Version 58.3 by Xiaoling on 2022/06/06 11:14

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21 = 1.Introduction =
22
23 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
24
25 (((
26 (((
27 (((
28 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
29 )))
30 )))
31
32 (((
33 (((
34 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
35 )))
36 )))
37
38 (((
39 (((
40 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42 )))
43
44 (((
45 (((
46 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
47 )))
48
49 (((
50 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
51 )))
52 )))
53 )))
54
55 [[image:1653267211009-519.png||height="419" width="724"]]
56
57
58 == 1.2 Specifications ==
59
60
61 **Hardware System:**
62
63 * STM32L072CZT6 MCU
64 * SX1276/78 Wireless Chip 
65 * Power Consumption (exclude RS485 device):
66 ** Idle: 32mA@12v
67 ** 20dB Transmit: 65mA@12v
68
69 **Interface for Model:**
70
71 * RS485
72 * Power Input 7~~ 24V DC. 
73
74 **LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C protocol (default Class C)
98 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
99 * AT Commands to change parameters
100 * Remote configure parameters via LoRa Downlink
101 * Firmware upgradable via program port
102 * Support multiply RS485 devices by flexible rules
103 * Support Modbus protocol
104 * Support Interrupt uplink (Since hardware version v1.2)
105
106
107 == 1.4 Applications ==
108
109 * Smart Buildings & Home Automation
110 * Logistics and Supply Chain Management
111 * Smart Metering
112 * Smart Agriculture
113 * Smart Cities
114 * Smart Factory
115
116
117 == 1.5 Firmware Change log ==
118
119 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
120
121
122 == 1.6 Hardware Change log ==
123
124 (((
125 (((
126 (((
127 v1.2: Add External Interrupt Pin.
128 )))
129
130 (((
131 v1.0: Release
132 )))
133
134
135 )))
136 )))
137
138 = 2. Power ON Device =
139
140 (((
141 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
142
143 * Power Source VIN to RS485-LN VIN+
144 * Power Source GND to RS485-LN VIN-
145
146 (((
147 Once there is power, the RS485-LN will be on.
148 )))
149
150 [[image:1653268091319-405.png]]
151
152
153 )))
154
155 = 3. Operation Mode =
156
157 == 3.1 How it works? ==
158
159 (((
160 (((
161 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
162 )))
163
164
165 )))
166
167 == 3.2 Example to join LoRaWAN network ==
168
169 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
170
171 [[image:1653268155545-638.png||height="334" width="724"]]
172
173
174 (((
175 (((
176 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
177 )))
178
179 (((
180 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
181 )))
182
183 [[image:1653268227651-549.png||height="592" width="720"]]
184
185 (((
186 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
187 )))
188
189 (((
190 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
191 )))
192
193 (((
194 Each RS485-LN is shipped with a sticker with unique device EUI:
195 )))
196 )))
197
198 [[image:1652953462722-299.png]]
199
200 (((
201 (((
202 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
203 )))
204
205 (((
206 Add APP EUI in the application.
207 )))
208 )))
209
210 [[image:image-20220519174512-1.png]]
211
212 [[image:image-20220519174512-2.png||height="323" width="720"]]
213
214 [[image:image-20220519174512-3.png||height="556" width="724"]]
215
216 [[image:image-20220519174512-4.png]]
217
218 You can also choose to create the device manually.
219
220 [[image:1652953542269-423.png||height="710" width="723"]]
221
222 Add APP KEY and DEV EUI
223
224 [[image:1652953553383-907.png||height="514" width="724"]]
225
226
227 (((
228 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
229 )))
230
231 [[image:1652953568895-172.png||height="232" width="724"]]
232
233
234 == 3.3 Configure Commands to read data ==
235
236 (((
237 (((
238 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
239 )))
240
241 (((
242 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
243
244
245 )))
246 )))
247
248 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
249
250 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
251
252 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
253 |=(% style="width: 110px;" %)(((
254 **AT Commands**
255 )))|=(% style="width: 190px;" %)(((
256 **Description**
257 )))|=(% style="width: 190px;" %)(((
258 **Example**
259 )))
