Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21 = 1.Introduction =
22
23 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
24
25 (((
26 (((
27 (((
28 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
29 )))
30 )))
31
32 (((
33 (((
34 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
35 )))
36 )))
37
38 (((
39 (((
40 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42 )))
43
44 (((
45 (((
46 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
47 )))
48
49 (((
50 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
51 )))
52 )))
53 )))
54
55 [[image:1653267211009-519.png||height="419" width="724"]]
56
57
58 == 1.2 Specifications ==
59
60
61 **Hardware System:**
62
63 * STM32L072CZT6 MCU
64 * SX1276/78 Wireless Chip 
65 * Power Consumption (exclude RS485 device):
66 ** Idle: 32mA@12v
67 ** 20dB Transmit: 65mA@12v
68
69 **Interface for Model:**
70
71 * RS485
72 * Power Input 7~~ 24V DC. 
73
74 **LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C protocol (default Class C)
98 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
99 * AT Commands to change parameters
100 * Remote configure parameters via LoRa Downlink
101 * Firmware upgradable via program port
102 * Support multiply RS485 devices by flexible rules
103 * Support Modbus protocol
104 * Support Interrupt uplink (Since hardware version v1.2)
105
106
107 == 1.4 Applications ==
108
109 * Smart Buildings & Home Automation
110 * Logistics and Supply Chain Management
111 * Smart Metering
112 * Smart Agriculture
113 * Smart Cities
114 * Smart Factory
115
116
117 == 1.5 Firmware Change log ==
118
119 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
120
121
122 == 1.6 Hardware Change log ==
123
124 (((
125 (((
126 (((
127 v1.2: Add External Interrupt Pin.
128 )))
129
130 (((
131 v1.0: Release
132 )))
133
134
135 )))
136 )))
137
138 = 2. Power ON Device =
139
140 (((
141 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
142
143 * Power Source VIN to RS485-LN VIN+
144 * Power Source GND to RS485-LN VIN-
145
146 (((
147 Once there is power, the RS485-LN will be on.
148 )))
149
150 [[image:1653268091319-405.png]]
151
152
153 )))
154
155 = 3. Operation Mode =
156
157 == 3.1 How it works? ==
158
159 (((
160 (((
161 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
162 )))
163
164
165 )))
166
167 == 3.2 Example to join LoRaWAN network ==
168
169 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
170
171 [[image:1653268155545-638.png||height="334" width="724"]]
172
173
174 (((
175 (((
176 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
177 )))
178
179 (((
180 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
181 )))
182
183 [[image:1653268227651-549.png||height="592" width="720"]]
184
185 (((
186 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
187 )))
188
189 (((
190 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
191 )))
192
193 (((
194 Each RS485-LN is shipped with a sticker with unique device EUI:
195 )))
196 )))
197
198 [[image:1652953462722-299.png]]
199
200 (((
201 (((
202 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
203 )))
204
205 (((
206 Add APP EUI in the application.
207 )))
208 )))
209
210 [[image:image-20220519174512-1.png]]
211
212 [[image:image-20220519174512-2.png||height="323" width="720"]]
213
214 [[image:image-20220519174512-3.png||height="556" width="724"]]
215
216 [[image:image-20220519174512-4.png]]
217
218 You can also choose to create the device manually.
219
220 [[image:1652953542269-423.png||height="710" width="723"]]
221
222 Add APP KEY and DEV EUI
223
224 [[image:1652953553383-907.png||height="514" width="724"]]
225
226
227 (((
228 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
229 )))
230
231 [[image:1652953568895-172.png||height="232" width="724"]]
232
233
234 == 3.3 Configure Commands to read data ==
235
236 (((
237 (((
238 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
239 )))
240
241 (((
242 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
243
244
245 )))
246 )))
247
248 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
249
250 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
251
252 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
253 |=(% style="width: 110px;" %)(((
254 **AT Commands**
255 )))|=(% style="width: 190px;" %)(((
256 **Description**
257 )))|=(% style="width: 190px;" %)(((
258 **Example**
259 )))
