Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21 = 1.Introduction =
22
23 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
24
25 (((
26 (((
27 (((
28 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
29 )))
30 )))
31
32 (((
33 (((
34 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
35 )))
36 )))
37
38 (((
39 (((
40 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42 )))
43
44 (((
45 (((
46 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
47 )))
48
49 (((
50 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
51 )))
52 )))
53 )))
54
55 [[image:1653267211009-519.png||height="419" width="724"]]
56
57
58 == 1.2 Specifications ==
59
60
61 **Hardware System:**
62
63 * STM32L072CZT6 MCU
64 * SX1276/78 Wireless Chip 
65 * Power Consumption (exclude RS485 device):
66 ** Idle: 32mA@12v
67 ** 20dB Transmit: 65mA@12v
68
69 **Interface for Model:**
70
71 * RS485
72 * Power Input 7~~ 24V DC. 
73
74 **LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC
94
95
96 == 1.3 Features ==
97
98 * LoRaWAN Class A & Class C protocol (default Class C)
99 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
100 * AT Commands to change parameters
101 * Remote configure parameters via LoRa Downlink
102 * Firmware upgradable via program port
103 * Support multiply RS485 devices by flexible rules
104 * Support Modbus protocol
105 * Support Interrupt uplink (Since hardware version v1.2)
106
107
108 == 1.4 Applications ==
109
110 * Smart Buildings & Home Automation
111 * Logistics and Supply Chain Management
112 * Smart Metering
113 * Smart Agriculture
114 * Smart Cities
115 * Smart Factory
116
117
118 == 1.5 Firmware Change log ==
119
120 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
121
122
123 == 1.6 Hardware Change log ==
124
125 (((
126 (((
127 (((
128 v1.2: Add External Interrupt Pin.
129 )))
130
131 (((
132 v1.0: Release
133 )))
134
135
136 )))
137 )))
138
139 = 2. Power ON Device =
140
141 (((
142 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
143
144 * Power Source VIN to RS485-LN VIN+
145 * Power Source GND to RS485-LN VIN-
146
147 (((
148 Once there is power, the RS485-LN will be on.
149 )))
150
151 [[image:1653268091319-405.png]]
152
153
154 )))
155
156 = 3. Operation Mode =
157
158 == 3.1 How it works? ==
159
160 (((
161 (((
162 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
163 )))
164
165
166 )))
167
168 == 3.2 Example to join LoRaWAN network ==
169
170 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
171
172 [[image:1653268155545-638.png||height="334" width="724"]]
173
174
175 (((
176 (((
177 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
178 )))
179
180 (((
181 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
182 )))
183
184 [[image:1653268227651-549.png||height="592" width="720"]]
185
186 (((
187 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
188 )))
189
190 (((
191 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
192 )))
193
194 (((
195 Each RS485-LN is shipped with a sticker with unique device EUI:
196 )))
197 )))
198
199 [[image:1652953462722-299.png]]
200
201 (((
202 (((
203 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
204 )))
205
206 (((
207 Add APP EUI in the application.
208 )))
209 )))
210
211 [[image:image-20220519174512-1.png]]
212
213 [[image:image-20220519174512-2.png||height="323" width="720"]]
214
215 [[image:image-20220519174512-3.png||height="556" width="724"]]
216
217 [[image:image-20220519174512-4.png]]
218
219 You can also choose to create the device manually.
220
221 [[image:1652953542269-423.png||height="710" width="723"]]
222
223 Add APP KEY and DEV EUI
224
225 [[image:1652953553383-907.png||height="514" width="724"]]
226
227
228 (((
229 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
230 )))
231
232 [[image:1652953568895-172.png||height="232" width="724"]]
233
234
235 == 3.3 Configure Commands to read data ==
236
237 (((
238 (((
239 (((
240 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
241 )))
242 )))
243
244 (((
245 (((
246 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
247 )))
248
249
250 )))
251 )))
252
253 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
254
255 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
256
257 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
258 |=(% style="width: 110px;" %)(((
259 **AT Commands**
260 )))|=(% style="width: 190px;" %)(((
261 **Description**
262 )))|=(% style="width: 190px;" %)(((
263 **Example**
264 )))
