Version 58.2 by Xiaoling on 2022/06/06 11:09

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21 = 1.Introduction =
22
23 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
24
25 (((
26 (((
27 (((
28 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
29 )))
30 )))
31
32 (((
33 (((
34 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
35 )))
36 )))
37
38 (((
39 (((
40 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42 )))
43
44 (((
45 (((
46 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
47 )))
48
49 (((
50 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
51 )))
52 )))
53 )))
54
55 [[image:1653267211009-519.png||height="419" width="724"]]
56
57
58 == 1.2 Specifications ==
59
60
61 **Hardware System:**
62
63 * STM32L072CZT6 MCU
64 * SX1276/78 Wireless Chip 
65 * Power Consumption (exclude RS485 device):
66 ** Idle: 32mA@12v
67 ** 20dB Transmit: 65mA@12v
68
69 **Interface for Model:**
70
71 * RS485
72 * Power Input 7~~ 24V DC. 
73
74 **LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C protocol (default Class C)
98 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
99 * AT Commands to change parameters
100 * Remote configure parameters via LoRa Downlink
101 * Firmware upgradable via program port
102 * Support multiply RS485 devices by flexible rules
103 * Support Modbus protocol
104 * Support Interrupt uplink (Since hardware version v1.2)
105
106
107 == 1.4 Applications ==
108
109 * Smart Buildings & Home Automation
110 * Logistics and Supply Chain Management
111 * Smart Metering
112 * Smart Agriculture
113 * Smart Cities
114 * Smart Factory
115
116
117 == 1.5 Firmware Change log ==
118
119 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
120
121
122 == 1.6 Hardware Change log ==
123
124 (((
125 (((
126 (((
127 v1.2: Add External Interrupt Pin.
128 )))
129
130 (((
131 v1.0: Release
132 )))
133
134
135 )))
136 )))
137
138 = 2. Power ON Device =
139
140 (((
141 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
142
143 * Power Source VIN to RS485-LN VIN+
144 * Power Source GND to RS485-LN VIN-
145
146 (((
147 Once there is power, the RS485-LN will be on.
148 )))
149
150 [[image:1653268091319-405.png]]
151
152
153 )))
154
155 = 3. Operation Mode =
156
157 == 3.1 How it works? ==
158
159 (((
160 (((
161 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
162 )))
163
164
165 )))
166
167 == 3.2 Example to join LoRaWAN network ==
168
169 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
170
171 [[image:1653268155545-638.png||height="334" width="724"]]
172
173
174 (((
175 (((
176 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
177 )))
178
179 (((
180 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
181 )))
182
183 [[image:1653268227651-549.png||height="592" width="720"]]
184
185 (((
186 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
187 )))
188
189 (((
190 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
191 )))
192
193 (((
194 Each RS485-LN is shipped with a sticker with unique device EUI:
195 )))
196 )))
197
198 [[image:1652953462722-299.png]]
199
200 (((
201 (((
202 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
203 )))
204
205 (((
206 Add APP EUI in the application.
207 )))
208 )))
209
210 [[image:image-20220519174512-1.png]]
211
212 [[image:image-20220519174512-2.png||height="323" width="720"]]
213
214 [[image:image-20220519174512-3.png||height="556" width="724"]]
215
216 [[image:image-20220519174512-4.png]]
217
218 You can also choose to create the device manually.
219
220 [[image:1652953542269-423.png||height="710" width="723"]]
221
222 Add APP KEY and DEV EUI
223
224 [[image:1652953553383-907.png||height="514" width="724"]]
225
226
227 (((
228 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
229 )))
230
231 [[image:1652953568895-172.png||height="232" width="724"]]
232
233
234 == 3.3 Configure Commands to read data ==
235
236 (((
237 (((
238 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
239 )))
240
241 (((
242 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
243
244
245 )))
246 )))
247
248 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
249
250 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
251
252 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
253 |=(% style="width: 110px;" %)(((
254 **AT Commands**
255 )))|=(% style="width: 190px;" %)(((
256 **Description**
257 )))|=(% style="width: 190px;" %)(((
258 **Example**
259 )))
