Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21 = 1.Introduction =
22
23 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
24
25 (((
26 (((
27 (((
28 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
29 )))
30 )))
31
32 (((
33 (((
34 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
35 )))
36 )))
37
38 (((
39 (((
40 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42 )))
43
44 (((
45 (((
46 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
47 )))
48
49 (((
50 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
51 )))
52 )))
53 )))
54
55 [[image:1653267211009-519.png||height="419" width="724"]]
56
57
58 == 1.2 Specifications ==
59
60
61 **Hardware System:**
62
63 * STM32L072CZT6 MCU
64 * SX1276/78 Wireless Chip 
65 * Power Consumption (exclude RS485 device):
66 ** Idle: 32mA@12v
67 ** 20dB Transmit: 65mA@12v
68
69 **Interface for Model:**
70
71 * RS485
72 * Power Input 7~~ 24V DC. 
73
74 **LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C protocol (default Class C)
98 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
99 * AT Commands to change parameters
100 * Remote configure parameters via LoRa Downlink
101 * Firmware upgradable via program port
102 * Support multiply RS485 devices by flexible rules
103 * Support Modbus protocol
104 * Support Interrupt uplink (Since hardware version v1.2)
105
106
107
108 == 1.4 Applications ==
109
110 * Smart Buildings & Home Automation
111 * Logistics and Supply Chain Management
112 * Smart Metering
113 * Smart Agriculture
114 * Smart Cities
115 * Smart Factory
116
117 == 1.5 Firmware Change log ==
118
119 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
120
121
122 == 1.6 Hardware Change log ==
123
124 (((
125 (((
126 v1.2: Add External Interrupt Pin.
127
128 v1.0: Release
129
130
131 )))
132 )))
133
134 = 2. Power ON Device =
135
136 (((
137 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
138
139 * Power Source VIN to RS485-LN VIN+
140 * Power Source GND to RS485-LN VIN-
141
142 (((
143 Once there is power, the RS485-LN will be on.
144 )))
145
146 [[image:1653268091319-405.png]]
147
148
149 )))
150
151 = 3. Operation Mode =
152
153 == 3.1 How it works? ==
154
155 (((
156 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
157
158
159 )))
160
161 == 3.2 Example to join LoRaWAN network ==
162
163 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
164
165 [[image:1653268155545-638.png||height="334" width="724"]]
166
167
168 (((
169 (((
170 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
171 )))
172
173 (((
174 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
175 )))
176
177 [[image:1653268227651-549.png||height="592" width="720"]]
178
179 (((
180 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
181 )))
182
183 (((
184 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
185 )))
186
187 (((
188 Each RS485-LN is shipped with a sticker with unique device EUI:
189 )))
190 )))
191
192 [[image:1652953462722-299.png]]
193
194 (((
195 (((
196 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
197 )))
198
199 (((
200 Add APP EUI in the application.
201 )))
202 )))
203
204 [[image:image-20220519174512-1.png]]
205
206 [[image:image-20220519174512-2.png||height="323" width="720"]]
207
208 [[image:image-20220519174512-3.png||height="556" width="724"]]
209
210 [[image:image-20220519174512-4.png]]
211
212 You can also choose to create the device manually.
213
214 [[image:1652953542269-423.png||height="710" width="723"]]
215
216 Add APP KEY and DEV EUI
217
218 [[image:1652953553383-907.png||height="514" width="724"]]
219
220
221 (((
222 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
223 )))
224
225 [[image:1652953568895-172.png||height="232" width="724"]]
226
227
228 == 3.3 Configure Commands to read data ==
229
230 (((
231 (((
232 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
233 )))
234
235 (((
236 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
237
238
239 )))
240 )))
241
242 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
243
244 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
245
246 (% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
247 |(% style="width:128px" %)(((
248 **AT Commands**
249 )))|(% style="width:305px" %)(((
250 **Description**
251 )))|(% style="width:346px" %)(((
252 **Example**
253 )))