265 |(% style="width:110px" %)(((
266 AT+BAUDR
267 )))|(% style="width:190px" %)(((
268 Set the baud rate (for RS485 connection). Default Value is: 9600.
269 )))|(% style="width:190px" %)(((
270 (((
271 AT+BAUDR=9600
272 )))
273
274 (((
275 Options: (1200,2400,4800,14400,19200,115200)
276 )))
277 )))
278 |(% style="width:110px" %)(((
279 AT+PARITY
280 )))|(% style="width:190px" %)(((
281 Set UART parity (for RS485 connection)
282 )))|(% style="width:190px" %)(((
283 (((
284 AT+PARITY=0
285 )))
286
287 (((
288 Option: 0: no parity, 1: odd parity, 2: even parity
289 )))
290 )))
291 |(% style="width:110px" %)(((
292 AT+STOPBIT
293 )))|(% style="width:190px" %)(((
294 (((
295 Set serial stopbit (for RS485 connection)
296 )))
297
298 (((
299
300 )))
301 )))|(% style="width:190px" %)(((
302 (((
303 AT+STOPBIT=0 for 1bit
304 )))
305
306 (((
307 AT+STOPBIT=1 for 1.5 bit
308 )))
309
310 (((
311 AT+STOPBIT=2 for 2 bits
312 )))
313 )))
314
315 === 3.3.2 Configure sensors ===
316
317 (((
318 (((
319 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
320 )))
321 )))
322
323 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
324 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
325 |AT+CFGDEV|(% style="width:110px" %)(((
326 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
327
328 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
329
330 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
331 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
332
333 === 3.3.3 Configure read commands for each sampling ===
334
335 (((
336 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
337
338 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
339
340 This section describes how to achieve above goals.
341
342 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
343
344
345 **Each RS485 commands include two parts:**
346
347 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
348
349 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
350
351 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
352
353
354 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
355
356
357 Below are examples for the how above AT Commands works.
358
359
360 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
361
362 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
363 |(% style="width:496px" %)(((
364 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
365
366 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
367
368 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
369 )))
370
371 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
372
373 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
374
375
376 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
377
378 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
379 |(% style="width:510px" %)(((
380 **AT+DATACUTx=a,b,c**
381
382 * **a: length for the return of AT+COMMAND**
383 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
384 * **c: define the position for valid value.  **
385 )))
386
387 **Examples:**
388
389 * Grab bytes:
390
391 [[image:image-20220602153621-1.png]]
392
393
394 * Grab a section.
395
396 [[image:image-20220602153621-2.png]]
397
398
399 * Grab different sections.
400
401 [[image:image-20220602153621-3.png]]
402
403
404 )))
405
406 === 3.3.4 Compose the uplink payload ===
407
408 (((
409 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
410
411
412 )))
413
414 (((
415 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
416
417
418 )))
419
420 (((
421 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
422 )))
423
424 (((
425 Final Payload is
426 )))
427
428 (((
429 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
430 )))
431
432 (((
433 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
434 )))
435
436 [[image:1653269759169-150.png||height="513" width="716"]]
437
438
439 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
440
441
442 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
443
444 Final Payload is
445
446 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
447
448
449 1. PAYVER: Defined by AT+PAYVER
450 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
451 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
452 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
453
454 [[image:image-20220602155039-4.png]]
455
456
457 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
458
459 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
460
461 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
462
463 DATA3=the rest of Valid value of RETURN10= **30**
464
465
466 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
467
468 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
469
470 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
471
472 * For US915 band, max 11 bytes for each uplink.
473
474 ~* For all other bands: max 51 bytes for each uplink.
475
476
477 Below are the uplink payloads:
478
479 [[image:1654157178836-407.png]]
480
481
482 === 3.3.5 Uplink on demand ===
483
484 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
485
486 Downlink control command:
487
488 **0x08 command**: Poll an uplink with current command set in RS485-LN.
