Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21 = 1.Introduction =
22
23 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
24
25 (((
26 (((
27 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
28 )))
29
30 (((
31 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
32 )))
33
34 (((
35 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
36 )))
37
38 (((
39 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
40
41 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
42 )))
43 )))
44
45 [[image:1653267211009-519.png||height="419" width="724"]]
46
47
48 == 1.2 Specifications ==
49
50
51 **Hardware System:**
52
53 * STM32L072CZT6 MCU
54 * SX1276/78 Wireless Chip 
55 * Power Consumption (exclude RS485 device):
56 ** Idle: 32mA@12v
57 ** 20dB Transmit: 65mA@12v
58
59 **Interface for Model:**
60
61 * RS485
62 * Power Input 7~~ 24V DC. 
63
64 **LoRa Spec:**
65
66 * Frequency Range:
67 ** Band 1 (HF): 862 ~~ 1020 Mhz
68 ** Band 2 (LF): 410 ~~ 528 Mhz
69 * 168 dB maximum link budget.
70 * +20 dBm - 100 mW constant RF output vs.
71 * +14 dBm high efficiency PA.
72 * Programmable bit rate up to 300 kbps.
73 * High sensitivity: down to -148 dBm.
74 * Bullet-proof front end: IIP3 = -12.5 dBm.
75 * Excellent blocking immunity.
76 * Low RX current of 10.3 mA, 200 nA register retention.
77 * Fully integrated synthesizer with a resolution of 61 Hz.
78 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
79 * Built-in bit synchronizer for clock recovery.
80 * Preamble detection.
81 * 127 dB Dynamic Range RSSI.
82 * Automatic RF Sense and CAD with ultra-fast AFC.
83 * Packet engine up to 256 bytes with CRC
84
85
86
87 == 1.3 Features ==
88
89 * LoRaWAN Class A & Class C protocol (default Class C)
90 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
91 * AT Commands to change parameters
92 * Remote configure parameters via LoRa Downlink
93 * Firmware upgradable via program port
94 * Support multiply RS485 devices by flexible rules
95 * Support Modbus protocol
96 * Support Interrupt uplink (Since hardware version v1.2)
97
98
99
100 == 1.4 Applications ==
101
102 * Smart Buildings & Home Automation
103 * Logistics and Supply Chain Management
104 * Smart Metering
105 * Smart Agriculture
106 * Smart Cities
107 * Smart Factory
108
109
110
111 == 1.5 Firmware Change log ==
112
113 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
114
115
116 == 1.6 Hardware Change log ==
117
118 (((
119 (((
120 v1.2: Add External Interrupt Pin.
121
122 v1.0: Release
123
124
125 )))
126 )))
127
128 = 2. Power ON Device =
129
130 (((
131 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
132
133 * Power Source VIN to RS485-LN VIN+
134 * Power Source GND to RS485-LN VIN-
135
136 (((
137 Once there is power, the RS485-LN will be on.
138 )))
139
140 [[image:1653268091319-405.png]]
141
142
143 )))
144
145 = 3. Operation Mode =
146
147 == 3.1 How it works? ==
148
149 (((
150 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
151
152
153 )))
154
155 == 3.2 Example to join LoRaWAN network ==
156
157 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
158
159 [[image:1653268155545-638.png||height="334" width="724"]]
160
161
162 (((
163 (((
164 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
165 )))
166
167 (((
168 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
169 )))
170
171 [[image:1653268227651-549.png||height="592" width="720"]]
172
173 (((
174 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
175 )))
176
177 (((
178 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
179 )))
180
181 (((
182 Each RS485-LN is shipped with a sticker with unique device EUI:
183 )))
184 )))
185
186 [[image:1652953462722-299.png]]
187
188 (((
189 (((
190 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
191 )))
192
193 (((
194 Add APP EUI in the application.
195 )))
196 )))
197
198 [[image:image-20220519174512-1.png]]
199
200 [[image:image-20220519174512-2.png||height="323" width="720"]]
201
202 [[image:image-20220519174512-3.png||height="556" width="724"]]
203
204 [[image:image-20220519174512-4.png]]
