
979
980 (((
981 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
982 )))
983
984 (((
985 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
986 )))
987
988 (((
989 Example screen shot after clear all RS485 commands. 
990 )))
991
992 (((
993
994 )))
995
996 (((
997 The uplink screen shot is:
998 )))
999
1000 [[image:1654160691922-496.png]]
1001
1002
1003 * (((
1004 **Downlink Payload:**
1005 )))
1006
1007 (((
1008 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1009 )))
1010
1011
1012
1013
1014 ==== **Set Serial Communication Parameters** ====
1015
1016 (((
1017 Set the Rs485 serial communication parameters:
1018 )))
1019
1020 * (((
1021 **AT Command:**
1022 )))
1023
1024 (((
1025 Set Baud Rate:
1026 )))
1027
1028 (% class="box infomessage" %)
1029 (((
1030 (((
1031 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1032 )))
1033 )))
1034
1035 (((
1036 Set UART Parity
1037 )))
1038
1039 (% class="box infomessage" %)
1040 (((
1041 (((
1042 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1043 )))
1044 )))
1045
1046 (((
1047 Set STOPBIT
1048 )))
1049
1050 (% class="box infomessage" %)
1051 (((
1052 (((
1053 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1054 )))
1055 )))
1056
1057 (((
1058
1059 )))
1060
1061 * (((
1062 **Downlink Payload:**
1063 )))
1064
1065 (((
1066 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1067 )))
1068
1069 (((
1070 **Example:**
1071 )))
1072
1073 * (((
1074 A7 01 00 60   same as AT+BAUDR=9600
1075 )))
1076 * (((
1077 A7 01 04 80  same as AT+BAUDR=115200
1078 )))
1079
1080 (((
1081 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1082 )))
1083
1084 (((
1085 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1086 )))
1087
1088
1089
1090
1091 == 3.6 Listening mode for RS485 network ==
1092
1093 (((
1094 This feature support since firmware v1.4
1095 )))
1096
1097 (((
1098 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1099 )))
1100
1101 [[image:image-20220602171200-8.png||height="567" width="1007"]]
1102
1103 (((
1104 To enable the listening mode, use can run the command AT+RXMODE.
1105 )))
1106
1107 (((
1108
1109 )))
1110
1111 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
1112 |=(% style="width: 161px;" %)(((
1113 **Command example:**
1114 )))|=(% style="width: 337px;" %)(((
1115 **Function**
1116 )))
1117 |(% style="width:161px" %)(((
1118 AT+RXMODE=1,10
1119 )))|(% style="width:337px" %)(((
1120 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1121 )))
1122 |(% style="width:161px" %)(((
1123 AT+RXMODE=2,500
1124 )))|(% style="width:337px" %)(((
1125 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1126 )))
1127 |(% style="width:161px" %)(((
1128 AT+RXMODE=0,0
1129 )))|(% style="width:337px" %)(((
1130 Disable listening mode. This is the default settings.
1131 )))
1132 |(% style="width:161px" %)(((
1133
1134 )))|(% style="width:337px" %)(((
1135 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1136 )))
1137
1138 (((
1139 **Downlink Command:**
1140 )))
1141
1142 (((
1143 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
1144 )))
1145
1146 (((
1147
1148 )))
1149
1150 (((
1151 **Example**:
1152 )))
1153
1154 (((
1155 The RS485-LN is set to AT+RXMODE=2,1000
1156 )))
1157
1158 (((
1159 There is a two Modbus commands in the RS485 network as below:
1160 )))
1161
1162 (((
1163 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
1164 )))
1165
1166 (((
1167 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1168 )))
1169
1170 (((
1171 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1172 )))
1173
1174 (((
1175 [[image:image-20220602171200-9.png]]
1176 )))
1177
1178 (((
1179
1180 )))
1181
1182 (((
1183 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
1184 )))
1185
1186
1187 == 3.7 Buttons ==
1188
1189
1190 (% border="1" cellspacing="10" style="background-color:#f7faff; width:400px" %)
1191 |=(% style="width: 50px;" %)**Button**|=(% style="width: 350px;" %)**Feature**
1192 |(% style="width:50px" %)**ACT**|(% style="width:350px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1193 |(% style="width:50px" %)**RST**|(% style="width:350px" %)Reboot RS485
1194 |(% style="width:50px" %)**PRO**|(% style="width:350px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
1195
1196 == 3.8 LEDs ==
1197
1198
1199 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1200 |=(% style="width: 50px;" %)**LEDs**|=(% style="width: 380px;" %)**Feature**
1201 |**PWR**|Always on if there is power
1202 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
1203
1204 = 4. Case Study =
1205
1206 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1207
1208
1209 = 5. Use AT Command =
1210
1211 == 5.1 Access AT Command ==
1212
1213 (((
1214 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1215 )))
1216
1217 [[image:1654162355560-817.png]]
1218
1219
1220 (((
1221 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1222 )))
1223
1224 [[image:1654162368066-342.png]]
1225
1226
1227 (((
1228 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1229 )))
1230
1231
1232
1233 == 5.2 Common AT Command Sequence ==
1234
1235 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1236
1237 If device has not joined network yet:
1238
1239 (% class="box infomessage" %)
1240 (((
1241 **AT+FDR**
1242 )))
1243
1244 (% class="box infomessage" %)