254 |(% style="width:128px" %)(((
255 AT+BAUDR
256 )))|(% style="width:305px" %)(((
257 Set the baud rate (for RS485 connection). Default Value is: 9600.
258 )))|(% style="width:346px" %)(((
259 (((
260 AT+BAUDR=9600
261 )))
262
263 (((
264 Options: (1200,2400,4800,14400,19200,115200)
265 )))
266 )))
267 |(% style="width:128px" %)(((
268 AT+PARITY
269 )))|(% style="width:305px" %)(((
270 Set UART parity (for RS485 connection)
271 )))|(% style="width:346px" %)(((
272 (((
273 AT+PARITY=0
274 )))
275
276 (((
277 Option: 0: no parity, 1: odd parity, 2: even parity
278 )))
279 )))
280 |(% style="width:128px" %)(((
281 AT+STOPBIT
282 )))|(% style="width:305px" %)(((
283 (((
284 Set serial stopbit (for RS485 connection)
285 )))
286
287 (((
288
289 )))
290 )))|(% style="width:346px" %)(((
291 (((
292 AT+STOPBIT=0 for 1bit
293 )))
294
295 (((
296 AT+STOPBIT=1 for 1.5 bit
297 )))
298
299 (((
300 AT+STOPBIT=2 for 2 bits
301 )))
302 )))
303
304 === 3.3.2 Configure sensors ===
305
306 (((
307 (((
308 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
309 )))
310 )))
311
312 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
313 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
314 |AT+CFGDEV|(% style="width:418px" %)(((
315 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
316
317 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
318
319 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
320 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
321
322 === 3.3.3 Configure read commands for each sampling ===
323
324 (((
325 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
326
327 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
328
329 This section describes how to achieve above goals.
330
331 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
332
333
334 **Each RS485 commands include two parts:**
335
336 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
337
338 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
339
340 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
341
342
343 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
344
345
346 Below are examples for the how above AT Commands works.
347
348
349 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
350
351 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
352 |(% style="width:496px" %)(((
353 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
354
355 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
356
357 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
358 )))
359
360 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
361
362 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
363
364
365 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
366
367 (% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
368 |(% style="width:722px" %)(((
369 **AT+DATACUTx=a,b,c**
370
371 * **a: length for the return of AT+COMMAND**
372 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
373 * **c: define the position for valid value.  **
374 )))
375
376 **Examples:**
377
378 * Grab bytes:
379
380 [[image:image-20220602153621-1.png]]
381
382
383 * Grab a section.
384
385 [[image:image-20220602153621-2.png]]
386
387
388 * Grab different sections.
389
390 [[image:image-20220602153621-3.png]]
391
392
393 )))
394
395 === 3.3.4 Compose the uplink payload ===
396
397 (((
398 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
399
400
401 )))
402
403 (((
404 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
405
406
407 )))
408
409 (((
410 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
411 )))
412
413 (((
414 Final Payload is
415 )))
416
417 (((
418 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
419 )))
420
421 (((
422 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
423 )))
424
425 [[image:1653269759169-150.png||height="513" width="716"]]
426
427
428 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
429
430
431 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
432
433 Final Payload is
434
435 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
436
437
438 1. PAYVER: Defined by AT+PAYVER
439 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
440 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
441 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
442
443 [[image:image-20220602155039-4.png]]
444
445
446 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
447
448 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
449
450 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
451
452 DATA3=the rest of Valid value of RETURN10= **30**
453
454
455 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
456
457 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
458
459 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
460
461 * For US915 band, max 11 bytes for each uplink.
462
463 ~* For all other bands: max 51 bytes for each uplink.
464
465
466 Below are the uplink payloads:
467
468 [[image:1654157178836-407.png]]
469
470
471 === 3.3.5 Uplink on demand ===
472
473 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
474
475 Downlink control command:
476
477 **0x08 command**: Poll an uplink with current command set in RS485-LN.