489
490 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
491
492
493
494 === 3.3.6 Uplink on Interrupt ===
495
496 RS485-LN support external Interrupt uplink since hardware v1.2 release.
497
498 [[image:1654157342174-798.png]]
499
500 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
501
502
503 == 3.4 Uplink Payload ==
504
505
506 [[image:image-20220606110929-1.png]]
507
508 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
509
510
511 == 3.5 Configure RS485-BL via AT or Downlink ==
512
513 (((
514 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
515 )))
516
517 (((
518 There are two kinds of Commands:
519 )))
520
521 * (((
522 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
523 )))
524
525 * (((
526 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
527 )))
528
529 (((
530
531 )))
532
533
534 === 3.5.1 Common Commands ===
535
536 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
537
538
539 === 3.5.2 Sensor related commands ===
540
541 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
542
543 [[image:image-20220602163333-5.png||height="263" width="1160"]]
544
545 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
546
547
548 === 3.5.3 Sensor related commands ===
549
550
551
552
553 ==== **RS485 Debug Command** ====
554
555 (((
556 This command is used to configure the RS485 devices; they won’t be used during sampling.
557 )))
558
559 * (((
560 **AT Command**
561 )))
562
563 (% class="box infomessage" %)
564 (((
565 (((
566 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
567 )))
568 )))
569
570 (((
571 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
572 )))
573
574 * (((
575 **Downlink Payload**
576 )))
577
578 (((
579 Format: A8 MM NN XX XX XX XX YY
580 )))
581
582 (((
583 Where:
584 )))
585
586 * (((
587 MM: 1: add CRC-16/MODBUS ; 0: no CRC
588 )))
589 * (((
590 NN: The length of RS485 command
591 )))
592 * (((
593 XX XX XX XX: RS485 command total NN bytes
594 )))
595 * (((
596 (((
597 YY: How many bytes will be uplink from the return of this RS485 command,
598 )))
599
600 * (((
601 if YY=0, RS485-LN will execute the downlink command without uplink;
602 )))
603 * (((
604 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
605 )))
606 * (((
607 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
608 )))
609 )))
610
611 (((
612 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
613 )))
614
615 (((
616 To connect a Modbus Alarm with below commands.
617 )))
618
619 * (((
620 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
621 )))
622
623 * (((
624 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
625 )))
626
627 (((
628 So if user want to use downlink command to control to RS485 Alarm, he can use:
629 )))
630
631 (((
632 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
633 )))
634
635 (((
636 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
637 )))
638
639 (((
640 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
641 )))
642
643 (((
644
645 )))
646
647 (((
648 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
649 )))
650
651 (((
652 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
653 )))
654
655 (((
656
657 )))
658
659 (((
660 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
661 )))
662
663 (((
664 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
665 )))
666
667 (((
668 [[image:1654159460680-153.png]]
669 )))
670
671
672
673
674 ==== **Set Payload version** ====
675
676 (((
677 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
678 )))
679
680 * (((
681 **AT Command:**
682 )))
683
684 (% class="box infomessage" %)
685 (((
686 (((
687 **AT+PAYVER: Set PAYVER field = 1**
688 )))
689 )))
690
691 * (((
692 **Downlink Payload:**
693 )))
694
695 (((
696 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
697 )))
698
699 (((
700 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
701 )))
702
703
704
705
706 ==== **Set RS485 Sampling Commands** ====
707
708 (((
709 AT+COMMANDx or AT+DATACUTx
710 )))
711
712 (((
713 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
714 )))
715
716 (((
717
718 )))
719
720 * (((
