Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21 = 1.Introduction =
22
23 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
24
25 (((
26 (((
27 (((
28 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
29 )))
30 )))
31
32 (((
33 (((
34 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
35 )))
36 )))
37
38 (((
39 (((
40 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42 )))
43
44 (((
45 (((
46 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
47 )))
48
49 (((
50 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
51 )))
52 )))
53 )))
54
55 [[image:1653267211009-519.png||height="419" width="724"]]
56
57
58 == 1.2 Specifications ==
59
60
61 **Hardware System:**
62
63 * STM32L072CZT6 MCU
64 * SX1276/78 Wireless Chip 
65 * Power Consumption (exclude RS485 device):
66 ** Idle: 32mA@12v
67 ** 20dB Transmit: 65mA@12v
68
69 **Interface for Model:**
70
71 * RS485
72 * Power Input 7~~ 24V DC. 
73
74 **LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C protocol (default Class C)
98 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
99 * AT Commands to change parameters
100 * Remote configure parameters via LoRa Downlink
101 * Firmware upgradable via program port
102 * Support multiply RS485 devices by flexible rules
103 * Support Modbus protocol
104 * Support Interrupt uplink (Since hardware version v1.2)
105
106 == 1.4 Applications ==
107
108 * Smart Buildings & Home Automation
109 * Logistics and Supply Chain Management
110 * Smart Metering
111 * Smart Agriculture
112 * Smart Cities
113 * Smart Factory
114
115 == 1.5 Firmware Change log ==
116
117 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
118
119
120 == 1.6 Hardware Change log ==
121
122 (((
123 (((
124 v1.2: Add External Interrupt Pin.
125
126 v1.0: Release
127
128
129 )))
130 )))
131
132 = 2. Power ON Device =
133
134 (((
135 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
136
137 * Power Source VIN to RS485-LN VIN+
138 * Power Source GND to RS485-LN VIN-
139
140 (((
141 Once there is power, the RS485-LN will be on.
142 )))
143
144 [[image:1653268091319-405.png]]
145
146
147 )))
148
149 = 3. Operation Mode =
150
151 == 3.1 How it works? ==
152
153 (((
154 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
155
156
157 )))
158
159 == 3.2 Example to join LoRaWAN network ==
160
161 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
162
163 [[image:1653268155545-638.png||height="334" width="724"]]
164
165
166 (((
167 (((
168 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
169 )))
170
171 (((
172 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
173 )))
174
175 [[image:1653268227651-549.png||height="592" width="720"]]
176
177 (((
178 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
179 )))
180
181 (((
182 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
183 )))
184
185 (((
186 Each RS485-LN is shipped with a sticker with unique device EUI:
187 )))
188 )))
189
190 [[image:1652953462722-299.png]]
191
192 (((
193 (((
194 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
195 )))
196
197 (((
198 Add APP EUI in the application.
199 )))
200 )))
201
202 [[image:image-20220519174512-1.png]]
203
204 [[image:image-20220519174512-2.png||height="323" width="720"]]
205
206 [[image:image-20220519174512-3.png||height="556" width="724"]]
207
208 [[image:image-20220519174512-4.png]]
209
210 You can also choose to create the device manually.
211
212 [[image:1652953542269-423.png||height="710" width="723"]]
213
214 Add APP KEY and DEV EUI
215
216 [[image:1652953553383-907.png||height="514" width="724"]]
217
218
219 (((
220 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
221 )))
222
223 [[image:1652953568895-172.png||height="232" width="724"]]
224
225
226 == 3.3 Configure Commands to read data ==
227
228 (((
229 (((
230 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
231 )))
232
233 (((
234 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
235
236
237 )))
238 )))
239
240 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
241
242 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
243
244 (% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
245 |(% style="width:128px" %)(((
246 **AT Commands**
247 )))|(% style="width:305px" %)(((
248 **Description**
249 )))|(% style="width:346px" %)(((
250 **Example**
251 )))