478
479 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
480
481
482
483 === 3.3.6 Uplink on Interrupt ===
484
485 RS485-LN support external Interrupt uplink since hardware v1.2 release.
486
487 [[image:1654157342174-798.png]]
488
489 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
490
491
492 == 3.4 Uplink Payload ==
493
494 (% border="1" style="background-color:#4bacc6; color:white; width:734px" %)
495 |**Size(bytes)**|(% style="width:120px" %)**2**|(% style="width:116px" %)**1**|(% style="width:386px" %)**Length depends on the return from the commands**
496 |Value|(% style="width:120px" %)(((
497 Battery(mV)
498
499 &
500
501 Interrupt _Flag
502 )))|(% style="width:116px" %)(((
503 PAYLOAD_VER
504
505
506 )))|(% style="width:386px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
507
508 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
509
510
511 == 3.5 Configure RS485-BL via AT or Downlink ==
512
513 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
514
515 There are two kinds of Commands:
516
517 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
518
519 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
520
521 === 3.5.1 Common Commands ===
522
523 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
524
525
526 === 3.5.2 Sensor related commands ===
527
528 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
529
530 [[image:image-20220602163333-5.png||height="263" width="1160"]]
531
532 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
533
534
535 === 3.5.3 Sensor related commands ===
536
537
538
539 ==== **RS485 Debug Command** ====
540
541 This command is used to configure the RS485 devices; they won’t be used during sampling.
542
543 * **AT Command**
544
545 (% class="box infomessage" %)
546 (((
547 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
548 )))
549
550 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
551
552 * **Downlink Payload**
553
554 Format: A8 MM NN XX XX XX XX YY
555
556 Where:
557
558 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
559 * NN: The length of RS485 command
560 * XX XX XX XX: RS485 command total NN bytes
561 * YY: How many bytes will be uplink from the return of this RS485 command,
562 ** if YY=0, RS485-LN will execute the downlink command without uplink;
563 ** if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
564 ** if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
565
566 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
567
568 To connect a Modbus Alarm with below commands.
569
570 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
571
572 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
573
574 So if user want to use downlink command to control to RS485 Alarm, he can use:
575
576 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
577
578 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
579
580 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
581
582
583 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
584
585 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
586
587
588 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
589
590 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
591
592 [[image:1654159460680-153.png]]
593
594
595
596 ==== **Set Payload version** ====
597
598 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
599
600 * **AT Command:**
601
602 (% class="box infomessage" %)
603 (((
604 **AT+PAYVER: Set PAYVER field = 1**
605 )))
606
607 * **Downlink Payload:**
608
609 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
610
611 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
612
613
614
615 ==== **Set RS485 Sampling Commands** ====
616
617 AT+COMMANDx or AT+DATACUTx
618
619 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
620
621
622 * **AT Command:**
623
624 (% class="box infomessage" %)
625 (((
626 **AT+COMMANDx: Configure RS485 read command to sensor.**
627 )))
628
629 (% class="box infomessage" %)
630 (((
631 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
632 )))
633
634
635 * **Downlink Payload:**
636
637 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
638
639 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
640
641 Format: AF MM NN LL XX XX XX XX YY
642
643 Where:
644
645 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
646 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
647 * LL:  The length of AT+COMMAND or AT+DATACUT command
648 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
649 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
650
651 **Example:**
652
653 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
654
655 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
656
657 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
658
659
660
661 ==== **Fast command to handle MODBUS device** ====
662
663 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
664
665 This command is valid since v1.3 firmware version
666
667 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
668
669
670 **Example:**
671
672 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
673 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
674 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
675
676 [[image:image-20220602165351-6.png]]
677
678 [[image:image-20220602165351-7.png]]
679
680
681
682 ==== **RS485 command timeout** ====
683
684 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
685
686 Default value: 0, range:  0 ~~ 65 seconds
687
688 * **AT Command:**
689
690 (% class="box infomessage" %)
691 (((
692 **AT+CMDDLaa=hex(bb cc)*1000**
693 )))