721 **AT Command:**
722 )))
723
724 (% class="box infomessage" %)
725 (((
726 (((
727 **AT+COMMANDx: Configure RS485 read command to sensor.**
728 )))
729 )))
730
731 (% class="box infomessage" %)
732 (((
733 (((
734 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
735 )))
736 )))
737
738 (((
739
740 )))
741
742 * (((
743 **Downlink Payload:**
744 )))
745
746 (((
747 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
748 )))
749
750 (((
751 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
752 )))
753
754 (((
755 Format: AF MM NN LL XX XX XX XX YY
756 )))
757
758 (((
759 Where:
760 )))
761
762 * (((
763 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
764 )))
765 * (((
766 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
767 )))
768 * (((
769 LL:  The length of AT+COMMAND or AT+DATACUT command
770 )))
771 * (((
772 XX XX XX XX: AT+COMMAND or AT+DATACUT command
773 )))
774 * (((
775 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
776 )))
777
778 (((
779 **Example:**
780 )))
781
782 (((
783 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
784 )))
785
786 (((
787 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
788 )))
789
790 (((
791 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
792 )))
793
794
795
796
797 ==== **Fast command to handle MODBUS device** ====
798
799 (((
800 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
801 )))
802
803 (((
804 This command is valid since v1.3 firmware version
805 )))
806
807 (((
808 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
809 )))
810
811 (((
812
813 )))
814
815 (((
816 **Example:**
817 )))
818
819 * (((
820 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
821 )))
822 * (((
823 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
824 )))
825 * (((
826 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
827 )))
828
829 [[image:image-20220602165351-6.png]]
830
831 [[image:image-20220602165351-7.png]]
832
833
834
835
836 ==== **RS485 command timeout** ====
837
838 (((
839 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
840 )))
841
842 (((
843 Default value: 0, range:  0 ~~ 65 seconds
844 )))
845
846 * (((
847 **AT Command:**
848 )))
849
850 (% class="box infomessage" %)
851 (((
852 (((
853 **AT+CMDDLaa=hex(bb cc)*1000**
854 )))
855 )))
856
857 (((
858 **Example:**
859 )))
860
861 (((
862 **AT+CMDDL1=1000** to send the open time to 1000ms
863 )))
864
865 (((
866
867 )))
868
869 * (((
870 **Downlink Payload:**
871 )))
872
873 (((
874 **0x AA aa bb cc**
875 )))
876
877 (((
878 Same as: AT+CMDDLaa=hex(bb cc)*1000
879 )))
880
881 (((
882 **Example:**
883 )))
884
885 (((
886 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
887 )))
888
889
890
891
892 ==== **Uplink payload mode** ====
893
894 (((
895 Define to use one uplink or multiple uplinks for the sampling.
896 )))
897
898 (((
899 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
900 )))
901
902 * (((
903 **AT Command:**
904 )))
905
906 (% class="box infomessage" %)
907 (((
908 (((
909 **AT+DATAUP=0**
910 )))
911 )))
912
913 (% class="box infomessage" %)
914 (((
915 (((
916 **AT+DATAUP=1**
917 )))
918 )))
919
920 (((
921
922 )))
923
924 * (((
925 **Downlink Payload:**
926 )))
927
928 (((
929 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
930 )))
931
932 (((
933 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
934 )))
935
936
937
938
939 ==== **Manually trigger an Uplink** ====
940
941 (((
942 Ask device to send an uplink immediately.
943 )))
944
945 * (((
946 **AT Command:**
947 )))
948
949 (((
950 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
951 )))
952
953 (((
954
955 )))
956
957 * (((
958 **Downlink Payload:**
959 )))
960
961 (((
962 **0x08 FF**, RS485-LN will immediately send an uplink.
963 )))
964
965
966
967
968 ==== **Clear RS485 Command** ====
969
970 (((
971 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
972 )))
973
974 * (((
975 **AT Command:**
976 )))
977
978 (((
979 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
980 )))
981
982 (((
983 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
984 )))