260 |(% style="width:110px" %)(((
261 AT+BAUDR
262 )))|(% style="width:190px" %)(((
263 Set the baud rate (for RS485 connection). Default Value is: 9600.
264 )))|(% style="width:190px" %)(((
265 (((
266 AT+BAUDR=9600
267 )))
268
269 (((
270 Options: (1200,2400,4800,14400,19200,115200)
271 )))
272 )))
273 |(% style="width:110px" %)(((
274 AT+PARITY
275 )))|(% style="width:190px" %)(((
276 Set UART parity (for RS485 connection)
277 )))|(% style="width:190px" %)(((
278 (((
279 AT+PARITY=0
280 )))
281
282 (((
283 Option: 0: no parity, 1: odd parity, 2: even parity
284 )))
285 )))
286 |(% style="width:110px" %)(((
287 AT+STOPBIT
288 )))|(% style="width:190px" %)(((
289 (((
290 Set serial stopbit (for RS485 connection)
291 )))
292
293 (((
294
295 )))
296 )))|(% style="width:190px" %)(((
297 (((
298 AT+STOPBIT=0 for 1bit
299 )))
300
301 (((
302 AT+STOPBIT=1 for 1.5 bit
303 )))
304
305 (((
306 AT+STOPBIT=2 for 2 bits
307 )))
308 )))
309
310
311
312 === 3.3.2 Configure sensors ===
313
314 (((
315 (((
316 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
317 )))
318 )))
319
320 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
321 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
322 |AT+CFGDEV|(% style="width:110px" %)(((
323 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
324
325 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
326
327 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
328 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
329
330
331
332 === 3.3.3 Configure read commands for each sampling ===
333
334 (((
335 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
336
337 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
338
339 This section describes how to achieve above goals.
340
341 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
342
343
344 **Each RS485 commands include two parts:**
345
346 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
347
348 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
349
350 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
351
352
353 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
354
355
356 Below are examples for the how above AT Commands works.
357
358
359 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
360
361 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
362 |(% style="width:496px" %)(((
363 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
364
365 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
366
367 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
368 )))
369
370 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
371
372 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
373
374
375 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
376
377 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
378 |(% style="width:510px" %)(((
379 **AT+DATACUTx=a,b,c**
380
381 * **a: length for the return of AT+COMMAND**
382 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
383 * **c: define the position for valid value.  **
384 )))
385
386 **Examples:**
387
388 * Grab bytes:
389
390 [[image:image-20220602153621-1.png]]
391
392
393 * Grab a section.
394
395 [[image:image-20220602153621-2.png]]
396
397
398 * Grab different sections.
399
400 [[image:image-20220602153621-3.png]]
401
402
403 )))
404
405 === 3.3.4 Compose the uplink payload ===
406
407 (((
408 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
409
410
411 )))
412
413 (((
414 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
415
416
417 )))
418
419 (((
420 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
421 )))
422
423 (((
424 Final Payload is
425 )))
426
427 (((
428 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
429 )))
430
431 (((
432 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
433 )))
434
435 [[image:1653269759169-150.png||height="513" width="716"]]
436
437
438 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
439
440
441 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
442
443 Final Payload is
444
445 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
446
447
448 1. PAYVER: Defined by AT+PAYVER
449 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
450 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
451 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
452
453 [[image:image-20220602155039-4.png]]
454
455
456 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
457
458 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
459
460 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
461
462 DATA3=the rest of Valid value of RETURN10= **30**
463
464
465 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
466
467 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
468
469 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
470
471 * For US915 band, max 11 bytes for each uplink.
472
473 ~* For all other bands: max 51 bytes for each uplink.
474
475
476 Below are the uplink payloads:
477
478 [[image:1654157178836-407.png]]
479
480
481 === 3.3.5 Uplink on demand ===
482
483 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
484
485 Downlink control command:
486
487 **0x08 command**: Poll an uplink with current command set in RS485-LN.