260 |(% style="width:110px" %)(((
261 AT+BAUDR
262 )))|(% style="width:190px" %)(((
263 Set the baud rate (for RS485 connection). Default Value is: 9600.
264 )))|(% style="width:190px" %)(((
265 (((
266 AT+BAUDR=9600
267 )))
268
269 (((
270 Options: (1200,2400,4800,14400,19200,115200)
271 )))
272 )))
273 |(% style="width:110px" %)(((
274 AT+PARITY
275 )))|(% style="width:190px" %)(((
276 Set UART parity (for RS485 connection)
277 )))|(% style="width:190px" %)(((
278 (((
279 AT+PARITY=0
280 )))
281
282 (((
283 Option: 0: no parity, 1: odd parity, 2: even parity
284 )))
285 )))
286 |(% style="width:110px" %)(((
287 AT+STOPBIT
288 )))|(% style="width:190px" %)(((
289 (((
290 Set serial stopbit (for RS485 connection)
291 )))
292
293 (((
294
295 )))
296 )))|(% style="width:190px" %)(((
297 (((
298 AT+STOPBIT=0 for 1bit
299 )))
300
301 (((
302 AT+STOPBIT=1 for 1.5 bit
303 )))
304
305 (((
306 AT+STOPBIT=2 for 2 bits
307 )))
308 )))
309
310
311
312 === 3.3.2 Configure sensors ===
313
314 (((
315 (((
316 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
317 )))
318 )))
319
320 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
321 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
322 |AT+CFGDEV|(% style="width:110px" %)(((
323 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
324
325 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
326
327 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
328 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
329
330
331
332 === 3.3.3 Configure read commands for each sampling ===
333
334 (((
335 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
336
337 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
338
339 This section describes how to achieve above goals.
340
341 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
342
343
344 **Each RS485 commands include two parts:**
345
346 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
347
348 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
349
350 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
351
352
353 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
354
355
356 Below are examples for the how above AT Commands works.
357
358
359 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
360
361 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
362 |(% style="width:496px" %)(((
363 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
364
365 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
366
367 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
368 )))
369
370 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
371
372 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
373
374
375 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
376
377 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
378 |(% style="width:510px" %)(((
379 **AT+DATACUTx=a,b,c**
380
381 * **a: length for the return of AT+COMMAND**
382 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
383 * **c: define the position for valid value.  **
384 )))
385
386 **Examples:**
387
388 * Grab bytes:
389
390 [[image:image-20220602153621-1.png]]
391
392
393 * Grab a section.
394
395 [[image:image-20220602153621-2.png]]
396
397
398 * Grab different sections.
399
400 [[image:image-20220602153621-3.png]]
401
402
403 )))
404
405 === 3.3.4 Compose the uplink payload ===
406
407 (((
408 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
409
410
411 )))
412
413 (((
414 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
415
416
417 )))
418
419 (((
420 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
421 )))
422
423 (((
424 Final Payload is
425 )))
426
427 (((
428 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
429 )))
430
431 (((
432 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
433 )))
434
435 [[image:1653269759169-150.png||height="513" width="716"]]
436
437
438 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
439
440
441 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
442
443 Final Payload is
444
445 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
446
447
448 1. PAYVER: Defined by AT+PAYVER
449 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
450 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
451 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
452
453 [[image:image-20220602155039-4.png]]
454
455
456 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
457
458 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
459
460 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
461
462 DATA3=the rest of Valid value of RETURN10= **30**
463
464
465 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
466
467 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
468
469 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
470
471 * For US915 band, max 11 bytes for each uplink.
472
473 ~* For all other bands: max 51 bytes for each uplink.
474
475
476 Below are the uplink payloads:
477
478 [[image:1654157178836-407.png]]
479
480
481 === 3.3.5 Uplink on demand ===
482
483 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
484
485 Downlink control command:
486
487 **0x08 command**: Poll an uplink with current command set in RS485-LN.