985
986 (((
987 Example screen shot after clear all RS485 commands. 
988 )))
989
990 (((
991
992 )))
993
994 (((
995 The uplink screen shot is:
996 )))
997
998 [[image:1654160691922-496.png]]
999
1000
1001 * (((
1002 **Downlink Payload:**
1003 )))
1004
1005 (((
1006 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1007 )))
1008
1009
1010
1011
1012 ==== **Set Serial Communication Parameters** ====
1013
1014 (((
1015 Set the Rs485 serial communication parameters:
1016 )))
1017
1018 * (((
1019 **AT Command:**
1020 )))
1021
1022 (((
1023 Set Baud Rate:
1024 )))
1025
1026 (% class="box infomessage" %)
1027 (((
1028 (((
1029 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1030 )))
1031 )))
1032
1033 (((
1034 Set UART Parity
1035 )))
1036
1037 (% class="box infomessage" %)
1038 (((
1039 (((
1040 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1041 )))
1042 )))
1043
1044 (((
1045 Set STOPBIT
1046 )))
1047
1048 (% class="box infomessage" %)
1049 (((
1050 (((
1051 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1052 )))
1053 )))
1054
1055 (((
1056
1057 )))
1058
1059 * (((
1060 **Downlink Payload:**
1061 )))
1062
1063 (((
1064 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1065 )))
1066
1067 (((
1068 **Example:**
1069 )))
1070
1071 * (((
1072 A7 01 00 60   same as AT+BAUDR=9600
1073 )))
1074 * (((
1075 A7 01 04 80  same as AT+BAUDR=115200
1076 )))
1077
1078 (((
1079 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1080 )))
1081
1082 (((
1083 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1084 )))
1085
1086
1087
1088
1089 == 3.6 Listening mode for RS485 network ==
1090
1091 (((
1092 This feature support since firmware v1.4
1093 )))
1094
1095 (((
1096 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1097 )))
1098
1099 [[image:image-20220602171200-8.png||height="567" width="1007"]]
1100
1101 (((
1102 To enable the listening mode, use can run the command AT+RXMODE.
1103 )))
1104
1105 (((
1106
1107 )))
1108
1109 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
1110 |=(% style="width: 161px;" %)(((
1111 **Command example:**
1112 )))|=(% style="width: 337px;" %)(((
1113 **Function**
1114 )))
1115 |(% style="width:161px" %)(((
1116 AT+RXMODE=1,10
1117 )))|(% style="width:337px" %)(((
1118 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1119 )))
1120 |(% style="width:161px" %)(((
1121 AT+RXMODE=2,500
1122 )))|(% style="width:337px" %)(((
1123 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1124 )))
1125 |(% style="width:161px" %)(((
1126 AT+RXMODE=0,0
1127 )))|(% style="width:337px" %)(((
1128 Disable listening mode. This is the default settings.
1129 )))
1130 |(% style="width:161px" %)(((
1131
1132 )))|(% style="width:337px" %)(((
1133 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1134 )))
1135
1136 (((
1137 **Downlink Command:**
1138 )))
1139
1140 (((
1141 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
1142 )))
1143
1144 (((
1145
1146 )))
1147
1148 (((
1149 **Example**:
1150 )))
1151
1152 (((
1153 The RS485-LN is set to AT+RXMODE=2,1000
1154 )))
1155
1156 (((
1157 There is a two Modbus commands in the RS485 network as below:
1158 )))
1159
1160 (((
1161 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
1162 )))
1163
1164 (((
1165 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1166 )))
1167
1168 (((
1169 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1170 )))
1171
1172 (((
1173 [[image:image-20220602171200-9.png]]
1174 )))
1175
1176 (((
1177
1178 )))
1179
1180 (((
1181 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
1182 )))
1183
1184
1185 == 3.7 Buttons ==
1186
1187
1188 (% border="1" cellspacing="10" style="background-color:#f7faff; width:400px" %)
1189 |=(% style="width: 50px;" %)**Button**|=(% style="width: 350px;" %)**Feature**
1190 |(% style="width:50px" %)**ACT**|(% style="width:350px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1191 |(% style="width:50px" %)**RST**|(% style="width:350px" %)Reboot RS485
1192 |(% style="width:50px" %)**PRO**|(% style="width:350px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
1193
1194 == 3.8 LEDs ==
1195
1196
1197 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1198 |=(% style="width: 50px;" %)**LEDs**|=(% style="width: 380px;" %)**Feature**
1199 |**PWR**|Always on if there is power
1200 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
1201
1202 = 4. Case Study =
1203
1204 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1205
1206
1207 = 5. Use AT Command =
1208
1209 == 5.1 Access AT Command ==
1210
1211 (((
1212 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1213 )))
1214
1215 [[image:1654162355560-817.png]]
1216
1217
1218 (((
1219 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1220 )))
1221
1222 [[image:1654162368066-342.png]]
1223
1224
1225 (((
1226 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1227 )))
1228
1229
1230
1231 == 5.2 Common AT Command Sequence ==
1232
1233 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1234
1235 If device has not joined network yet:
1236
1237 (% class="box infomessage" %)
1238 (((
1239 **AT+FDR**
1240 )))
1241
1242 (% class="box infomessage" %)
1243 (((
1244 **AT+NJM=0**
1245 )))
1246
1247 (% class="box infomessage" %)