260 |(% style="width:110px" %)(((
261 AT+BAUDR
262 )))|(% style="width:190px" %)(((
263 Set the baud rate (for RS485 connection). Default Value is: 9600.
264 )))|(% style="width:190px" %)(((
265 (((
266 AT+BAUDR=9600
267 )))
268
269 (((
270 Options: (1200,2400,4800,14400,19200,115200)
271 )))
272 )))
273 |(% style="width:110px" %)(((
274 AT+PARITY
275 )))|(% style="width:190px" %)(((
276 Set UART parity (for RS485 connection)
277 )))|(% style="width:190px" %)(((
278 (((
279 AT+PARITY=0
280 )))
281
282 (((
283 Option: 0: no parity, 1: odd parity, 2: even parity
284 )))
285 )))
286 |(% style="width:110px" %)(((
287 AT+STOPBIT
288 )))|(% style="width:190px" %)(((
289 (((
290 Set serial stopbit (for RS485 connection)
291 )))
292
293 (((
294
295 )))
296 )))|(% style="width:190px" %)(((
297 (((
298 AT+STOPBIT=0 for 1bit
299 )))
300
301 (((
302 AT+STOPBIT=1 for 1.5 bit
303 )))
304
305 (((
306 AT+STOPBIT=2 for 2 bits
307 )))
308 )))
309
310
311
312 === 3.3.2 Configure sensors ===
313
314 (((
315 (((
316 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
317 )))
318 )))
319
320 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
321 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
322 |AT+CFGDEV|(% style="width:110px" %)(((
323 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
324
325 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
326
327 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
328 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
329
330 === 3.3.3 Configure read commands for each sampling ===
331
332 (((
333 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
334
335 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
336
337 This section describes how to achieve above goals.
338
339 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
340
341
342 **Each RS485 commands include two parts:**
343
344 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
345
346 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
347
348 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
349
350
351 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
352
353
354 Below are examples for the how above AT Commands works.
355
356
357 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
358
359 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
360 |(% style="width:496px" %)(((
361 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
362
363 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
364
365 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
366 )))
367
368 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
369
370 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
371
372
373 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
374
375 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
376 |(% style="width:510px" %)(((
377 **AT+DATACUTx=a,b,c**
378
379 * **a: length for the return of AT+COMMAND**
380 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
381 * **c: define the position for valid value.  **
382 )))
383
384 **Examples:**
385
386 * Grab bytes:
387
388 [[image:image-20220602153621-1.png]]
389
390
391 * Grab a section.
392
393 [[image:image-20220602153621-2.png]]
394
395
396 * Grab different sections.
397
398 [[image:image-20220602153621-3.png]]
399
400
401 )))
402
403 === 3.3.4 Compose the uplink payload ===
404
405 (((
406 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
407
408
409 )))
410
411 (((
412 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
413
414
415 )))
416
417 (((
418 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
419 )))
420
421 (((
422 Final Payload is
423 )))
424
425 (((
426 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
427 )))
428
429 (((
430 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
431 )))
432
433 [[image:1653269759169-150.png||height="513" width="716"]]
434
435
436 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
437
438
439 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
440
441 Final Payload is
442
443 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
444
445
446 1. PAYVER: Defined by AT+PAYVER
447 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
448 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
449 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
450
451 [[image:image-20220602155039-4.png]]
452
453
454 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
455
456 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
457
458 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
459
460 DATA3=the rest of Valid value of RETURN10= **30**
461
462
463 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
464
465 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
466
467 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
468
469 * For US915 band, max 11 bytes for each uplink.
470
471 ~* For all other bands: max 51 bytes for each uplink.
472
473
474 Below are the uplink payloads:
475
476 [[image:1654157178836-407.png]]
477
478
479 === 3.3.5 Uplink on demand ===
480
481 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
482
483 Downlink control command:
484
485 **0x08 command**: Poll an uplink with current command set in RS485-LN.