488
489 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
490
491
492
493 === 3.3.6 Uplink on Interrupt ===
494
495 RS485-LN support external Interrupt uplink since hardware v1.2 release.
496
497 [[image:1654157342174-798.png]]
498
499 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
500
501
502 == 3.4 Uplink Payload ==
503
504
505 [[image:image-20220606110929-1.png]]
506
507 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
508
509
510 == 3.5 Configure RS485-BL via AT or Downlink ==
511
512 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
513
514 There are two kinds of Commands:
515
516 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
517
518 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
519
520 === 3.5.1 Common Commands ===
521
522 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
523
524
525 === 3.5.2 Sensor related commands ===
526
527 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
528
529 [[image:image-20220602163333-5.png||height="263" width="1160"]]
530
531 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
532
533
534 === 3.5.3 Sensor related commands ===
535
536
537
538 ==== **RS485 Debug Command** ====
539
540 This command is used to configure the RS485 devices; they won’t be used during sampling.
541
542 * **AT Command**
543
544 (% class="box infomessage" %)
545 (((
546 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
547 )))
548
549 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
550
551 * **Downlink Payload**
552
553 Format: A8 MM NN XX XX XX XX YY
554
555 Where:
556
557 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
558 * NN: The length of RS485 command
559 * XX XX XX XX: RS485 command total NN bytes
560 * YY: How many bytes will be uplink from the return of this RS485 command,
561 ** if YY=0, RS485-LN will execute the downlink command without uplink;
562 ** if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
563 ** if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
564
565 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
566
567 To connect a Modbus Alarm with below commands.
568
569 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
570
571 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
572
573 So if user want to use downlink command to control to RS485 Alarm, he can use:
574
575 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
576
577 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
578
579 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
580
581
582 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
583
584 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
585
586
587 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
588
589 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
590
591 [[image:1654159460680-153.png]]
592
593
594
595 ==== **Set Payload version** ====
596
597 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
598
599 * **AT Command:**
600
601 (% class="box infomessage" %)
602 (((
603 **AT+PAYVER: Set PAYVER field = 1**
604 )))
605
606 * **Downlink Payload:**
607
608 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
609
610 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
611
612
613
614 ==== **Set RS485 Sampling Commands** ====
615
616 AT+COMMANDx or AT+DATACUTx
617
618 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
619
620
621 * **AT Command:**
622
623 (% class="box infomessage" %)
624 (((
625 **AT+COMMANDx: Configure RS485 read command to sensor.**
626 )))
627
628 (% class="box infomessage" %)
629 (((
630 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
631 )))
632
633
634 * **Downlink Payload:**
635
636 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
637
638 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
639
640 Format: AF MM NN LL XX XX XX XX YY
641
642 Where:
643
644 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
645 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
646 * LL:  The length of AT+COMMAND or AT+DATACUT command
647 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
648 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
649
650 **Example:**
651
652 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
653
654 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
655
656 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
657
658
659
660 ==== **Fast command to handle MODBUS device** ====
661
662 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
663
664 This command is valid since v1.3 firmware version
665
666 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
667
668
669 **Example:**
670
671 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
672 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
673 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
674
675 [[image:image-20220602165351-6.png]]
676
677 [[image:image-20220602165351-7.png]]
678
679
680
681 ==== **RS485 command timeout** ====
682
683 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
684
685 Default value: 0, range:  0 ~~ 65 seconds
686
687 * **AT Command:**
688
689 (% class="box infomessage" %)
690 (((
691 **AT+CMDDLaa=hex(bb cc)*1000**
692 )))