252 |(% style="width:128px" %)(((
253 AT+BAUDR
254 )))|(% style="width:305px" %)(((
255 Set the baud rate (for RS485 connection). Default Value is: 9600.
256 )))|(% style="width:346px" %)(((
257 (((
258 AT+BAUDR=9600
259 )))
260
261 (((
262 Options: (1200,2400,4800,14400,19200,115200)
263 )))
264 )))
265 |(% style="width:128px" %)(((
266 AT+PARITY
267 )))|(% style="width:305px" %)(((
268 Set UART parity (for RS485 connection)
269 )))|(% style="width:346px" %)(((
270 (((
271 AT+PARITY=0
272 )))
273
274 (((
275 Option: 0: no parity, 1: odd parity, 2: even parity
276 )))
277 )))
278 |(% style="width:128px" %)(((
279 AT+STOPBIT
280 )))|(% style="width:305px" %)(((
281 (((
282 Set serial stopbit (for RS485 connection)
283 )))
284
285 (((
286
287 )))
288 )))|(% style="width:346px" %)(((
289 (((
290 AT+STOPBIT=0 for 1bit
291 )))
292
293 (((
294 AT+STOPBIT=1 for 1.5 bit
295 )))
296
297 (((
298 AT+STOPBIT=2 for 2 bits
299 )))
300 )))
301
302 === 3.3.2 Configure sensors ===
303
304 (((
305 (((
306 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
307 )))
308 )))
309
310 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
311 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
312 |AT+CFGDEV|(% style="width:418px" %)(((
313 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
314
315 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
316
317 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
318 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
319
320 === 3.3.3 Configure read commands for each sampling ===
321
322 (((
323 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
324
325 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
326
327 This section describes how to achieve above goals.
328
329 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
330
331
332 **Each RS485 commands include two parts:**
333
334 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
335
336 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
337
338 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
339
340
341 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
342
343
344 Below are examples for the how above AT Commands works.
345
346
347 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
348
349 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
350 |(% style="width:496px" %)(((
351 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
352
353 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
354
355 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
356 )))
357
358 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
359
360 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
361
362
363 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
364
365 (% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
366 |(% style="width:722px" %)(((
367 **AT+DATACUTx=a,b,c**
368
369 * **a: length for the return of AT+COMMAND**
370 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
371 * **c: define the position for valid value.  **
372 )))
373
374 **Examples:**
375
376 * Grab bytes:
377
378 [[image:image-20220602153621-1.png]]
379
380
381 * Grab a section.
382
383 [[image:image-20220602153621-2.png]]
384
385
386 * Grab different sections.
387
388 [[image:image-20220602153621-3.png]]
389
390
391 )))
392
393 === 3.3.4 Compose the uplink payload ===
394
395 (((
396 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
397
398
399 )))
400
401 (((
402 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
403
404
405 )))
406
407 (((
408 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
409 )))
410
411 (((
412 Final Payload is
413 )))
414
415 (((
416 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
417 )))
418
419 (((
420 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
421 )))
422
423 [[image:1653269759169-150.png||height="513" width="716"]]
424
425
426 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
427
428
429 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
430
431 Final Payload is
432
433 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
434
435
436 1. PAYVER: Defined by AT+PAYVER
437 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
438 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
439 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
440
441 [[image:image-20220602155039-4.png]]
442
443
444 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
445
446 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
447
448 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
449
450 DATA3=the rest of Valid value of RETURN10= **30**
451
452
453 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
454
455 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
456
457 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
458
459 * For US915 band, max 11 bytes for each uplink.
460
461 ~* For all other bands: max 51 bytes for each uplink.
462
463
464 Below are the uplink payloads:
465
466 [[image:1654157178836-407.png]]
467
468
469 === 3.3.5 Uplink on demand ===
470
471 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
472
473 Downlink control command:
474
475 **0x08 command**: Poll an uplink with current command set in RS485-LN.