205
206 You can also choose to create the device manually.
207
208 [[image:1652953542269-423.png||height="710" width="723"]]
209
210 Add APP KEY and DEV EUI
211
212 [[image:1652953553383-907.png||height="514" width="724"]]
213
214
215 (((
216 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
217 )))
218
219 [[image:1652953568895-172.png||height="232" width="724"]]
220
221
222 == 3.3 Configure Commands to read data ==
223
224 (((
225 (((
226 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
227 )))
228
229 (((
230 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
231
232
233 )))
234 )))
235
236 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
237
238 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
239
240 (% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
241 |(% style="width:128px" %)(((
242 **AT Commands**
243 )))|(% style="width:305px" %)(((
244 **Description**
245 )))|(% style="width:346px" %)(((
246 **Example**
247 )))
248 |(% style="width:128px" %)(((
249 AT+BAUDR
250 )))|(% style="width:305px" %)(((
251 Set the baud rate (for RS485 connection). Default Value is: 9600.
252 )))|(% style="width:346px" %)(((
253 (((
254 AT+BAUDR=9600
255 )))
256
257 (((
258 Options: (1200,2400,4800,14400,19200,115200)
259 )))
260 )))
261 |(% style="width:128px" %)(((
262 AT+PARITY
263 )))|(% style="width:305px" %)(((
264 Set UART parity (for RS485 connection)
265 )))|(% style="width:346px" %)(((
266 (((
267 AT+PARITY=0
268 )))
269
270 (((
271 Option: 0: no parity, 1: odd parity, 2: even parity
272 )))
273 )))
274 |(% style="width:128px" %)(((
275 AT+STOPBIT
276 )))|(% style="width:305px" %)(((
277 (((
278 Set serial stopbit (for RS485 connection)
279 )))
280
281 (((
282
283 )))
284 )))|(% style="width:346px" %)(((
285 (((
286 AT+STOPBIT=0 for 1bit
287 )))
288
289 (((
290 AT+STOPBIT=1 for 1.5 bit
291 )))
292
293 (((
294 AT+STOPBIT=2 for 2 bits
295 )))
296 )))
297
298 === 3.3.2 Configure sensors ===
299
300 (((
301 (((
302 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
303 )))
304 )))
305
306 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
307 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
308 |AT+CFGDEV|(% style="width:418px" %)(((
309 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
310
311 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
312
313 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
314 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
315
316 === 3.3.3 Configure read commands for each sampling ===
317
318 (((
319 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
320
321 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
322
323 This section describes how to achieve above goals.
324
325 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
326
327
328 **Each RS485 commands include two parts:**
329
330 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
331
332 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
333
334 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
335
336
337 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
338
339
340 Below are examples for the how above AT Commands works.
341
342
343 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
344
345 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
346 |(% style="width:496px" %)(((
347 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
348
349 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
350
351 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
352 )))
353
354 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
355
356 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
357
358
359 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
360
361 (% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
362 |(% style="width:722px" %)(((
363 **AT+DATACUTx=a,b,c**
364
365 * **a: length for the return of AT+COMMAND**
366 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
367 * **c: define the position for valid value.  **
368 )))
369
370 **Examples:**
371
372 * Grab bytes:
373
374 [[image:image-20220602153621-1.png]]
375
376
377 * Grab a section.
378
379 [[image:image-20220602153621-2.png]]
380
381
382 * Grab different sections.
383
384 [[image:image-20220602153621-3.png]]
385
386
387 )))
388
389 === 3.3.4 Compose the uplink payload ===
390
391 (((
392 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
393
394
395 )))
396
397 (((
398 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
399
400
401 )))
402
403 (((
404 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
405 )))
406
407 (((
408 Final Payload is
409 )))
410
411 (((
412 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
413 )))
414
415 (((
416 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
417 )))
418
419 [[image:1653269759169-150.png||height="513" width="716"]]
420
421
422 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
423
424
425 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
426
427 Final Payload is
428
429 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
430
431 1. PAYVER: Defined by AT+PAYVER
432 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
433 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
434 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
435
436 [[image:image-20220602155039-4.png]]
437
438
439 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
440
441 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
442
443 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
444
445 DATA3=the rest of Valid value of RETURN10= **30**
446
447
448 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
449
450 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
451
452 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
453
454 * For US915 band, max 11 bytes for each uplink.