693
694 **Example:**
695
696 **AT+CMDDL1=1000** to send the open time to 1000ms
697
698
699 * **Downlink Payload:**
700
701 **0x AA aa bb cc**
702
703 Same as: AT+CMDDLaa=hex(bb cc)*1000
704
705 **Example:**
706
707 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
708
709
710
711 ==== **Uplink payload mode** ====
712
713 Define to use one uplink or multiple uplinks for the sampling.
714
715 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
716
717 * **AT Command:**
718
719 (% class="box infomessage" %)
720 (((
721 **AT+DATAUP=0**
722 )))
723
724 (% class="box infomessage" %)
725 (((
726 **AT+DATAUP=1**
727 )))
728
729
730 * **Downlink Payload:**
731
732 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
733
734 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
735
736
737
738 ==== **Manually trigger an Uplink** ====
739
740 Ask device to send an uplink immediately.
741
742 * **AT Command:**
743
744 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
745
746
747 * **Downlink Payload:**
748
749 **0x08 FF**, RS485-LN will immediately send an uplink.
750
751
752
753 ==== **Clear RS485 Command** ====
754
755 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
756
757 * **AT Command:**
758
759 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
760
761 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
762
763 Example screen shot after clear all RS485 commands. 
764
765
766 The uplink screen shot is:
767
768 [[image:1654160691922-496.png]]
769
770
771 * **Downlink Payload:**
772
773 **0x09 aa bb** same as AT+CMDEAR=aa,bb
774
775
776
777 ==== **Set Serial Communication Parameters** ====
778
779 Set the Rs485 serial communication parameters:
780
781 * **AT Command:**
782
783 Set Baud Rate:
784
785 (% class="box infomessage" %)
786 (((
787 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
788 )))
789
790 Set UART Parity
791
792 (% class="box infomessage" %)
793 (((
794 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
795 )))
796
797 Set STOPBIT
798
799 (% class="box infomessage" %)
800 (((
801 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
802 )))
803
804
805 * **Downlink Payload:**
806
807 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
808
809 **Example:**
810
811 * A7 01 00 60   same as AT+BAUDR=9600
812 * A7 01 04 80  same as AT+BAUDR=115200
813
814 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
815
816 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
817
818
819 == 3.6 Listening mode for RS485 network ==
820
821 This feature support since firmware v1.4
822
823 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
824
825 [[image:image-20220602171200-8.png||height="567" width="1007"]]
826
827 To enable the listening mode, use can run the command AT+RXMODE.
828
829
830 (% border="1" style="background-color:#ffffcc; width:500px" %)
831 |=(% style="width: 161px;" %)**Command example:**|=(% style="width: 337px;" %)**Function**
832 |(% style="width:161px" %)AT+RXMODE=1,10 |(% style="width:337px" %)Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
833 |(% style="width:161px" %)AT+RXMODE=2,500|(% style="width:337px" %)Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
834 |(% style="width:161px" %)AT+RXMODE=0,0|(% style="width:337px" %)Disable listening mode. This is the default settings.
