Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21 = 1.Introduction =
22
23 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
24
25 (((
26 (((
27 (((
28 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
29 )))
30 )))
31
32 (((
33 (((
34 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
35 )))
36 )))
37
38 (((
39 (((
40 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42 )))
43
44 (((
45 (((
46 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
47 )))
48
49 (((
50 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
51 )))
52 )))
53 )))
54
55 [[image:1653267211009-519.png||height="419" width="724"]]
56
57
58 == 1.2 Specifications ==
59
60
61 **Hardware System:**
62
63 * STM32L072CZT6 MCU
64 * SX1276/78 Wireless Chip 
65 * Power Consumption (exclude RS485 device):
66 ** Idle: 32mA@12v
67 ** 20dB Transmit: 65mA@12v
68
69 **Interface for Model:**
70
71 * RS485
72 * Power Input 7~~ 24V DC. 
73
74 **LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C protocol (default Class C)
98 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
99 * AT Commands to change parameters
100 * Remote configure parameters via LoRa Downlink
101 * Firmware upgradable via program port
102 * Support multiply RS485 devices by flexible rules
103 * Support Modbus protocol
104 * Support Interrupt uplink (Since hardware version v1.2)
105
106 == 1.4 Applications ==
107
108 * Smart Buildings & Home Automation
109 * Logistics and Supply Chain Management
110 * Smart Metering
111 * Smart Agriculture
112 * Smart Cities
113 * Smart Factory
114
115 == 1.5 Firmware Change log ==
116
117 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
118
119
120 == 1.6 Hardware Change log ==
121
122 (((
123 (((
124 (((
125 v1.2: Add External Interrupt Pin.
126 )))
127
128 (((
129 v1.0: Release
130 )))
131
132
133 )))
134 )))
135
136 = 2. Power ON Device =
137
138 (((
139 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
140
141 * Power Source VIN to RS485-LN VIN+
142 * Power Source GND to RS485-LN VIN-
143
144 (((
145 Once there is power, the RS485-LN will be on.
146 )))
147
148 [[image:1653268091319-405.png]]
149
150
151 )))
152
153 = 3. Operation Mode =
154
155 == 3.1 How it works? ==
156
157 (((
158 (((
159 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
160 )))
161
162
163 )))
164
165 == 3.2 Example to join LoRaWAN network ==
166
167 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
168
169 [[image:1653268155545-638.png||height="334" width="724"]]
170
171
172 (((
173 (((
174 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
175 )))
176
177 (((
178 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
179 )))
180
181 [[image:1653268227651-549.png||height="592" width="720"]]
182
183 (((
184 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
185 )))
186
187 (((
188 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
189 )))
190
191 (((
192 Each RS485-LN is shipped with a sticker with unique device EUI:
193 )))
194 )))
195
196 [[image:1652953462722-299.png]]
197
198 (((
199 (((
200 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
201 )))
202
203 (((
204 Add APP EUI in the application.
205 )))
206 )))
207
208 [[image:image-20220519174512-1.png]]
209
210 [[image:image-20220519174512-2.png||height="323" width="720"]]
211
212 [[image:image-20220519174512-3.png||height="556" width="724"]]
213
214 [[image:image-20220519174512-4.png]]
215
216 You can also choose to create the device manually.
217
218 [[image:1652953542269-423.png||height="710" width="723"]]
219
220 Add APP KEY and DEV EUI
221
222 [[image:1652953553383-907.png||height="514" width="724"]]
223
224
225 (((
226 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
227 )))
228
229 [[image:1652953568895-172.png||height="232" width="724"]]
230
231
232 == 3.3 Configure Commands to read data ==
233
234 (((
235 (((
236 (((
237 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
238 )))
239 )))
240
241 (((
242 (((
243 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
244 )))
245
246
247 )))
248 )))
249
250 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
251
252 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
253
254 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
255 |=(% style="width: 110px;" %)(((
256 **AT Commands**
257 )))|=(% style="width: 190px;" %)(((
258 **Description**
259 )))|=(% style="width: 190px;" %)(((
260 **Example**
261 )))