486
487 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
488
489
490
491 === 3.3.6 Uplink on Interrupt ===
492
493 RS485-LN support external Interrupt uplink since hardware v1.2 release.
494
495 [[image:1654157342174-798.png]]
496
497 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
498
499
500 == 3.4 Uplink Payload ==
501
502 (% border="1" style="background-color:#4bacc6; color:white; width:734px" %)
503 |**Size(bytes)**|(% style="width:120px" %)**2**|(% style="width:116px" %)**1**|(% style="width:386px" %)**Length depends on the return from the commands**
504 |Value|(% style="width:120px" %)(((
505 Battery(mV)
506
507 &
508
509 Interrupt _Flag
510 )))|(% style="width:116px" %)(((
511 PAYLOAD_VER
512
513
514 )))|(% style="width:386px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
515
516 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
517
518
519 == 3.5 Configure RS485-BL via AT or Downlink ==
520
521 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
522
523 There are two kinds of Commands:
524
525 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
526
527 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
528
529 === 3.5.1 Common Commands ===
530
531 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
532
533
534 === 3.5.2 Sensor related commands ===
535
536 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
537
538 [[image:image-20220602163333-5.png||height="263" width="1160"]]
539
540 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
541
542
543 === 3.5.3 Sensor related commands ===
544
545
546
547 ==== **RS485 Debug Command** ====
548
549 This command is used to configure the RS485 devices; they won’t be used during sampling.
550
551 * **AT Command**
552
553 (% class="box infomessage" %)
554 (((
555 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
556 )))
557
558 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
559
560 * **Downlink Payload**
561
562 Format: A8 MM NN XX XX XX XX YY
563
564 Where:
565
566 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
567 * NN: The length of RS485 command
568 * XX XX XX XX: RS485 command total NN bytes
569 * YY: How many bytes will be uplink from the return of this RS485 command,
570 ** if YY=0, RS485-LN will execute the downlink command without uplink;
571 ** if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
572 ** if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
573
574 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
575
576 To connect a Modbus Alarm with below commands.
577
578 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
579
580 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
581
582 So if user want to use downlink command to control to RS485 Alarm, he can use:
583
584 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
585
586 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
587
588 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
589
590
591 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
592
593 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
594
595
596 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
597
598 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
599
600 [[image:1654159460680-153.png]]
601
602
603
604 ==== **Set Payload version** ====
605
606 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
607
608 * **AT Command:**
609
610 (% class="box infomessage" %)
611 (((
612 **AT+PAYVER: Set PAYVER field = 1**
613 )))
614
615 * **Downlink Payload:**
616
617 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
618
619 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
620
621
622
623 ==== **Set RS485 Sampling Commands** ====
624
625 AT+COMMANDx or AT+DATACUTx
626
627 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
628
629
630 * **AT Command:**
631
632 (% class="box infomessage" %)
633 (((
634 **AT+COMMANDx: Configure RS485 read command to sensor.**
635 )))
636
637 (% class="box infomessage" %)
638 (((
639 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
640 )))
641
642
643 * **Downlink Payload:**
644
645 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
646
647 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
648
649 Format: AF MM NN LL XX XX XX XX YY
650
651 Where:
652
653 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
654 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
655 * LL:  The length of AT+COMMAND or AT+DATACUT command
656 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
657 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
658
659 **Example:**
660
661 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
662
663 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
664
665 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
666
667
668
669 ==== **Fast command to handle MODBUS device** ====
670
671 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
672
673 This command is valid since v1.3 firmware version
674
675 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
676
677
678 **Example:**
679
680 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
681 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
682 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
683
684 [[image:image-20220602165351-6.png]]
685
686 [[image:image-20220602165351-7.png]]
687
688
689
690 ==== **RS485 command timeout** ====
691
692 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
693
694 Default value: 0, range:  0 ~~ 65 seconds
695
696 * **AT Command:**
697
698 (% class="box infomessage" %)
699 (((
700 **AT+CMDDLaa=hex(bb cc)*1000**
701 )))