488
489 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
490
491
492
493 === 3.3.6 Uplink on Interrupt ===
494
495 RS485-LN support external Interrupt uplink since hardware v1.2 release.
496
497 [[image:1654157342174-798.png]]
498
499 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
500
501
502 == 3.4 Uplink Payload ==
503
504
505 [[image:image-20220606110929-1.png]]
506
507 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
508
509
510 == 3.5 Configure RS485-BL via AT or Downlink ==
511
512 (((
513 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
514 )))
515
516 (((
517 There are two kinds of Commands:
518 )))
519
520 * (((
521 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
522 )))
523
524 * (((
525 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
526 )))
527
528 (((
529
530 )))
531
532
533 === 3.5.1 Common Commands ===
534
535 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
536
537
538 === 3.5.2 Sensor related commands ===
539
540 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
541
542 [[image:image-20220602163333-5.png||height="263" width="1160"]]
543
544 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
545
546
547 === 3.5.3 Sensor related commands ===
548
549
550
551 ==== **RS485 Debug Command** ====
552
553 This command is used to configure the RS485 devices; they won’t be used during sampling.
554
555 * **AT Command**
556
557 (% class="box infomessage" %)
558 (((
559 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
560 )))
561
562 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
563
564 * **Downlink Payload**
565
566 Format: A8 MM NN XX XX XX XX YY
567
568 Where:
569
570 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
571 * NN: The length of RS485 command
572 * XX XX XX XX: RS485 command total NN bytes
573 * YY: How many bytes will be uplink from the return of this RS485 command,
574 ** if YY=0, RS485-LN will execute the downlink command without uplink;
575 ** if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
576 ** if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
577
578 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
579
580 To connect a Modbus Alarm with below commands.
581
582 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
583
584 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
585
586 So if user want to use downlink command to control to RS485 Alarm, he can use:
587
588 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
589
590 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
591
592 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
593
594
595 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
596
597 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
598
599
600 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
601
602 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
603
604 [[image:1654159460680-153.png]]
605
606
607
608 ==== **Set Payload version** ====
609
610 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
611
612 * **AT Command:**
613
614 (% class="box infomessage" %)
615 (((
616 **AT+PAYVER: Set PAYVER field = 1**
617 )))
618
619 * **Downlink Payload:**
620
621 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
622
623 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
624
625
626
627 ==== **Set RS485 Sampling Commands** ====
628
629 AT+COMMANDx or AT+DATACUTx
630
631 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
632
633
634 * **AT Command:**
635
636 (% class="box infomessage" %)
637 (((
638 **AT+COMMANDx: Configure RS485 read command to sensor.**
639 )))
640
641 (% class="box infomessage" %)
642 (((
643 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
644 )))
645
646
647 * **Downlink Payload:**
648
649 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
650
651 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
652
653 Format: AF MM NN LL XX XX XX XX YY
654
655 Where:
656
657 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
658 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
659 * LL:  The length of AT+COMMAND or AT+DATACUT command
660 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
661 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
662
663 **Example:**
664
665 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
666
667 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
668
669 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
670
671
672
673 ==== **Fast command to handle MODBUS device** ====
674
675 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
676
677 This command is valid since v1.3 firmware version
678
679 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
680
681
682 **Example:**
683
684 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
685 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
686 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
687
688 [[image:image-20220602165351-6.png]]
689
690 [[image:image-20220602165351-7.png]]
691
692
693
694 ==== **RS485 command timeout** ====
695
696 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
697
698 Default value: 0, range:  0 ~~ 65 seconds
699
700 * **AT Command:**
701
702 (% class="box infomessage" %)
703 (((
704 **AT+CMDDLaa=hex(bb cc)*1000**
705 )))