835 |(% style="width:161px" %) |(% style="width:337px" %)A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 ~| cc)
836
837 **Downlink Command:**
838
839 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
840
841
842 **Example**:
843
844 The RS485-LN is set to AT+RXMODE=2,1000
845
846 There is a two Modbus commands in the RS485 network as below:
847
848 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
849
850 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
851
852 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
853
854 [[image:image-20220602171200-9.png]]
855
856
857 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
858
859
860 == 3.7 Buttons ==
861
862
863 (% border="1" style="background-color:#f7faff; width:500px" %)
864 |=**Button**|=(% style="width: 1420px;" %)**Feature**
865 |**ACT**|(% style="width:1420px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
866 |**RST**|(% style="width:1420px" %)Reboot RS485
867 |**PRO**|(% style="width:1420px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
868
869 == 3.8 LEDs ==
870
871 (% border="1" style="background-color:#f7faff; width:500px" %)
872 |=**LEDs**|=**Feature**
873 |**PWR**|Always on if there is power
874 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN** (%%)for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds**(%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
875
876 = 4. Case Study =
877
878 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
879
880
881 = 5. Use AT Command =
882
883 == 5.1 Access AT Command ==
884
885 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
886
887 [[image:1654162355560-817.png]]
888
889
890 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
891
892 [[image:1654162368066-342.png]]
893
894
895 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
896
897
898 == 5.2 Common AT Command Sequence ==
899
900 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
901
902 If device has not joined network yet:
903
904 (% class="box infomessage" %)
905 (((
906 **AT+FDR**
907 )))
908
909 (% class="box infomessage" %)
910 (((
911 **AT+NJM=0**
912 )))
913
914 (% class="box infomessage" %)
915 (((
916 **ATZ**
917 )))
918
919
920 If device already joined network:
921
922 (% class="box infomessage" %)
923 (((
924 **AT+NJM=0**
925 )))
926
927 (% class="box infomessage" %)
928 (((
929 **ATZ**
930 )))
931
932
933 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
934
935
936 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
937
938 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
939
940 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
941
942 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
943
944 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
945
946 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
947
948 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
949
950 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
951
952 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
953
954 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
955
956
957 (% style="color:red" %)**Note:**
958
959 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
960 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
961 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
962 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
963
964 [[image:1654162478620-421.png]]
965
966
967 = 6. FAQ =
968
969 == 6.1 How to upgrade the image? ==
970
971 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
972
973 * Support new features
974 * For bug fix
975 * Change LoRaWAN bands.
976
977 Below shows the hardware connection for how to upload an image to RS485-LN:
978
979 [[image:1654162535040-878.png]]
980
981 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
982
983 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
984
985 **Step3: **Open flashloader; choose the correct COM port to update.
986
987 (((
988 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
989 )))
990
991
992 [[image:image-20220602175818-12.png]]
993
994
995 [[image:image-20220602175848-13.png]]
996
997
998 [[image:image-20220602175912-14.png]]
999
1000
1001 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1002
1003 [[image:image-20220602175638-10.png]]
1004
1005
1006 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1007
1008 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1009
1010
1011 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1012
1013 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1014
1015
1016 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1017
1018 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1019
1020 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1021
1022
1023 = 7. Trouble Shooting =
1024
1025 == 7.1 Downlink doesn’t work, how to solve it? ==
1026
1027 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1028
1029
1030 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1031
1032 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1033
1034
1035 = 8. Order Info =
1036
1037 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1038
1039 (% style="color:blue" %)**XXX:**
1040
1041 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1042 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1043 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1044 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1045 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1046 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1047 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1048 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1049 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1050 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1051
1052
1053 = 9.Packing Info =
1054
1055
1056 **Package Includes**:
1057
1058 * RS485-LN x 1
1059 * Stick Antenna for LoRa RF part x 1
1060 * Program cable x 1
1061
1062 **Dimension and weight**:
1063
1064 * Device Size: 13.5 x 7 x 3 cm
1065 * Device Weight: 105g
1066 * Package Size / pcs : 14.5 x 8 x 5 cm
1067 * Weight / pcs : 170g
1068
1069
1070 = 10. FCC Caution for RS485LN-US915 =
1071
1072 (((
1073 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1074 )))
1075
1076 (((
1077 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1078 )))
1079
1080 (((
1081
1082 )))
1083
1084 (((
1085 **IMPORTANT NOTE:**
1086 )))
1087
1088 (((
1089 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1090 )))
1091
1092 (((
1093 —Reorient or relocate the receiving antenna.
1094 )))
1095
1096 (((
1097 —Increase the separation between the equipment and receiver.
1098 )))
1099
1100 (((
1101 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1102 )))
1103
1104 (((
1105 —Consult the dealer or an experienced radio/TV technician for help.
1106 )))
1107
1108 (((
1109
1110 )))
1111
1112 (((
1113 **FCC Radiation Exposure Statement:**
1114 )))
1115
1116 (((
1117 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1118 )))
1119
1120
1121 = 11. Support =
1122
1123 * (((
1124 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1125 )))
1126 * (((
1127 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1128 )))