476
477 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
478
479
480
481 === 3.3.6 Uplink on Interrupt ===
482
483 RS485-LN support external Interrupt uplink since hardware v1.2 release.
484
485 [[image:1654157342174-798.png]]
486
487 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
488
489
490 == 3.4 Uplink Payload ==
491
492 (% border="1" style="background-color:#4bacc6; color:white; width:734px" %)
493 |**Size(bytes)**|(% style="width:120px" %)**2**|(% style="width:116px" %)**1**|(% style="width:386px" %)**Length depends on the return from the commands**
494 |Value|(% style="width:120px" %)(((
495 Battery(mV)
496
497 &
498
499 Interrupt _Flag
500 )))|(% style="width:116px" %)(((
501 PAYLOAD_VER
502
503
504 )))|(% style="width:386px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
505
506 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
507
508
509 == 3.5 Configure RS485-BL via AT or Downlink ==
510
511 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
512
513 There are two kinds of Commands:
514
515 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
516
517 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
518
519 === 3.5.1 Common Commands ===
520
521 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
522
523
524 === 3.5.2 Sensor related commands ===
525
526 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
527
528 [[image:image-20220602163333-5.png||height="263" width="1160"]]
529
530 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
531
532
533 === 3.5.3 Sensor related commands ===
534
535
536
537 ==== **RS485 Debug Command** ====
538
539 This command is used to configure the RS485 devices; they won’t be used during sampling.
540
541 * **AT Command**
542
543 (% class="box infomessage" %)
544 (((
545 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
546 )))
547
548 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
549
550 * **Downlink Payload**
551
552 Format: A8 MM NN XX XX XX XX YY
553
554 Where:
555
556 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
557 * NN: The length of RS485 command
558 * XX XX XX XX: RS485 command total NN bytes
559 * YY: How many bytes will be uplink from the return of this RS485 command,
560 ** if YY=0, RS485-LN will execute the downlink command without uplink;
561 ** if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
562 ** if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
563
564 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
565
566 To connect a Modbus Alarm with below commands.
567
568 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
569
570 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
571
572 So if user want to use downlink command to control to RS485 Alarm, he can use:
573
574 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
575
576 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
577
578 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
579
580
581 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
582
583 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
584
585
586 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
587
588 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
589
590 [[image:1654159460680-153.png]]
591
592
593
594 ==== **Set Payload version** ====
595
596 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
597
598 * **AT Command:**
599
600 (% class="box infomessage" %)
601 (((
602 **AT+PAYVER: Set PAYVER field = 1**
603 )))
604
605 * **Downlink Payload:**
606
607 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
608
609 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
610
611
612
613 ==== **Set RS485 Sampling Commands** ====
614
615 AT+COMMANDx or AT+DATACUTx
616
617 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
618
619
620 * **AT Command:**
621
622 (% class="box infomessage" %)
623 (((
624 **AT+COMMANDx: Configure RS485 read command to sensor.**
625 )))
626
627 (% class="box infomessage" %)
628 (((
629 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
630 )))
631
632
633 * **Downlink Payload:**
634
635 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
636
637 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
638
639 Format: AF MM NN LL XX XX XX XX YY
640
641 Where:
642
643 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
644 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
645 * LL:  The length of AT+COMMAND or AT+DATACUT command
646 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
647 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
648
649 **Example:**
650
651 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
652
653 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
654
655 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
656
657
658
659 ==== **Fast command to handle MODBUS device** ====
660
661 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
662
663 This command is valid since v1.3 firmware version
664
665 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
666
667
668 **Example:**
669
670 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
671 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
672 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
673
674 [[image:image-20220602165351-6.png]]
675
676 [[image:image-20220602165351-7.png]]
677
678
679
680 ==== **RS485 command timeout** ====
681
682 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
683
684 Default value: 0, range:  0 ~~ 65 seconds
685
686 * **AT Command:**
687
688 (% class="box infomessage" %)
689 (((
690 **AT+CMDDLaa=hex(bb cc)*1000**
691 )))