262 |(% style="width:110px" %)(((
263 AT+BAUDR
264 )))|(% style="width:190px" %)(((
265 Set the baud rate (for RS485 connection). Default Value is: 9600.
266 )))|(% style="width:190px" %)(((
267 (((
268 AT+BAUDR=9600
269 )))
270
271 (((
272 Options: (1200,2400,4800,14400,19200,115200)
273 )))
274 )))
275 |(% style="width:110px" %)(((
276 AT+PARITY
277 )))|(% style="width:190px" %)(((
278 Set UART parity (for RS485 connection)
279 )))|(% style="width:190px" %)(((
280 (((
281 AT+PARITY=0
282 )))
283
284 (((
285 Option: 0: no parity, 1: odd parity, 2: even parity
286 )))
287 )))
288 |(% style="width:110px" %)(((
289 AT+STOPBIT
290 )))|(% style="width:190px" %)(((
291 (((
292 Set serial stopbit (for RS485 connection)
293 )))
294
295 (((
296
297 )))
298 )))|(% style="width:190px" %)(((
299 (((
300 AT+STOPBIT=0 for 1bit
301 )))
302
303 (((
304 AT+STOPBIT=1 for 1.5 bit
305 )))
306
307 (((
308 AT+STOPBIT=2 for 2 bits
309 )))
310 )))
311
312 === 3.3.2 Configure sensors ===
313
314 (((
315 (((
316 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
317 )))
318 )))
319
320 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
321 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
322 |AT+CFGDEV|(% style="width:110px" %)(((
323 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
324
325 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
326
327 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
328 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
329
330 === 3.3.3 Configure read commands for each sampling ===
331
332 (((
333 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
334
335 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
336
337 This section describes how to achieve above goals.
338
339 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
340
341
342 **Each RS485 commands include two parts:**
343
344 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
345
346 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
347
348 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
349
350
351 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
352
353
354 Below are examples for the how above AT Commands works.
355
356
357 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
358
359 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
360 |(% style="width:496px" %)(((
361 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
362
363 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
364
365 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
366 )))
367
368 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
369
370 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
371
372
373 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
374
375 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
376 |(% style="width:510px" %)(((
377 **AT+DATACUTx=a,b,c**
378
379 * **a: length for the return of AT+COMMAND**
380 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
381 * **c: define the position for valid value.  **
382 )))
383
384 **Examples:**
385
386 * Grab bytes:
387
388 [[image:image-20220602153621-1.png]]
389
390
391 * Grab a section.
392
393 [[image:image-20220602153621-2.png]]
394
395
396 * Grab different sections.
397
398 [[image:image-20220602153621-3.png]]
399
400
401 )))
402
403 === 3.3.4 Compose the uplink payload ===
404
405 (((
406 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
407
408
409 )))
410
411 (((
412 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
413
414
415 )))
416
417 (((
418 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
419 )))
420
421 (((
422 Final Payload is
423 )))
424
425 (((
426 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
427 )))
428
429 (((
430 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
431 )))
432
433 [[image:1653269759169-150.png||height="513" width="716"]]
434
435
436 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
437
438
439 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
440
441 Final Payload is
442
443 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
444
445
446 1. PAYVER: Defined by AT+PAYVER
447 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
448 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
449 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
450
451 [[image:image-20220602155039-4.png]]
452
453
454 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
455
456 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
457
458 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
459
460 DATA3=the rest of Valid value of RETURN10= **30**
461
462
463 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
464
465 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
466
467 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
468
469 * For US915 band, max 11 bytes for each uplink.
470
471 ~* For all other bands: max 51 bytes for each uplink.
472
473
474 Below are the uplink payloads:
475
476 [[image:1654157178836-407.png]]
477
478
479 === 3.3.5 Uplink on demand ===
480
481 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
482
483 Downlink control command:
484
485 **0x08 command**: Poll an uplink with current command set in RS485-LN.