702
703 **Example:**
704
705 **AT+CMDDL1=1000** to send the open time to 1000ms
706
707
708 * **Downlink Payload:**
709
710 **0x AA aa bb cc**
711
712 Same as: AT+CMDDLaa=hex(bb cc)*1000
713
714 **Example:**
715
716 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
717
718
719
720 ==== **Uplink payload mode** ====
721
722 Define to use one uplink or multiple uplinks for the sampling.
723
724 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
725
726 * **AT Command:**
727
728 (% class="box infomessage" %)
729 (((
730 **AT+DATAUP=0**
731 )))
732
733 (% class="box infomessage" %)
734 (((
735 **AT+DATAUP=1**
736 )))
737
738
739 * **Downlink Payload:**
740
741 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
742
743 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
744
745
746
747 ==== **Manually trigger an Uplink** ====
748
749 Ask device to send an uplink immediately.
750
751 * **AT Command:**
752
753 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
754
755
756 * **Downlink Payload:**
757
758 **0x08 FF**, RS485-LN will immediately send an uplink.
759
760
761
762 ==== **Clear RS485 Command** ====
763
764 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
765
766 * **AT Command:**
767
768 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
769
770 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
771
772 Example screen shot after clear all RS485 commands. 
773
774
775 The uplink screen shot is:
776
777 [[image:1654160691922-496.png]]
778
779
780 * **Downlink Payload:**
781
782 **0x09 aa bb** same as AT+CMDEAR=aa,bb
783
784
785
786 ==== **Set Serial Communication Parameters** ====
787
788 Set the Rs485 serial communication parameters:
789
790 * **AT Command:**
791
792 Set Baud Rate:
793
794 (% class="box infomessage" %)
795 (((
796 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
797 )))
798
799 Set UART Parity
800
801 (% class="box infomessage" %)
802 (((
803 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
804 )))
805
806 Set STOPBIT
807
808 (% class="box infomessage" %)
809 (((
810 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
811 )))
812
813
814 * **Downlink Payload:**
815
816 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
817
818 **Example:**
819
820 * A7 01 00 60   same as AT+BAUDR=9600
821 * A7 01 04 80  same as AT+BAUDR=115200
822
823 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
824
825 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
826
827
828 == 3.6 Listening mode for RS485 network ==
829
830 This feature support since firmware v1.4
831
832 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
833
834 [[image:image-20220602171200-8.png||height="567" width="1007"]]
835
836 To enable the listening mode, use can run the command AT+RXMODE.
837
838
839 (% border="1" style="background-color:#ffffcc; width:500px" %)
840 |=(% style="width: 161px;" %)**Command example:**|=(% style="width: 337px;" %)**Function**
841 |(% style="width:161px" %)AT+RXMODE=1,10 |(% style="width:337px" %)Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
842 |(% style="width:161px" %)AT+RXMODE=2,500|(% style="width:337px" %)Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
843 |(% style="width:161px" %)AT+RXMODE=0,0|(% style="width:337px" %)Disable listening mode. This is the default settings.