692
693 **Example:**
694
695 **AT+CMDDL1=1000** to send the open time to 1000ms
696
697
698 * **Downlink Payload:**
699
700 **0x AA aa bb cc**
701
702 Same as: AT+CMDDLaa=hex(bb cc)*1000
703
704 **Example:**
705
706 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
707
708
709
710 ==== **Uplink payload mode** ====
711
712 Define to use one uplink or multiple uplinks for the sampling.
713
714 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
715
716 * **AT Command:**
717
718 (% class="box infomessage" %)
719 (((
720 **AT+DATAUP=0**
721 )))
722
723 (% class="box infomessage" %)
724 (((
725 **AT+DATAUP=1**
726 )))
727
728
729 * **Downlink Payload:**
730
731 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
732
733 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
734
735
736
737 ==== **Manually trigger an Uplink** ====
738
739 Ask device to send an uplink immediately.
740
741 * **AT Command:**
742
743 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
744
745
746 * **Downlink Payload:**
747
748 **0x08 FF**, RS485-LN will immediately send an uplink.
749
750
751
752 ==== **Clear RS485 Command** ====
753
754 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
755
756 * **AT Command:**
757
758 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
759
760 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
761
762 Example screen shot after clear all RS485 commands. 
763
764
765 The uplink screen shot is:
766
767 [[image:1654160691922-496.png]]
768
769
770 * **Downlink Payload:**
771
772 **0x09 aa bb** same as AT+CMDEAR=aa,bb
773
774
775
776 ==== **Set Serial Communication Parameters** ====
777
778 Set the Rs485 serial communication parameters:
779
780 * **AT Command:**
781
782 Set Baud Rate:
783
784 (% class="box infomessage" %)
785 (((
786 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
787 )))
788
789 Set UART Parity
790
791 (% class="box infomessage" %)
792 (((
793 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
794 )))
795
796 Set STOPBIT
797
798 (% class="box infomessage" %)
799 (((
800 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
801 )))
802
803
804 * **Downlink Payload:**
805
806 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
807
808 **Example:**
809
810 * A7 01 00 60   same as AT+BAUDR=9600
811 * A7 01 04 80  same as AT+BAUDR=115200
812
813 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
814
815 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
816
817
818 == 3.6 Listening mode for RS485 network ==
819
820 This feature support since firmware v1.4
821
822 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
823
824 [[image:image-20220602171200-8.png||height="567" width="1007"]]
825
826 To enable the listening mode, use can run the command AT+RXMODE.
827
828
829 (% border="1" style="background-color:#ffffcc; width:500px" %)
830 |=(% style="width: 161px;" %)**Command example:**|=(% style="width: 337px;" %)**Function**
831 |(% style="width:161px" %)AT+RXMODE=1,10 |(% style="width:337px" %)Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
832 |(% style="width:161px" %)AT+RXMODE=2,500|(% style="width:337px" %)Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
833 |(% style="width:161px" %)AT+RXMODE=0,0|(% style="width:337px" %)Disable listening mode. This is the default settings.