486
487 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
488
489
490
491 === 3.3.6 Uplink on Interrupt ===
492
493 RS485-LN support external Interrupt uplink since hardware v1.2 release.
494
495 [[image:1654157342174-798.png]]
496
497 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
498
499
500 == 3.4 Uplink Payload ==
501
502
503 [[image:image-20220606110929-1.png]]
504
505 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
506
507
508 == 3.5 Configure RS485-BL via AT or Downlink ==
509
510 (((
511 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
512 )))
513
514 (((
515 There are two kinds of Commands:
516 )))
517
518 * (((
519 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
520 )))
521
522 * (((
523 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
524 )))
525
526 (((
527
528 )))
529
530
531 === 3.5.1 Common Commands ===
532
533 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
534
535
536 === 3.5.2 Sensor related commands ===
537
538 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
539
540 [[image:image-20220602163333-5.png||height="263" width="1160"]]
541
542 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
543
544
545 === 3.5.3 Sensor related commands ===
546
547
548
549
550 ==== **RS485 Debug Command** ====
551
552 (((
553 This command is used to configure the RS485 devices; they won’t be used during sampling.
554 )))
555
556 * (((
557 **AT Command**
558 )))
559
560 (% class="box infomessage" %)
561 (((
562 (((
563 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
564 )))
565 )))
566
567 (((
568 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
569 )))
570
571 * (((
572 **Downlink Payload**
573 )))
574
575 (((
576 Format: A8 MM NN XX XX XX XX YY
577 )))
578
579 (((
580 Where:
581 )))
582
583 * (((
584 MM: 1: add CRC-16/MODBUS ; 0: no CRC
585 )))
586 * (((
587 NN: The length of RS485 command
588 )))
589 * (((
590 XX XX XX XX: RS485 command total NN bytes
591 )))
592 * (((
593 (((
594 YY: How many bytes will be uplink from the return of this RS485 command,
595 )))
596
597 * (((
598 if YY=0, RS485-LN will execute the downlink command without uplink;
599 )))
600 * (((
601 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
602 )))
603 * (((
604 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
605 )))
606 )))
607
608 (((
609 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
610 )))
611
612 (((
613 To connect a Modbus Alarm with below commands.
614 )))
615
616 * (((
617 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
618 )))
619
620 * (((
621 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
622 )))
623
624 (((
625 So if user want to use downlink command to control to RS485 Alarm, he can use:
626 )))
627
628 (((
629 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
630 )))
631
632 (((
633 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
634 )))
635
636 (((
637 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
638 )))
639
640 (((
641
642 )))
643
644 (((
645 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
646 )))
647
648 (((
649 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
650 )))
651
652 (((
653
654 )))
655
656 (((
657 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
658 )))
659
660 (((
661 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
662 )))
663
664 (((
665 [[image:1654159460680-153.png]]
666 )))
667
668
669
670
671 ==== **Set Payload version** ====
672
673 (((
674 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
675 )))
676
677 * (((
678 **AT Command:**
679 )))
680
681 (% class="box infomessage" %)
682 (((
683 (((
684 **AT+PAYVER: Set PAYVER field = 1**
685 )))
686 )))
687
688 * (((
689 **Downlink Payload:**
690 )))
691
692 (((
693 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
694 )))
695
696 (((
697 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
698 )))
699
700
701
702
703 ==== **Set RS485 Sampling Commands** ====
704
705 (((
706 AT+COMMANDx or AT+DATACUTx
707 )))
708
709 (((
710 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
711 )))
712
713 (((
714
715 )))
716
717 * (((
