Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21 = 1.Introduction =
22
23 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
24
25 (((
26 (((
27 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
28 )))
29
30 (((
31 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
32 )))
33
34 (((
35 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
36 )))
37
38 (((
39 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
40
41 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
42 )))
43 )))
44
45 [[image:1653267211009-519.png||height="419" width="724"]]
46
47
48 == 1.2 Specifications ==
49
50
51 **Hardware System:**
52
53 * STM32L072CZT6 MCU
54 * SX1276/78 Wireless Chip 
55 * Power Consumption (exclude RS485 device):
56 ** Idle: 32mA@12v
57 ** 20dB Transmit: 65mA@12v
58
59 **Interface for Model:**
60
61 * RS485
62 * Power Input 7~~ 24V DC. 
63
64 **LoRa Spec:**
65
66 * Frequency Range:
67 ** Band 1 (HF): 862 ~~ 1020 Mhz
68 ** Band 2 (LF): 410 ~~ 528 Mhz
69 * 168 dB maximum link budget.
70 * +20 dBm - 100 mW constant RF output vs.
71 * +14 dBm high efficiency PA.
72 * Programmable bit rate up to 300 kbps.
73 * High sensitivity: down to -148 dBm.
74 * Bullet-proof front end: IIP3 = -12.5 dBm.
75 * Excellent blocking immunity.
76 * Low RX current of 10.3 mA, 200 nA register retention.
77 * Fully integrated synthesizer with a resolution of 61 Hz.
78 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
79 * Built-in bit synchronizer for clock recovery.
80 * Preamble detection.
81 * 127 dB Dynamic Range RSSI.
82 * Automatic RF Sense and CAD with ultra-fast AFC.
83 * Packet engine up to 256 bytes with CRC
84
85 == 1.3 Features ==
86
87 * LoRaWAN Class A & Class C protocol (default Class C)
88 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
89 * AT Commands to change parameters
90 * Remote configure parameters via LoRa Downlink
91 * Firmware upgradable via program port
92 * Support multiply RS485 devices by flexible rules
93 * Support Modbus protocol
94 * Support Interrupt uplink (Since hardware version v1.2)
95
96 == 1.4 Applications ==
97
98 * Smart Buildings & Home Automation
99 * Logistics and Supply Chain Management
100 * Smart Metering
101 * Smart Agriculture
102 * Smart Cities
103 * Smart Factory
104
105 == 1.5 Firmware Change log ==
106
107 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
108
109
110 == 1.6 Hardware Change log ==
111
112 (((
113 (((
114 v1.2: Add External Interrupt Pin.
115
116 v1.0: Release
117
118
119 )))
120 )))
121
122 = 2. Power ON Device =
123
124 (((
125 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
126
127 * Power Source VIN to RS485-LN VIN+
128 * Power Source GND to RS485-LN VIN-
129
130 (((
131 Once there is power, the RS485-LN will be on.
132 )))
133
134 [[image:1653268091319-405.png]]
135
136
137 )))
138
139 = 3. Operation Mode =
140
141 == 3.1 How it works? ==
142
143 (((
144 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
145
146
147 )))
148
149 == 3.2 Example to join LoRaWAN network ==
150
151 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
152
153 [[image:1653268155545-638.png||height="334" width="724"]]
154
155
156 (((
157 (((
158 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
159 )))
160
161 (((
162 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
163 )))
164
165 [[image:1653268227651-549.png||height="592" width="720"]]
166
167 (((
168 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
169 )))
170
171 (((
172 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
173 )))
174
175 (((
176 Each RS485-LN is shipped with a sticker with unique device EUI:
177 )))
178 )))
179
180 [[image:1652953462722-299.png]]
181
182 (((
183 (((
184 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
185 )))
186
187 (((
188 Add APP EUI in the application.
189 )))
190 )))
191
192 [[image:image-20220519174512-1.png]]
193
194 [[image:image-20220519174512-2.png||height="323" width="720"]]
195
196 [[image:image-20220519174512-3.png||height="556" width="724"]]
197
198 [[image:image-20220519174512-4.png]]
199
200 You can also choose to create the device manually.
201
202 [[image:1652953542269-423.png||height="710" width="723"]]
203
204 Add APP KEY and DEV EUI
205
206 [[image:1652953553383-907.png||height="514" width="724"]]
207
208
209 (((
210 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
211 )))
212
213 [[image:1652953568895-172.png||height="232" width="724"]]
214
215
216 == 3.3 Configure Commands to read data ==
217
218 (((
219 (((
220 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
221 )))
222
223 (((
224 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
225
226
227 )))
228 )))
229
230 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
231
232 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
233
234 (% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
235 |(% style="width:128px" %)(((
236 **AT Commands**
237 )))|(% style="width:305px" %)(((
238 **Description**
239 )))|(% style="width:346px" %)(((
240 **Example**
241 )))