706
707 **Example:**
708
709 **AT+CMDDL1=1000** to send the open time to 1000ms
710
711
712 * **Downlink Payload:**
713
714 **0x AA aa bb cc**
715
716 Same as: AT+CMDDLaa=hex(bb cc)*1000
717
718 **Example:**
719
720 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
721
722
723
724 ==== **Uplink payload mode** ====
725
726 Define to use one uplink or multiple uplinks for the sampling.
727
728 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
729
730 * **AT Command:**
731
732 (% class="box infomessage" %)
733 (((
734 **AT+DATAUP=0**
735 )))
736
737 (% class="box infomessage" %)
738 (((
739 **AT+DATAUP=1**
740 )))
741
742
743 * **Downlink Payload:**
744
745 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
746
747 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
748
749
750
751 ==== **Manually trigger an Uplink** ====
752
753 Ask device to send an uplink immediately.
754
755 * **AT Command:**
756
757 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
758
759
760 * **Downlink Payload:**
761
762 **0x08 FF**, RS485-LN will immediately send an uplink.
763
764
765
766 ==== **Clear RS485 Command** ====
767
768 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
769
770 * **AT Command:**
771
772 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
773
774 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
775
776 Example screen shot after clear all RS485 commands. 
777
778
779 The uplink screen shot is:
780
781 [[image:1654160691922-496.png]]
782
783
784 * **Downlink Payload:**
785
786 **0x09 aa bb** same as AT+CMDEAR=aa,bb
787
788
789
790 ==== **Set Serial Communication Parameters** ====
791
792 Set the Rs485 serial communication parameters:
793
794 * **AT Command:**
795
796 Set Baud Rate:
797
798 (% class="box infomessage" %)
799 (((
800 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
801 )))
802
803 Set UART Parity
804
805 (% class="box infomessage" %)
806 (((
807 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
808 )))
809
810 Set STOPBIT
811
812 (% class="box infomessage" %)
813 (((
814 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
815 )))
816
817
818 * **Downlink Payload:**
819
820 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
821
822 **Example:**
823
824 * A7 01 00 60   same as AT+BAUDR=9600
825 * A7 01 04 80  same as AT+BAUDR=115200
826
827 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
828
829 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
830
831
832 == 3.6 Listening mode for RS485 network ==
833
834 This feature support since firmware v1.4
835
836 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
837
838 [[image:image-20220602171200-8.png||height="567" width="1007"]]
839
840 To enable the listening mode, use can run the command AT+RXMODE.
841
842
843 (% border="1" style="background-color:#ffffcc; width:500px" %)
844 |=(% style="width: 161px;" %)**Command example:**|=(% style="width: 337px;" %)**Function**
845 |(% style="width:161px" %)AT+RXMODE=1,10 |(% style="width:337px" %)Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
846 |(% style="width:161px" %)AT+RXMODE=2,500|(% style="width:337px" %)Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
847 |(% style="width:161px" %)AT+RXMODE=0,0|(% style="width:337px" %)Disable listening mode. This is the default settings.