455
456 ~* For all other bands: max 51 bytes for each uplink.
457
458
459 Below are the uplink payloads:
460
461 [[image:1654157178836-407.png]]
462
463
464 === 3.3.5 Uplink on demand ===
465
466 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
467
468 Downlink control command:
469
470 **0x08 command**: Poll an uplink with current command set in RS485-LN.
471
472 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
473
474
475
476 === 3.3.6 Uplink on Interrupt ===
477
478 RS485-LN support external Interrupt uplink since hardware v1.2 release.
479
480 [[image:1654157342174-798.png]]
481
482 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
483
484
485 == 3.4 Uplink Payload ==
486
487 (% border="1" style="background-color:#4bacc6; color:white; width:734px" %)
488 |**Size(bytes)**|(% style="width:120px" %)**2**|(% style="width:116px" %)**1**|(% style="width:386px" %)**Length depends on the return from the commands**
489 |Value|(% style="width:120px" %)(((
490 Battery(mV)
491
492 &
493
494 Interrupt _Flag
495 )))|(% style="width:116px" %)(((
496 PAYLOAD_VER
497
498
499 )))|(% style="width:386px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
500
501 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
502
503
504 == 3.5 Configure RS485-BL via AT or Downlink ==
505
506 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
507
508 There are two kinds of Commands:
509
510 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
511
512 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
513
514 === 3.5.1 Common Commands ===
515
516 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
517
518
519 === 3.5.2 Sensor related commands ===
520
521 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
522
523 [[image:image-20220602163333-5.png||height="263" width="1160"]]
524
525 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
526
527
528 === 3.5.3 Sensor related commands ===
529
530 (% class="wikigeneratedid" id="H" %)
531
532
533
534 ==== **RS485 Debug Command** ====
535
536 This command is used to configure the RS485 devices; they won’t be used during sampling.
537
538 * **AT Command**
539
540 (% class="box infomessage" %)
541 (((
542 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
543 )))
544
545 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
546
547 * **Downlink Payload**
548
549 Format: A8 MM NN XX XX XX XX YY
550
551 Where:
552
553 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
554 * NN: The length of RS485 command
555 * XX XX XX XX: RS485 command total NN bytes
556 * YY: How many bytes will be uplink from the return of this RS485 command,
557 ** if YY=0, RS485-LN will execute the downlink command without uplink;
558 ** if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
559 ** if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
560
561 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
562
563 To connect a Modbus Alarm with below commands.
564
565 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
566
567 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
568
569 So if user want to use downlink command to control to RS485 Alarm, he can use:
570
571 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
572
573 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
574
575 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
576
577
578 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
579
580 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
581
582
583 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
584
585 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
586
587 [[image:1654159460680-153.png]]
588
589
590
591 ==== **Set Payload version** ====
592
593 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
594
595 * **AT Command:**
596
597 (% class="box infomessage" %)
598 (((
599 **AT+PAYVER: Set PAYVER field = 1**
600 )))
601
602 * **Downlink Payload:**
603
604 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
605
606 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
607
608
609
610 ==== **Set RS485 Sampling Commands** ====
611
612 AT+COMMANDx or AT+DATACUTx
613
614 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
615
616
617 * **AT Command:**
618
619 (% class="box infomessage" %)
620 (((
621 **AT+COMMANDx: Configure RS485 read command to sensor.**
622 )))
623
624 (% class="box infomessage" %)
625 (((
626 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
627 )))
628
629
630 * **Downlink Payload:**
631
632 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
633
634 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
635
636 Format: AF MM NN LL XX XX XX XX YY
637
638 Where:
639
640 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
641 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
642 * LL:  The length of AT+COMMAND or AT+DATACUT command
643 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
644 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
645
646 **Example:**
647
648 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
649
650 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
651
652 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
653
654
655
656 ==== **Fast command to handle MODBUS device** ====
657
658 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
659
660 This command is valid since v1.3 firmware version
661
662 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
663
664
665 **Example:**
666
667 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
668 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
669 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
670
671 [[image:image-20220602165351-6.png]]
672
673 [[image:image-20220602165351-7.png]]
674
675
676
677 ==== **RS485 command timeout** ====
678
679 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
680
681 Default value: 0, range:  0 ~~ 65 seconds
682
683 * **AT Command:**
684
685 (% class="box infomessage" %)
686 (((
687 **AT+CMDDLaa=hex(bb cc)*1000**
688 )))