834 |(% style="width:161px" %) |(% style="width:337px" %)A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 ~| cc)
835
836 **Downlink Command:**
837
838 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
839
840
841 **Example**:
842
843 The RS485-LN is set to AT+RXMODE=2,1000
844
845 There is a two Modbus commands in the RS485 network as below:
846
847 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
848
849 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
850
851 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
852
853 [[image:image-20220602171200-9.png]]
854
855
856 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
857
858
859 == 3.7 Buttons ==
860
861
862 (% border="1" style="background-color:#f7faff; width:500px" %)
863 |=**Button**|=(% style="width: 1420px;" %)**Feature**
864 |**ACT**|(% style="width:1420px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
865 |**RST**|(% style="width:1420px" %)Reboot RS485
866 |**PRO**|(% style="width:1420px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
867
868
869 == 3.8 LEDs ==
870
871 (% border="1" style="background-color:#f7faff; width:500px" %)
872 |=**LEDs**|=**Feature**
873 |**PWR**|Always on if there is power
874 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN** (%%)for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds**(%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
875
876
877 = 4. Case Study =
878
879 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
880
881
882 = 5. Use AT Command =
883
884 == 5.1 Access AT Command ==
885
886 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
887
888 [[image:1654162355560-817.png]]
889
890
891 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
892
893 [[image:1654162368066-342.png]]
894
895
896 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
897
898
899 == 5.2 Common AT Command Sequence ==
900
901 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
902
903 If device has not joined network yet:
904
905 (% class="box infomessage" %)
906 (((
907 **AT+FDR**
908 )))
909
910 (% class="box infomessage" %)
911 (((
912 **AT+NJM=0**
913 )))
914
915 (% class="box infomessage" %)
916 (((
917 **ATZ**
918 )))
919
920
921 If device already joined network:
922
923 (% class="box infomessage" %)
924 (((
925 **AT+NJM=0**
926 )))
927
928 (% class="box infomessage" %)
929 (((
930 **ATZ**
931 )))
932
933
934 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
935
936
937 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
938
939 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
940
941 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
942
943 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
944
945 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
946
947 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
948
949 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
950
951 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
952
953 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
954
955 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
956
957
958 (% style="color:red" %)**Note:**
959
960 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
961 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
962 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
963 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
964
965 [[image:1654162478620-421.png]]
966
967
968 = 6. FAQ =
969
970 == 6.1 How to upgrade the image? ==
971
972 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
973
974 * Support new features
975 * For bug fix
976 * Change LoRaWAN bands.
977
978 Below shows the hardware connection for how to upload an image to RS485-LN:
979
980 [[image:1654162535040-878.png]]
981
982 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
983
984 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
985
986 **Step3: **Open flashloader; choose the correct COM port to update.
987
988 (((
989 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
990 )))
991
992
993 [[image:image-20220602175818-12.png]]
994
995
996 [[image:image-20220602175848-13.png]]
997
998
999 [[image:image-20220602175912-14.png]]
1000
1001
1002 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1003
1004 [[image:image-20220602175638-10.png]]
1005
1006
1007 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1008
1009 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1010
1011
1012 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1013
1014 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1015
1016
1017 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1018
1019 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1020
1021 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1022
1023
1024 = 7. Trouble Shooting =
1025
1026 == 7.1 Downlink doesn’t work, how to solve it? ==
1027
1028 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1029
1030
1031 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1032
1033 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1034
1035
1036 = 8. Order Info =
1037
1038 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1039
1040 (% style="color:blue" %)**XXX:**
1041
1042 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1043 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1044 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1045 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1046 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1047 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1048 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1049 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1050 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1051 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1052
1053
1054
1055 = 9.Packing Info =
1056
1057
1058 **Package Includes**:
1059
1060 * RS485-LN x 1
1061 * Stick Antenna for LoRa RF part x 1
1062 * Program cable x 1
1063
1064 **Dimension and weight**:
1065
1066 * Device Size: 13.5 x 7 x 3 cm
1067 * Device Weight: 105g
1068 * Package Size / pcs : 14.5 x 8 x 5 cm
1069 * Weight / pcs : 170g
1070
1071
1072
1073 = 10. FCC Caution for RS485LN-US915 =
1074
1075 (((
1076 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1077 )))
1078
1079 (((
1080 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1081 )))
1082
1083 (((
1084
1085 )))
1086
1087 (((
1088 **IMPORTANT NOTE:**
1089 )))
1090
1091 (((
1092 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1093 )))
1094
1095 (((
1096 —Reorient or relocate the receiving antenna.
1097 )))
1098
1099 (((
1100 —Increase the separation between the equipment and receiver.
1101 )))
1102
1103 (((
1104 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1105 )))
1106
1107 (((
1108 —Consult the dealer or an experienced radio/TV technician for help.
1109 )))
1110
1111 (((
1112
1113 )))
1114
1115 (((
1116 **FCC Radiation Exposure Statement:**
1117 )))
1118
1119 (((
1120 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1121 )))
1122
1123
1124 = 11. Support =
1125
1126 * (((
1127 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1128 )))
1129 * (((
1130 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1131 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0