1245 (((
1246 **AT+NJM=0**
1247 )))
1248
1249 (% class="box infomessage" %)
1250 (((
1251 **ATZ**
1252 )))
1253
1254
1255 If device already joined network:
1256
1257 (% class="box infomessage" %)
1258 (((
1259 **AT+NJM=0**
1260 )))
1261
1262 (% class="box infomessage" %)
1263 (((
1264 **ATZ**
1265 )))
1266
1267
1268 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1269
1270
1271 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1272
1273 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1274
1275 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1276
1277 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
1278
1279 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1280
1281 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1282
1283 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1284
1285 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1286
1287 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1288
1289 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1290
1291
1292 (% style="color:red" %)**Note:**
1293
1294 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1295 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1296 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1297 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1298
1299 [[image:1654162478620-421.png]]
1300
1301
1302 = 6. FAQ =
1303
1304 == 6.1 How to upgrade the image? ==
1305
1306 (((
1307 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
1308 )))
1309
1310 * (((
1311 Support new features
1312 )))
1313 * (((
1314 For bug fix
1315 )))
1316 * (((
1317 Change LoRaWAN bands.
1318 )))
1319
1320 (((
1321 Below shows the hardware connection for how to upload an image to RS485-LN:
1322 )))
1323
1324 [[image:1654162535040-878.png]]
1325
1326 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1327
1328 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1329
1330 **Step3: **Open flashloader; choose the correct COM port to update.
1331
1332 (((
1333 (((
1334 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1335 )))
1336 )))
1337
1338
1339 [[image:image-20220602175818-12.png]]
1340
1341
1342 [[image:image-20220602175848-13.png]]
1343
1344
1345 [[image:image-20220602175912-14.png]]
1346
1347
1348 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1349
1350 [[image:image-20220602175638-10.png]]
1351
1352
1353 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1354
1355 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1356
1357
1358 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1359
1360 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1361
1362
1363 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1364
1365 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1366
1367 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1368
1369
1370 = 7. Trouble Shooting =
1371
1372 == 7.1 Downlink doesn’t work, how to solve it? ==
1373
1374 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1375
1376
1377 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1378
1379 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1380
1381
1382 = 8. Order Info =
1383
1384 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1385
1386 (% style="color:blue" %)**XXX:**
1387
1388 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1389 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1390 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1391 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1392 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1393 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1394 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1395 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1396 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1397 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1398
1399 = 9.Packing Info =
1400
1401
1402 **Package Includes**:
1403
1404 * RS485-LN x 1
1405 * Stick Antenna for LoRa RF part x 1
1406 * Program cable x 1
1407
1408 **Dimension and weight**:
1409
1410 * Device Size: 13.5 x 7 x 3 cm
1411 * Device Weight: 105g
1412 * Package Size / pcs : 14.5 x 8 x 5 cm
1413 * Weight / pcs : 170g
1414
1415 = 10. FCC Caution for RS485LN-US915 =
1416
1417 (((
1418 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1419 )))
1420
1421 (((
1422 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1423 )))
1424
1425 (((
1426
1427 )))
1428
1429 (((
1430 **IMPORTANT NOTE:**
1431 )))
1432
1433 (((
1434 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1435 )))
1436
1437 (((
1438 —Reorient or relocate the receiving antenna.
1439 )))
1440
1441 (((
1442 —Increase the separation between the equipment and receiver.
1443 )))
1444
1445 (((
1446 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1447 )))
1448
1449 (((
1450 —Consult the dealer or an experienced radio/TV technician for help.
1451 )))
1452
1453 (((
1454
1455 )))
1456
1457 (((
1458 **FCC Radiation Exposure Statement:**
1459 )))
1460
1461 (((
1462 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1463 )))
1464
1465
1466 = 11. Support =
1467
1468 * (((
1469 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1470 )))
1471 * (((
1472 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1473 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0