689
690 **Example:**
691
692 **AT+CMDDL1=1000** to send the open time to 1000ms
693
694
695 * **Downlink Payload:**
696
697 **0x AA aa bb cc**
698
699 Same as: AT+CMDDLaa=hex(bb cc)*1000
700
701 **Example:**
702
703 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
704
705
706
707 ==== **Uplink payload mode** ====
708
709 Define to use one uplink or multiple uplinks for the sampling.
710
711 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
712
713 * **AT Command:**
714
715 (% class="box infomessage" %)
716 (((
717 **AT+DATAUP=0**
718 )))
719
720 (% class="box infomessage" %)
721 (((
722 **AT+DATAUP=1**
723 )))
724
725
726 * **Downlink Payload:**
727
728 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
729
730 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
731
732
733
734 ==== **Manually trigger an Uplink** ====
735
736 Ask device to send an uplink immediately.
737
738 * **AT Command:**
739
740 No AT Command for this, user can press the [[ACT button>>path:#Button]] for 1 second for the same.
741
742
743 * **Downlink Payload:**
744
745 **0x08 FF**, RS485-LN will immediately send an uplink.
746
747
748 ==== ====
749
750 ==== **Clear RS485 Command** ====
751
752 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
753
754 * **AT Command:**
755
756 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
757
758 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
759
760 Example screen shot after clear all RS485 commands. 
761
762
763 The uplink screen shot is:
764
765 [[image:1654160691922-496.png]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
766
767
768 * **Downlink Payload:**
769
770 **0x09 aa bb** same as AT+CMDEAR=aa,bb
771
772
773
774 ==== **Set Serial Communication Parameters** ====
775
776 Set the Rs485 serial communication parameters:
777
778 * **AT Command:**
779
780 Set Baud Rate:
781
782 (% class="box infomessage" %)
783 (((
784 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
785 )))
786
787 Set UART Parity
788
789 (% class="box infomessage" %)
790 (((
791 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
792 )))
793
794 Set STOPBIT
795
796 (% class="box infomessage" %)
797 (((
798 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
799 )))
800
801
802 * **Downlink Payload:**
803
804 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
805
806 **Example:**
807
808 * A7 01 00 60   same as AT+BAUDR=9600
809 * A7 01 04 80  same as AT+BAUDR=115200
810
811 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
812
813 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
814
815
816 == 3.6 Listening mode for RS485 network ==
817
818 This feature support since firmware v1.4
819
820 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
821
822 [[image:image-20220602171200-8.png||height="567" width="1007"]]
823
824 To enable the listening mode, use can run the command AT+RXMODE.
825
826
827 (% border="1" style="background-color:#ffffcc; width:500px" %)
828 |=(% style="width: 161px;" %)**Command example:**|=(% style="width: 337px;" %)**Function**
829 |(% style="width:161px" %)AT+RXMODE=1,10 |(% style="width:337px" %)Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
830 |(% style="width:161px" %)AT+RXMODE=2,500|(% style="width:337px" %)Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
831 |(% style="width:161px" %)AT+RXMODE=0,0|(% style="width:337px" %)Disable listening mode. This is the default settings.