242 |(% style="width:128px" %)(((
243 AT+BAUDR
244 )))|(% style="width:305px" %)(((
245 Set the baud rate (for RS485 connection). Default Value is: 9600.
246 )))|(% style="width:346px" %)(((
247 (((
248 AT+BAUDR=9600
249 )))
250
251 (((
252 Options: (1200,2400,4800,14400,19200,115200)
253 )))
254 )))
255 |(% style="width:128px" %)(((
256 AT+PARITY
257 )))|(% style="width:305px" %)(((
258 Set UART parity (for RS485 connection)
259 )))|(% style="width:346px" %)(((
260 (((
261 AT+PARITY=0
262 )))
263
264 (((
265 Option: 0: no parity, 1: odd parity, 2: even parity
266 )))
267 )))
268 |(% style="width:128px" %)(((
269 AT+STOPBIT
270 )))|(% style="width:305px" %)(((
271 (((
272 Set serial stopbit (for RS485 connection)
273 )))
274
275 (((
276
277 )))
278 )))|(% style="width:346px" %)(((
279 (((
280 AT+STOPBIT=0 for 1bit
281 )))
282
283 (((
284 AT+STOPBIT=1 for 1.5 bit
285 )))
286
287 (((
288 AT+STOPBIT=2 for 2 bits
289 )))
290 )))
291
292 === 3.3.2 Configure sensors ===
293
294 (((
295 (((
296 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
297 )))
298 )))
299
300 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
301 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
302 |AT+CFGDEV|(% style="width:418px" %)(((
303 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
304
305 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
306
307 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
308 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
309
310 === 3.3.3 Configure read commands for each sampling ===
311
312 (((
313 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
314
315 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
316
317 This section describes how to achieve above goals.
318
319 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
320
321
322 **Each RS485 commands include two parts:**
323
324 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
325
326 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
327
328 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
329
330
331 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
332
333
334 Below are examples for the how above AT Commands works.
335
336
337 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
338
339 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
340 |(% style="width:496px" %)(((
341 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
342
343 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
344
345 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
346 )))
347
348 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
349
350 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
351
352
353 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
354
355 (% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
356 |(% style="width:722px" %)(((
357 **AT+DATACUTx=a,b,c**
358
359 * **a: length for the return of AT+COMMAND**
360 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
361 * **c: define the position for valid value.  **
362 )))
363
364 **Examples:**
365
366 * Grab bytes:
367
368 [[image:image-20220602153621-1.png]]
369
370
371 * Grab a section.
372
373 [[image:image-20220602153621-2.png]]
374
375
376 * Grab different sections.
377
378 [[image:image-20220602153621-3.png]]
379
380
381 )))
382
383 === 3.3.4 Compose the uplink payload ===
384
385 (((
386 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
387
388
389 )))
390
391 (((
392 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
393
394
395 )))
396
397 (((
398 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
399 )))
400
401 (((
402 Final Payload is
403 )))
404
405 (((
406 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
407 )))
408
409 (((
410 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
411 )))
412
413 [[image:1653269759169-150.png||height="513" width="716"]]
414
415
416 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
417
418
419 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
420
421 Final Payload is
422
423 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
424
425
426 1. PAYVER: Defined by AT+PAYVER
427 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
428 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
429 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
430
431 [[image:image-20220602155039-4.png]]
432
433
434 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
435
436 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
437
438 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
439
440 DATA3=the rest of Valid value of RETURN10= **30**
441
442
443 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
444
445 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
446
447 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
448
449 * For US915 band, max 11 bytes for each uplink.
450
451 ~* For all other bands: max 51 bytes for each uplink.
452
453
454 Below are the uplink payloads:
455
456 [[image:1654157178836-407.png]]
457
458
459 === 3.3.5 Uplink on demand ===
460
461 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
462
463 Downlink control command:
464
465 **0x08 command**: Poll an uplink with current command set in RS485-LN.