694
695 **Example:**
696
697 **AT+CMDDL1=1000** to send the open time to 1000ms
698
699
700 * **Downlink Payload:**
701
702 **0x AA aa bb cc**
703
704 Same as: AT+CMDDLaa=hex(bb cc)*1000
705
706 **Example:**
707
708 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
709
710
711
712 ==== **Uplink payload mode** ====
713
714 Define to use one uplink or multiple uplinks for the sampling.
715
716 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
717
718 * **AT Command:**
719
720 (% class="box infomessage" %)
721 (((
722 **AT+DATAUP=0**
723 )))
724
725 (% class="box infomessage" %)
726 (((
727 **AT+DATAUP=1**
728 )))
729
730
731 * **Downlink Payload:**
732
733 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
734
735 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
736
737
738
739 ==== **Manually trigger an Uplink** ====
740
741 Ask device to send an uplink immediately.
742
743 * **AT Command:**
744
745 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
746
747
748 * **Downlink Payload:**
749
750 **0x08 FF**, RS485-LN will immediately send an uplink.
751
752
753
754 ==== **Clear RS485 Command** ====
755
756 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
757
758 * **AT Command:**
759
760 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
761
762 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
763
764 Example screen shot after clear all RS485 commands. 
765
766
767 The uplink screen shot is:
768
769 [[image:1654160691922-496.png]]
770
771
772 * **Downlink Payload:**
773
774 **0x09 aa bb** same as AT+CMDEAR=aa,bb
775
776
777
778 ==== **Set Serial Communication Parameters** ====
779
780 Set the Rs485 serial communication parameters:
781
782 * **AT Command:**
783
784 Set Baud Rate:
785
786 (% class="box infomessage" %)
787 (((
788 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
789 )))
790
791 Set UART Parity
792
793 (% class="box infomessage" %)
794 (((
795 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
796 )))
797
798 Set STOPBIT
799
800 (% class="box infomessage" %)
801 (((
802 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
803 )))
804
805
806 * **Downlink Payload:**
807
808 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
809
810 **Example:**
811
812 * A7 01 00 60   same as AT+BAUDR=9600
813 * A7 01 04 80  same as AT+BAUDR=115200
814
815 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
816
817 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
818
819
820 == 3.6 Listening mode for RS485 network ==
821
822 This feature support since firmware v1.4
823
824 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
825
826 [[image:image-20220602171200-8.png||height="567" width="1007"]]
827
828 To enable the listening mode, use can run the command AT+RXMODE.
829
830
831 (% border="1" style="background-color:#ffffcc; width:500px" %)
832 |=(% style="width: 161px;" %)**Command example:**|=(% style="width: 337px;" %)**Function**
833 |(% style="width:161px" %)AT+RXMODE=1,10 |(% style="width:337px" %)Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
834 |(% style="width:161px" %)AT+RXMODE=2,500|(% style="width:337px" %)Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
835 |(% style="width:161px" %)AT+RXMODE=0,0|(% style="width:337px" %)Disable listening mode. This is the default settings.