832 |(% style="width:161px" %) |(% style="width:337px" %)A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 ~| cc)
833
834 **Downlink Command:**
835
836 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
837
838
839 **Example**:
840
841 The RS485-LN is set to AT+RXMODE=2,1000
842
843 There is a two Modbus commands in the RS485 network as below:
844
845 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
846
847 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
848
849 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
850
851 [[image:image-20220602171200-9.png]]
852
853
854 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
855
856
857 == 3.7 Buttons ==
858
859
860 (% border="1" style="background-color:#f7faff; width:500px" %)
861 |=**Button**|=(% style="width: 1420px;" %)**Feature**
862 |**ACT**|(% style="width:1420px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
863 |**RST**|(% style="width:1420px" %)Reboot RS485
864 |**PRO**|(% style="width:1420px" %)Use for upload image, see [[How to Update Image>>path:#upgrade_image]]
865
866
867
868 == 3.8 LEDs ==
869
870 (% border="1" style="background-color:#f7faff; width:500px" %)
871 |=**LEDs**|=**Feature**
872 |**PWR**|Always on if there is power
873 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN** (%%)for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds**(%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
874
875
876
877 = 4. Case Study =
878
879 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
880
881
882 = 5. Use AT Command =
883
884 == 5.1 Access AT Command ==
885
886 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
887
888 [[image:1654162355560-817.png]]
889
890
891 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
892
893 [[image:1654162368066-342.png]]
894
895
896 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="3.5ConfigureRS485-BLviaATorDownlink"]]
897
898
899 == 5.2 Common AT Command Sequence ==
900
901 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
902
903 If device has not joined network yet:
904
905 (% class="box infomessage" %)
906 (((
907 **AT+FDR**
908 )))
909
910 (% class="box infomessage" %)
911 (((
912 **AT+NJM=0**
913 )))
914
915 (% class="box infomessage" %)
916 (((
917 **ATZ**
918 )))
919
920
921 If device already joined network:
922
923 (% class="box infomessage" %)
924 (((
925 **AT+NJM=0**
926 )))
927
928 (% class="box infomessage" %)
929 (((
930 **ATZ**
931 )))
932
933
934 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
935
936
937 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
938
939 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
940
941 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
942
943 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
944
945 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
946
947 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
948
949 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
950
951 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
952
953 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
954
955 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
956
957
958 (% style="color:red" %)**Note:**
959
960 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
961 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
962 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
963 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
964
965 [[image:1654162478620-421.png]]
966
967
968 = 6. FAQ =
969
970 == 6.1 How to upgrade the image? ==
971
972 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
973
974 * Support new features
975 * For bug fix
976 * Change LoRaWAN bands.
977
978 Below shows the hardware connection for how to upload an image to RS485-LN:
979
980 [[image:1654162535040-878.png]]
981
982 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
983
984 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
985
986 **Step3: **Open flashloader; choose the correct COM port to update.
987
988 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
989
990
991 [[image:image-20220602175818-12.png]]
992
993
994 [[image:image-20220602175848-13.png]]
995
996
997 [[image:image-20220602175912-14.png]]
998
999
1000 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1001
1002 [[image:image-20220602175638-10.png]]
1003
1004
1005 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1006
1007 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1008
1009
1010 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1011
1012 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1013
1014
1015 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1016
1017 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1018
1019 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1020
1021
1022 = 7. Trouble Shooting =
1023
1024 == 7.1 Downlink doesn’t work, how to solve it? ==
1025
1026 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1027
1028
1029 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1030
1031 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1032
1033
1034 = 8. Order Info =
1035
1036 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1037
1038 (% style="color:blue" %)**XXX:**
1039
1040 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1041 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1042 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1043 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1044 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1045 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1046 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1047 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1048 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1049 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1050
1051 = 9.Packing Info =
1052
1053
1054 **Package Includes**:
1055
1056 * RS485-LN x 1
1057 * Stick Antenna for LoRa RF part x 1
1058 * Program cable x 1
1059
1060 **Dimension and weight**:
1061
1062 * Device Size: 13.5 x 7 x 3 cm
1063 * Device Weight: 105g
1064 * Package Size / pcs : 14.5 x 8 x 5 cm
1065 * Weight / pcs : 170g
1066
1067 = 10. FCC Caution for RS485LN-US915 =
1068
1069 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1070
1071 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1072
1073
1074 **IMPORTANT NOTE:**
1075
1076 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1077
1078 —Reorient or relocate the receiving antenna.
1079
1080 —Increase the separation between the equipment and receiver.
1081
1082 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1083
1084 —Consult the dealer or an experienced radio/TV technician for help.
1085
1086
1087 **FCC Radiation Exposure Statement:**
1088
1089 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1090
1091
1092 = 11. Support =
1093
1094 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1095 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0