466
467 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
468
469
470
471 === 3.3.6 Uplink on Interrupt ===
472
473 RS485-LN support external Interrupt uplink since hardware v1.2 release.
474
475 [[image:1654157342174-798.png]]
476
477 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
478
479
480 == 3.4 Uplink Payload ==
481
482 (% border="1" style="background-color:#4bacc6; color:white; width:734px" %)
483 |**Size(bytes)**|(% style="width:120px" %)**2**|(% style="width:116px" %)**1**|(% style="width:386px" %)**Length depends on the return from the commands**
484 |Value|(% style="width:120px" %)(((
485 Battery(mV)
486
487 &
488
489 Interrupt _Flag
490 )))|(% style="width:116px" %)(((
491 PAYLOAD_VER
492
493
494 )))|(% style="width:386px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
495
496 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
497
498
499 == 3.5 Configure RS485-BL via AT or Downlink ==
500
501 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
502
503 There are two kinds of Commands:
504
505 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
506
507 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
508
509 === 3.5.1 Common Commands ===
510
511 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
512
513
514 === 3.5.2 Sensor related commands ===
515
516 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
517
518 [[image:image-20220602163333-5.png||height="263" width="1160"]]
519
520 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
521
522
523 === 3.5.3 Sensor related commands ===
524
525
526
527 ==== **RS485 Debug Command** ====
528
529 This command is used to configure the RS485 devices; they won’t be used during sampling.
530
531 * **AT Command**
532
533 (% class="box infomessage" %)
534 (((
535 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
536 )))
537
538 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
539
540 * **Downlink Payload**
541
542 Format: A8 MM NN XX XX XX XX YY
543
544 Where:
545
546 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
547 * NN: The length of RS485 command
548 * XX XX XX XX: RS485 command total NN bytes
549 * YY: How many bytes will be uplink from the return of this RS485 command,
550 ** if YY=0, RS485-LN will execute the downlink command without uplink;
551 ** if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
552 ** if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
553
554 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
555
556 To connect a Modbus Alarm with below commands.
557
558 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
559
560 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
561
562 So if user want to use downlink command to control to RS485 Alarm, he can use:
563
564 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
565
566 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
567
568 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
569
570
571 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
572
573 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
574
575
576 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
577
578 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
579
580 [[image:1654159460680-153.png]]
581
582
583
584 ==== **Set Payload version** ====
585
586 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
587
588 * **AT Command:**
589
590 (% class="box infomessage" %)
591 (((
592 **AT+PAYVER: Set PAYVER field = 1**
593 )))
594
595 * **Downlink Payload:**
596
597 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
598
599 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
600
601
602
603 ==== **Set RS485 Sampling Commands** ====
604
605 AT+COMMANDx or AT+DATACUTx
606
607 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
608
609
610 * **AT Command:**
611
612 (% class="box infomessage" %)
613 (((
614 **AT+COMMANDx: Configure RS485 read command to sensor.**
615 )))
616
617 (% class="box infomessage" %)
618 (((
619 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
620 )))
621
622
623 * **Downlink Payload:**
624
625 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
626
627 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
628
629 Format: AF MM NN LL XX XX XX XX YY
630
631 Where:
632
633 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
634 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
635 * LL:  The length of AT+COMMAND or AT+DATACUT command
636 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
637 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
638
639 **Example:**
640
641 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
642
643 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
644
645 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
646
647
648
649 ==== **Fast command to handle MODBUS device** ====
650
651 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
652
653 This command is valid since v1.3 firmware version
654
655 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
656
657
658 **Example:**
659
660 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
661 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
662 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
663
664 [[image:image-20220602165351-6.png]]
665
666 [[image:image-20220602165351-7.png]]
667
668
669
670 ==== **RS485 command timeout** ====
671
672 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
673
674 Default value: 0, range:  0 ~~ 65 seconds
675
676 * **AT Command:**
677
678 (% class="box infomessage" %)
679 (((
680 **AT+CMDDLaa=hex(bb cc)*1000**
681 )))
682
683 **Example:**
684
685 **AT+CMDDL1=1000** to send the open time to 1000ms
686
687
688 * **Downlink Payload:**
689
690 **0x AA aa bb cc**
691
692 Same as: AT+CMDDLaa=hex(bb cc)*1000
693
694 **Example:**
695
696 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
697
698
699
700 ==== **Uplink payload mode** ====
701
702 Define to use one uplink or multiple uplinks for the sampling.
703
704 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
705
706 * **AT Command:**
707
708 (% class="box infomessage" %)
709 (((
710 **AT+DATAUP=0**
711 )))
712
713 (% class="box infomessage" %)
714 (((
715 **AT+DATAUP=1**
716 )))
717
718
719 * **Downlink Payload:**
720
721 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
722
723 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
724
725
726
727 ==== **Manually trigger an Uplink** ====
728
729 Ask device to send an uplink immediately.
730
731 * **AT Command:**
732
733 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
734
735
736 * **Downlink Payload:**
737
738 **0x08 FF**, RS485-LN will immediately send an uplink.