836 |(% style="width:161px" %) |(% style="width:337px" %)A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 ~| cc)
837
838 **Downlink Command:**
839
840 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
841
842
843 **Example**:
844
845 The RS485-LN is set to AT+RXMODE=2,1000
846
847 There is a two Modbus commands in the RS485 network as below:
848
849 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
850
851 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
852
853 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
854
855 [[image:image-20220602171200-9.png]]
856
857
858 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
859
860
861 == 3.7 Buttons ==
862
863
864 (% border="1" style="background-color:#f7faff; width:500px" %)
865 |=**Button**|=(% style="width: 1420px;" %)**Feature**
866 |**ACT**|(% style="width:1420px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
867 |**RST**|(% style="width:1420px" %)Reboot RS485
868 |**PRO**|(% style="width:1420px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
869
870
871 == 3.8 LEDs ==
872
873 (% border="1" style="background-color:#f7faff; width:500px" %)
874 |=**LEDs**|=**Feature**
875 |**PWR**|Always on if there is power
876 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN** (%%)for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds**(%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
877
878
879 = 4. Case Study =
880
881 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
882
883
884 = 5. Use AT Command =
885
886 == 5.1 Access AT Command ==
887
888 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
889
890 [[image:1654162355560-817.png]]
891
892
893 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
894
895 [[image:1654162368066-342.png]]
896
897
898 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
899
900
901 == 5.2 Common AT Command Sequence ==
902
903 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
904
905 If device has not joined network yet:
906
907 (% class="box infomessage" %)
908 (((
909 **AT+FDR**
910 )))
911
912 (% class="box infomessage" %)
913 (((
914 **AT+NJM=0**
915 )))
916
917 (% class="box infomessage" %)
918 (((
919 **ATZ**
920 )))
921
922
923 If device already joined network:
924
925 (% class="box infomessage" %)
926 (((
927 **AT+NJM=0**
928 )))
929
930 (% class="box infomessage" %)
931 (((
932 **ATZ**
933 )))
934
935
936 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
937
938
939 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
940
941 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
942
943 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
944
945 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
946
947 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
948
949 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
950
951 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
952
953 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
954
955 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
956
957 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
958
959
960 (% style="color:red" %)**Note:**
961
962 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
963 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
964 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
965 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
966
967 [[image:1654162478620-421.png]]
968
969
970 = 6. FAQ =
971
972 == 6.1 How to upgrade the image? ==
973
974 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
975
976 * Support new features
977 * For bug fix
978 * Change LoRaWAN bands.
979
980 Below shows the hardware connection for how to upload an image to RS485-LN:
981
982 [[image:1654162535040-878.png]]
983
984 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
985
986 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
987
988 **Step3: **Open flashloader; choose the correct COM port to update.
989
990 (((
991 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
992 )))
993
994
995 [[image:image-20220602175818-12.png]]
996
997
998 [[image:image-20220602175848-13.png]]
999
1000
1001 [[image:image-20220602175912-14.png]]
1002
1003
1004 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1005
1006 [[image:image-20220602175638-10.png]]
1007
1008
1009 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1010
1011 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1012
1013
1014 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1015
1016 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1017
1018
1019 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1020
1021 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1022
1023 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1024
1025
1026 = 7. Trouble Shooting =
1027
1028 == 7.1 Downlink doesn’t work, how to solve it? ==
1029
1030 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1031
1032
1033 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1034
1035 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1036
1037
1038 = 8. Order Info =
1039
1040 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1041
1042 (% style="color:blue" %)**XXX:**
1043
1044 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1045 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1046 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1047 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1048 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1049 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1050 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1051 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1052 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1053 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1054
1055
1056
1057 = 9.Packing Info =
1058
1059
1060 **Package Includes**:
1061
1062 * RS485-LN x 1
1063 * Stick Antenna for LoRa RF part x 1
1064 * Program cable x 1
1065
1066 **Dimension and weight**:
1067
1068 * Device Size: 13.5 x 7 x 3 cm
1069 * Device Weight: 105g
1070 * Package Size / pcs : 14.5 x 8 x 5 cm
1071 * Weight / pcs : 170g
1072
1073
1074
1075 = 10. FCC Caution for RS485LN-US915 =
1076
1077 (((
1078 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1079 )))
1080
1081 (((
1082 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1083 )))
1084
1085 (((
1086
1087 )))
1088
1089 (((
1090 **IMPORTANT NOTE:**
1091 )))
1092
1093 (((
1094 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1095 )))
1096
1097 (((
1098 —Reorient or relocate the receiving antenna.
1099 )))
1100
1101 (((
1102 —Increase the separation between the equipment and receiver.
1103 )))
1104
1105 (((
1106 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1107 )))
1108
1109 (((
1110 —Consult the dealer or an experienced radio/TV technician for help.
1111 )))
1112
1113 (((
1114
1115 )))
1116
1117 (((
1118 **FCC Radiation Exposure Statement:**
1119 )))
1120
1121 (((
1122 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1123 )))
1124
1125
1126 = 11. Support =
1127
1128 * (((
1129 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1130 )))
1131 * (((
1132 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1133 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0