718 **AT Command:**
719 )))
720
721 (% class="box infomessage" %)
722 (((
723 (((
724 **AT+COMMANDx: Configure RS485 read command to sensor.**
725 )))
726 )))
727
728 (% class="box infomessage" %)
729 (((
730 (((
731 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
732 )))
733 )))
734
735 (((
736
737 )))
738
739 * (((
740 **Downlink Payload:**
741 )))
742
743 (((
744 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
745 )))
746
747 (((
748 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
749 )))
750
751 (((
752 Format: AF MM NN LL XX XX XX XX YY
753 )))
754
755 (((
756 Where:
757 )))
758
759 * (((
760 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
761 )))
762 * (((
763 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
764 )))
765 * (((
766 LL:  The length of AT+COMMAND or AT+DATACUT command
767 )))
768 * (((
769 XX XX XX XX: AT+COMMAND or AT+DATACUT command
770 )))
771 * (((
772 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
773 )))
774
775 (((
776 **Example:**
777 )))
778
779 (((
780 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
781 )))
782
783 (((
784 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
785 )))
786
787 (((
788 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
789 )))
790
791
792
793
794 ==== **Fast command to handle MODBUS device** ====
795
796 (((
797 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
798 )))
799
800 (((
801 This command is valid since v1.3 firmware version
802 )))
803
804 (((
805 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
806 )))
807
808 (((
809
810 )))
811
812 (((
813 **Example:**
814 )))
815
816 * (((
817 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
818 )))
819 * (((
820 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
821 )))
822 * (((
823 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
824 )))
825
826 [[image:image-20220602165351-6.png]]
827
828 [[image:image-20220602165351-7.png]]
829
830
831
832
833 ==== **RS485 command timeout** ====
834
835 (((
836 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
837 )))
838
839 (((
840 Default value: 0, range:  0 ~~ 65 seconds
841 )))
842
843 * (((
844 **AT Command:**
845 )))
846
847 (% class="box infomessage" %)
848 (((
849 (((
850 **AT+CMDDLaa=hex(bb cc)*1000**
851 )))
852 )))
853
854 (((
855 **Example:**
856 )))
857
858 (((
859 **AT+CMDDL1=1000** to send the open time to 1000ms
860 )))
861
862 (((
863
864 )))
865
866 * (((
867 **Downlink Payload:**
868 )))
869
870 (((
871 **0x AA aa bb cc**
872 )))
873
874 (((
875 Same as: AT+CMDDLaa=hex(bb cc)*1000
876 )))
877
878 (((
879 **Example:**
880 )))
881
882 (((
883 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
884 )))
885
886
887
888
889 ==== **Uplink payload mode** ====
890
891 (((
892 Define to use one uplink or multiple uplinks for the sampling.
893 )))
894
895 (((
896 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
897 )))
898
899 * (((
900 **AT Command:**
901 )))
902
903 (% class="box infomessage" %)
904 (((
905 (((
906 **AT+DATAUP=0**
907 )))
908 )))
909
910 (% class="box infomessage" %)
911 (((
912 (((
913 **AT+DATAUP=1**
914 )))
915 )))
916
917 (((
918
919 )))
920
921 * (((
922 **Downlink Payload:**
923 )))
924
925 (((
926 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
927 )))
928
929 (((
930 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
931 )))
932
933
934
935
936 ==== **Manually trigger an Uplink** ====
937
938 (((
939 Ask device to send an uplink immediately.
940 )))
941
942 * (((
943 **AT Command:**
944 )))
945
946 (((
947 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
948 )))
949
950 (((
951
952 )))
953
954 * (((
955 **Downlink Payload:**
956 )))
957
958 (((
959 **0x08 FF**, RS485-LN will immediately send an uplink.
960 )))
961
962
963
964
965 ==== **Clear RS485 Command** ====
966
967 (((
968 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
969 )))
970
971 * (((
972 **AT Command:**
973 )))
974
975 (((
976 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
977 )))
978
979 (((
980 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
981 )))