844 |(% style="width:161px" %) |(% style="width:337px" %)A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 ~| cc)
845
846 **Downlink Command:**
847
848 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
849
850
851 **Example**:
852
853 The RS485-LN is set to AT+RXMODE=2,1000
854
855 There is a two Modbus commands in the RS485 network as below:
856
857 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
858
859 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
860
861 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
862
863 [[image:image-20220602171200-9.png]]
864
865
866 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
867
868
869 == 3.7 Buttons ==
870
871
872 (% border="1" style="background-color:#f7faff; width:500px" %)
873 |=**Button**|=(% style="width: 1420px;" %)**Feature**
874 |**ACT**|(% style="width:1420px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
875 |**RST**|(% style="width:1420px" %)Reboot RS485
876 |**PRO**|(% style="width:1420px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
877
878 == 3.8 LEDs ==
879
880 (% border="1" style="background-color:#f7faff; width:500px" %)
881 |=**LEDs**|=**Feature**
882 |**PWR**|Always on if there is power
883 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN** (%%)for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds**(%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
884
885 = 4. Case Study =
886
887 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
888
889
890 = 5. Use AT Command =
891
892 == 5.1 Access AT Command ==
893
894 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
895
896 [[image:1654162355560-817.png]]
897
898
899 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
900
901 [[image:1654162368066-342.png]]
902
903
904 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
905
906
907 == 5.2 Common AT Command Sequence ==
908
909 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
910
911 If device has not joined network yet:
912
913 (% class="box infomessage" %)
914 (((
915 **AT+FDR**
916 )))
917
918 (% class="box infomessage" %)
919 (((
920 **AT+NJM=0**
921 )))
922
923 (% class="box infomessage" %)
924 (((
925 **ATZ**
926 )))
927
928
929 If device already joined network:
930
931 (% class="box infomessage" %)
932 (((
933 **AT+NJM=0**
934 )))
935
936 (% class="box infomessage" %)
937 (((
938 **ATZ**
939 )))
940
941
942 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
943
944
945 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
946
947 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
948
949 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
950
951 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
952
953 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
954
955 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
956
957 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
958
959 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
960
961 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
962
963 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
964
965
966 (% style="color:red" %)**Note:**
967
968 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
969 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
970 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
971 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
972
973 [[image:1654162478620-421.png]]
974
975
976 = 6. FAQ =
977
978 == 6.1 How to upgrade the image? ==
979
980 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
981
982 * Support new features
983 * For bug fix
984 * Change LoRaWAN bands.
985
986 Below shows the hardware connection for how to upload an image to RS485-LN:
987
988 [[image:1654162535040-878.png]]
989
990 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
991
992 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
993
994 **Step3: **Open flashloader; choose the correct COM port to update.
995
996 (((
997 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
998 )))
999
1000
1001 [[image:image-20220602175818-12.png]]
1002
1003
1004 [[image:image-20220602175848-13.png]]
1005
1006
1007 [[image:image-20220602175912-14.png]]
1008
1009
1010 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1011
1012 [[image:image-20220602175638-10.png]]
1013
1014
1015 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1016
1017 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1018
1019
1020 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1021
1022 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1023
1024
1025 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1026
1027 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1028
1029 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1030
1031
1032 = 7. Trouble Shooting =
1033
1034 == 7.1 Downlink doesn’t work, how to solve it? ==
1035
1036 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1037
1038
1039 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1040
1041 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1042
1043
1044 = 8. Order Info =
1045
1046 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1047
1048 (% style="color:blue" %)**XXX:**
1049
1050 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1051 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1052 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1053 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1054 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1055 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1056 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1057 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1058 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1059 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1060
1061
1062 = 9.Packing Info =
1063
1064
1065 **Package Includes**:
1066
1067 * RS485-LN x 1
1068 * Stick Antenna for LoRa RF part x 1
1069 * Program cable x 1
1070
1071 **Dimension and weight**:
1072
1073 * Device Size: 13.5 x 7 x 3 cm
1074 * Device Weight: 105g
1075 * Package Size / pcs : 14.5 x 8 x 5 cm
1076 * Weight / pcs : 170g
1077
1078
1079 = 10. FCC Caution for RS485LN-US915 =
1080
1081 (((
1082 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1083 )))
1084
1085 (((
1086 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1087 )))
1088
1089 (((
1090
1091 )))
1092
1093 (((
1094 **IMPORTANT NOTE:**
1095 )))
1096
1097 (((
1098 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1099 )))
1100
1101 (((
1102 —Reorient or relocate the receiving antenna.
1103 )))
1104
1105 (((
1106 —Increase the separation between the equipment and receiver.
1107 )))
1108
1109 (((
1110 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1111 )))
1112
1113 (((
1114 —Consult the dealer or an experienced radio/TV technician for help.
1115 )))
1116
1117 (((
1118
1119 )))
1120
1121 (((
1122 **FCC Radiation Exposure Statement:**
1123 )))
1124
1125 (((
1126 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1127 )))
1128
1129
1130 = 11. Support =
1131
1132 * (((
1133 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1134 )))
1135 * (((
1136 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1137 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0