1248 (((
1249 **ATZ**
1250 )))
1251
1252
1253 If device already joined network:
1254
1255 (% class="box infomessage" %)
1256 (((
1257 **AT+NJM=0**
1258 )))
1259
1260 (% class="box infomessage" %)
1261 (((
1262 **ATZ**
1263 )))
1264
1265
1266 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1267
1268
1269 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1270
1271 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1272
1273 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1274
1275 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
1276
1277 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1278
1279 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1280
1281 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1282
1283 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1284
1285 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1286
1287 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1288
1289
1290 (% style="color:red" %)**Note:**
1291
1292 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1293 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1294 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1295 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1296
1297 [[image:1654162478620-421.png]]
1298
1299
1300 = 6. FAQ =
1301
1302 == 6.1 How to upgrade the image? ==
1303
1304 (((
1305 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
1306 )))
1307
1308 * (((
1309 Support new features
1310 )))
1311 * (((
1312 For bug fix
1313 )))
1314 * (((
1315 Change LoRaWAN bands.
1316 )))
1317
1318 (((
1319 Below shows the hardware connection for how to upload an image to RS485-LN:
1320 )))
1321
1322 [[image:1654162535040-878.png]]
1323
1324 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1325
1326 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1327
1328 **Step3: **Open flashloader; choose the correct COM port to update.
1329
1330 (((
1331 (((
1332 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1333 )))
1334 )))
1335
1336
1337 [[image:image-20220602175818-12.png]]
1338
1339
1340 [[image:image-20220602175848-13.png]]
1341
1342
1343 [[image:image-20220602175912-14.png]]
1344
1345
1346 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1347
1348 [[image:image-20220602175638-10.png]]
1349
1350
1351 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1352
1353 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1354
1355
1356 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1357
1358 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1359
1360
1361 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1362
1363 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1364
1365 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1366
1367
1368 = 7. Trouble Shooting =
1369
1370 == 7.1 Downlink doesn’t work, how to solve it? ==
1371
1372 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1373
1374
1375 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1376
1377 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1378
1379
1380 = 8. Order Info =
1381
1382 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1383
1384 (% style="color:blue" %)**XXX:**
1385
1386 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1387 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1388 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1389 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1390 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1391 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1392 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1393 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1394 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1395 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1396
1397 = 9.Packing Info =
1398
1399
1400 **Package Includes**:
1401
1402 * RS485-LN x 1
1403 * Stick Antenna for LoRa RF part x 1
1404 * Program cable x 1
1405
1406 **Dimension and weight**:
1407
1408 * Device Size: 13.5 x 7 x 3 cm
1409 * Device Weight: 105g
1410 * Package Size / pcs : 14.5 x 8 x 5 cm
1411 * Weight / pcs : 170g
1412
1413 = 10. FCC Caution for RS485LN-US915 =
1414
1415 (((
1416 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1417 )))
1418
1419 (((
1420 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1421 )))
1422
1423 (((
1424
1425 )))
1426
1427 (((
1428 **IMPORTANT NOTE:**
1429 )))
1430
1431 (((
1432 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1433 )))
1434
1435 (((
1436 —Reorient or relocate the receiving antenna.
1437 )))
1438
1439 (((
1440 —Increase the separation between the equipment and receiver.
1441 )))
1442
1443 (((
1444 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1445 )))
1446
1447 (((
1448 —Consult the dealer or an experienced radio/TV technician for help.
1449 )))
1450
1451 (((
1452
1453 )))
1454
1455 (((
1456 **FCC Radiation Exposure Statement:**
1457 )))
1458
1459 (((
1460 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1461 )))
1462
1463
1464 = 11. Support =
1465
1466 * (((
1467 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1468 )))
1469 * (((
1470 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1471 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0