982
983 (((
984 Example screen shot after clear all RS485 commands. 
985 )))
986
987 (((
988
989 )))
990
991 (((
992 The uplink screen shot is:
993 )))
994
995 [[image:1654160691922-496.png]]
996
997
998 * (((
999 **Downlink Payload:**
1000 )))
1001
1002 (((
1003 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1004 )))
1005
1006
1007
1008
1009 ==== **Set Serial Communication Parameters** ====
1010
1011 (((
1012 Set the Rs485 serial communication parameters:
1013 )))
1014
1015 * (((
1016 **AT Command:**
1017 )))
1018
1019 (((
1020 Set Baud Rate:
1021 )))
1022
1023 (% class="box infomessage" %)
1024 (((
1025 (((
1026 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1027 )))
1028 )))
1029
1030 (((
1031 Set UART Parity
1032 )))
1033
1034 (% class="box infomessage" %)
1035 (((
1036 (((
1037 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1038 )))
1039 )))
1040
1041 (((
1042 Set STOPBIT
1043 )))
1044
1045 (% class="box infomessage" %)
1046 (((
1047 (((
1048 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1049 )))
1050 )))
1051
1052 (((
1053
1054 )))
1055
1056 * (((
1057 **Downlink Payload:**
1058 )))
1059
1060 (((
1061 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1062 )))
1063
1064 (((
1065 **Example:**
1066 )))
1067
1068 * (((
1069 A7 01 00 60   same as AT+BAUDR=9600
1070 )))
1071 * (((
1072 A7 01 04 80  same as AT+BAUDR=115200
1073 )))
1074
1075 (((
1076 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1077 )))
1078
1079 (((
1080 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1081 )))
1082
1083
1084
1085
1086 == 3.6 Listening mode for RS485 network ==
1087
1088 (((
1089 This feature support since firmware v1.4
1090 )))
1091
1092 (((
1093 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1094 )))
1095
1096 [[image:image-20220602171200-8.png||height="567" width="1007"]]
1097
1098 (((
1099 To enable the listening mode, use can run the command AT+RXMODE.
1100 )))
1101
1102 (((
1103
1104 )))
1105
1106 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
1107 |=(% style="width: 161px;" %)(((
1108 **Command example:**
1109 )))|=(% style="width: 337px;" %)(((
1110 **Function**
1111 )))
1112 |(% style="width:161px" %)(((
1113 AT+RXMODE=1,10
1114 )))|(% style="width:337px" %)(((
1115 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1116 )))
1117 |(% style="width:161px" %)(((
1118 AT+RXMODE=2,500
1119 )))|(% style="width:337px" %)(((
1120 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1121 )))
1122 |(% style="width:161px" %)(((
1123 AT+RXMODE=0,0
1124 )))|(% style="width:337px" %)(((
1125 Disable listening mode. This is the default settings.
1126 )))
1127 |(% style="width:161px" %)(((
1128
1129 )))|(% style="width:337px" %)(((
1130 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1131 )))
1132
1133 (((
1134 **Downlink Command:**
1135 )))
1136
1137 (((
1138 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
1139 )))
1140
1141 (((
1142
1143 )))
1144
1145 (((
1146 **Example**:
1147 )))
1148
1149 (((
1150 The RS485-LN is set to AT+RXMODE=2,1000
1151 )))
1152
1153 (((
1154 There is a two Modbus commands in the RS485 network as below:
1155 )))
1156
1157 (((
1158 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
1159 )))
1160
1161 (((
1162 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1163 )))
1164
1165 (((
1166 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1167 )))
1168
1169 (((
1170 [[image:image-20220602171200-9.png]]
1171 )))
1172
1173 (((
1174
1175 )))
1176
1177 (((
1178 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
1179 )))
1180
1181
1182 == 3.7 Buttons ==
1183
1184
1185 (% border="1" cellspacing="10" style="background-color:#f7faff; width:400px" %)
1186 |=(% style="width: 50px;" %)**Button**|=(% style="width: 350px;" %)**Feature**
1187 |(% style="width:50px" %)**ACT**|(% style="width:350px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1188 |(% style="width:50px" %)**RST**|(% style="width:350px" %)Reboot RS485
1189 |(% style="width:50px" %)**PRO**|(% style="width:350px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
1190
1191 == 3.8 LEDs ==
1192
1193
1194 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
1195 |=(% style="width: 50px;" %)**LEDs**|=(% style="width: 380px;" %)**Feature**
1196 |**PWR**|Always on if there is power
1197 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
1198
1199
1200 = 4. Case Study =
1201
1202 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1203
1204
1205 = 5. Use AT Command =
1206
1207 == 5.1 Access AT Command ==
1208
1209 (((
1210 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1211 )))
1212
1213 [[image:1654162355560-817.png]]
1214
1215
1216 (((
1217 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1218 )))
1219
1220 [[image:1654162368066-342.png]]
1221
1222
1223 (((
1224 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1225 )))
1226
1227
1228
1229 == 5.2 Common AT Command Sequence ==
1230
1231 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1232
1233 If device has not joined network yet:
1234
1235 (% class="box infomessage" %)
1236 (((
1237 **AT+FDR**
1238 )))
1239
1240 (% class="box infomessage" %)
1241 (((
1242 **AT+NJM=0**
1243 )))
1244
1245 (% class="box infomessage" %)