848 |(% style="width:161px" %) |(% style="width:337px" %)A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 ~| cc)
849
850 **Downlink Command:**
851
852 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
853
854
855 **Example**:
856
857 The RS485-LN is set to AT+RXMODE=2,1000
858
859 There is a two Modbus commands in the RS485 network as below:
860
861 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
862
863 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
864
865 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
866
867 [[image:image-20220602171200-9.png]]
868
869
870 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
871
872
873 == 3.7 Buttons ==
874
875
876 (% border="1" style="background-color:#f7faff; width:500px" %)
877 |=**Button**|=(% style="width: 1420px;" %)**Feature**
878 |**ACT**|(% style="width:1420px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
879 |**RST**|(% style="width:1420px" %)Reboot RS485
880 |**PRO**|(% style="width:1420px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
881
882 == 3.8 LEDs ==
883
884 (% border="1" style="background-color:#f7faff; width:500px" %)
885 |=**LEDs**|=**Feature**
886 |**PWR**|Always on if there is power
887 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN** (%%)for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds**(%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
888
889 = 4. Case Study =
890
891 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
892
893
894 = 5. Use AT Command =
895
896 == 5.1 Access AT Command ==
897
898 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
899
900 [[image:1654162355560-817.png]]
901
902
903 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
904
905 [[image:1654162368066-342.png]]
906
907
908 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
909
910
911 == 5.2 Common AT Command Sequence ==
912
913 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
914
915 If device has not joined network yet:
916
917 (% class="box infomessage" %)
918 (((
919 **AT+FDR**
920 )))
921
922 (% class="box infomessage" %)
923 (((
924 **AT+NJM=0**
925 )))
926
927 (% class="box infomessage" %)
928 (((
929 **ATZ**
930 )))
931
932
933 If device already joined network:
934
935 (% class="box infomessage" %)
936 (((
937 **AT+NJM=0**
938 )))
939
940 (% class="box infomessage" %)
941 (((
942 **ATZ**
943 )))
944
945
946 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
947
948
949 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
950
951 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
952
953 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
954
955 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
956
957 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
958
959 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
960
961 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
962
963 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
964
965 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
966
967 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
968
969
970 (% style="color:red" %)**Note:**
971
972 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
973 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
974 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
975 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
976
977 [[image:1654162478620-421.png]]
978
979
980 = 6. FAQ =
981
982 == 6.1 How to upgrade the image? ==
983
984 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
985
986 * Support new features
987 * For bug fix
988 * Change LoRaWAN bands.
989
990 Below shows the hardware connection for how to upload an image to RS485-LN:
991
992 [[image:1654162535040-878.png]]
993
994 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
995
996 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
997
998 **Step3: **Open flashloader; choose the correct COM port to update.
999
1000 (((
1001 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1002 )))
1003
1004
1005 [[image:image-20220602175818-12.png]]
1006
1007
1008 [[image:image-20220602175848-13.png]]
1009
1010
1011 [[image:image-20220602175912-14.png]]
1012
1013
1014 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1015
1016 [[image:image-20220602175638-10.png]]
1017
1018
1019 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1020
1021 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1022
1023
1024 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1025
1026 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1027
1028
1029 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1030
1031 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1032
1033 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1034
1035
1036 = 7. Trouble Shooting =
1037
1038 == 7.1 Downlink doesn’t work, how to solve it? ==
1039
1040 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1041
1042
1043 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1044
1045 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1046
1047
1048 = 8. Order Info =
1049
1050 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1051
1052 (% style="color:blue" %)**XXX:**
1053
1054 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1055 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1056 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1057 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1058 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1059 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1060 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1061 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1062 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1063 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1064
1065
1066 = 9.Packing Info =
1067
1068
1069 **Package Includes**:
1070
1071 * RS485-LN x 1
1072 * Stick Antenna for LoRa RF part x 1
1073 * Program cable x 1
1074
1075 **Dimension and weight**:
1076
1077 * Device Size: 13.5 x 7 x 3 cm
1078 * Device Weight: 105g
1079 * Package Size / pcs : 14.5 x 8 x 5 cm
1080 * Weight / pcs : 170g
1081
1082
1083 = 10. FCC Caution for RS485LN-US915 =
1084
1085 (((
1086 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1087 )))
1088
1089 (((
1090 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1091 )))
1092
1093 (((
1094
1095 )))
1096
1097 (((
1098 **IMPORTANT NOTE:**
1099 )))
1100
1101 (((
1102 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1103 )))
1104
1105 (((
1106 —Reorient or relocate the receiving antenna.
1107 )))
1108
1109 (((
1110 —Increase the separation between the equipment and receiver.
1111 )))
1112
1113 (((
1114 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1115 )))
1116
1117 (((
1118 —Consult the dealer or an experienced radio/TV technician for help.
1119 )))
1120
1121 (((
1122
1123 )))
1124
1125 (((
1126 **FCC Radiation Exposure Statement:**
1127 )))
1128
1129 (((
1130 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1131 )))
1132
1133
1134 = 11. Support =
1135
1136 * (((
1137 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1138 )))
1139 * (((
1140 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1141 )))