1246 (((
1247 **ATZ**
1248 )))
1249
1250
1251 If device already joined network:
1252
1253 (% class="box infomessage" %)
1254 (((
1255 **AT+NJM=0**
1256 )))
1257
1258 (% class="box infomessage" %)
1259 (((
1260 **ATZ**
1261 )))
1262
1263
1264 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1265
1266
1267 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1268
1269 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1270
1271 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1272
1273 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
1274
1275 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1276
1277 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1278
1279 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1280
1281 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1282
1283 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1284
1285 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1286
1287
1288 (% style="color:red" %)**Note:**
1289
1290 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1291 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1292 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1293 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1294
1295 [[image:1654162478620-421.png]]
1296
1297
1298 = 6. FAQ =
1299
1300 == 6.1 How to upgrade the image? ==
1301
1302 (((
1303 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
1304 )))
1305
1306 * (((
1307 Support new features
1308 )))
1309 * (((
1310 For bug fix
1311 )))
1312 * (((
1313 Change LoRaWAN bands.
1314 )))
1315
1316 (((
1317 Below shows the hardware connection for how to upload an image to RS485-LN:
1318 )))
1319
1320 [[image:1654162535040-878.png]]
1321
1322 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1323
1324 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1325
1326 **Step3: **Open flashloader; choose the correct COM port to update.
1327
1328 (((
1329 (((
1330 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1331 )))
1332 )))
1333
1334
1335 [[image:image-20220602175818-12.png]]
1336
1337
1338 [[image:image-20220602175848-13.png]]
1339
1340
1341 [[image:image-20220602175912-14.png]]
1342
1343
1344 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1345
1346 [[image:image-20220602175638-10.png]]
1347
1348
1349 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1350
1351 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1352
1353
1354 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1355
1356 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1357
1358
1359 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1360
1361 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1362
1363 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1364
1365
1366 = 7. Trouble Shooting =
1367
1368 == 7.1 Downlink doesn’t work, how to solve it? ==
1369
1370 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1371
1372
1373 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1374
1375 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1376
1377
1378 = 8. Order Info =
1379
1380 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1381
1382 (% style="color:blue" %)**XXX:**
1383
1384 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1385 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1386 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1387 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1388 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1389 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1390 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1391 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1392 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1393 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1394
1395 = 9.Packing Info =
1396
1397
1398 **Package Includes**:
1399
1400 * RS485-LN x 1
1401 * Stick Antenna for LoRa RF part x 1
1402 * Program cable x 1
1403
1404 **Dimension and weight**:
1405
1406 * Device Size: 13.5 x 7 x 3 cm
1407 * Device Weight: 105g
1408 * Package Size / pcs : 14.5 x 8 x 5 cm
1409 * Weight / pcs : 170g
1410
1411 = 10. FCC Caution for RS485LN-US915 =
1412
1413 (((
1414 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1415 )))
1416
1417 (((
1418 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1419 )))
1420
1421 (((
1422
1423 )))
1424
1425 (((
1426 **IMPORTANT NOTE:**
1427 )))
1428
1429 (((
1430 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1431 )))
1432
1433 (((
1434 —Reorient or relocate the receiving antenna.
1435 )))
1436
1437 (((
1438 —Increase the separation between the equipment and receiver.
1439 )))
1440
1441 (((
1442 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1443 )))
1444
1445 (((
1446 —Consult the dealer or an experienced radio/TV technician for help.
1447 )))
1448
1449 (((
1450
1451 )))
1452
1453 (((
1454 **FCC Radiation Exposure Statement:**
1455 )))
1456
1457 (((
1458 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1459 )))
1460
1461
1462 = 11. Support =
1463
1464 * (((
1465 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1466 )))
1467 * (((
1468 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1469 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0