739
740
741
742 ==== **Clear RS485 Command** ====
743
744 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
745
746 * **AT Command:**
747
748 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
749
750 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
751
752 Example screen shot after clear all RS485 commands. 
753
754
755 The uplink screen shot is:
756
757 [[image:1654160691922-496.png]]
758
759
760 * **Downlink Payload:**
761
762 **0x09 aa bb** same as AT+CMDEAR=aa,bb
763
764
765
766 ==== **Set Serial Communication Parameters** ====
767
768 Set the Rs485 serial communication parameters:
769
770 * **AT Command:**
771
772 Set Baud Rate:
773
774 (% class="box infomessage" %)
775 (((
776 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
777 )))
778
779 Set UART Parity
780
781 (% class="box infomessage" %)
782 (((
783 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
784 )))
785
786 Set STOPBIT
787
788 (% class="box infomessage" %)
789 (((
790 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
791 )))
792
793
794 * **Downlink Payload:**
795
796 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
797
798 **Example:**
799
800 * A7 01 00 60   same as AT+BAUDR=9600
801 * A7 01 04 80  same as AT+BAUDR=115200
802
803 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
804
805 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
806
807
808 == 3.6 Listening mode for RS485 network ==
809
810 This feature support since firmware v1.4
811
812 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
813
814 [[image:image-20220602171200-8.png||height="567" width="1007"]]
815
816 To enable the listening mode, use can run the command AT+RXMODE.
817
818
819 (% border="1" style="background-color:#ffffcc; width:500px" %)
820 |=(% style="width: 161px;" %)**Command example:**|=(% style="width: 337px;" %)**Function**
821 |(% style="width:161px" %)AT+RXMODE=1,10 |(% style="width:337px" %)Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
822 |(% style="width:161px" %)AT+RXMODE=2,500|(% style="width:337px" %)Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
823 |(% style="width:161px" %)AT+RXMODE=0,0|(% style="width:337px" %)Disable listening mode. This is the default settings.
824 |(% style="width:161px" %) |(% style="width:337px" %)A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 ~| cc)
825
826 **Downlink Command:**
827
828 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
829
830
831 **Example**:
832
833 The RS485-LN is set to AT+RXMODE=2,1000
834
835 There is a two Modbus commands in the RS485 network as below:
836
837 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
838
839 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
840
841 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
842
843 [[image:image-20220602171200-9.png]]
844
845
846 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
847
848
849 == 3.7 Buttons ==
850
851
852 (% border="1" style="background-color:#f7faff; width:500px" %)
853 |=**Button**|=(% style="width: 1420px;" %)**Feature**
854 |**ACT**|(% style="width:1420px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
855 |**RST**|(% style="width:1420px" %)Reboot RS485
856 |**PRO**|(% style="width:1420px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
857
858
859 == 3.8 LEDs ==
860
861 (% border="1" style="background-color:#f7faff; width:500px" %)
862 |=**LEDs**|=**Feature**
863 |**PWR**|Always on if there is power
864 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN** (%%)for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds**(%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
865
866
867 = 4. Case Study =
868
869 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
870
871
872 = 5. Use AT Command =
873
874 == 5.1 Access AT Command ==
875
876 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
877
878 [[image:1654162355560-817.png]]
879
880
881 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
882
883 [[image:1654162368066-342.png]]
884
885
886 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
887
888
889 == 5.2 Common AT Command Sequence ==
890
891 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
892
893 If device has not joined network yet:
894
895 (% class="box infomessage" %)
896 (((
897 **AT+FDR**
898 )))
899
900 (% class="box infomessage" %)
901 (((
902 **AT+NJM=0**
903 )))
904
905 (% class="box infomessage" %)
906 (((
907 **ATZ**
908 )))
909
910
911 If device already joined network:
912
913 (% class="box infomessage" %)
914 (((
915 **AT+NJM=0**
916 )))
917
918 (% class="box infomessage" %)
919 (((
920 **ATZ**
921 )))
922
923
924 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
925
926
927 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
928
929 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
930
931 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
932
933 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
934
935 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
936
937 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
938
939 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
940
941 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
942
943 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
944
945 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
946
947
948 (% style="color:red" %)**Note:**
949
950 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
951 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
952 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
953 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
954
955 [[image:1654162478620-421.png]]
956
957
958 = 6. FAQ =
959
960 == 6.1 How to upgrade the image? ==
961
962 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
963
964 * Support new features
965 * For bug fix
966 * Change LoRaWAN bands.
967
968 Below shows the hardware connection for how to upload an image to RS485-LN:
969
970 [[image:1654162535040-878.png]]
971
972 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
973
974 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
975
976 **Step3: **Open flashloader; choose the correct COM port to update.
977
978 (((
979 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
980 )))
981
982
983 [[image:image-20220602175818-12.png]]
984
985
986 [[image:image-20220602175848-13.png]]
987
988
989 [[image:image-20220602175912-14.png]]
990
991
992 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
993
994 [[image:image-20220602175638-10.png]]
995
996
997 == 6.2 How to change the LoRa Frequency Bands/Region? ==
998
999 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1000
1001
1002 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1003
1004 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1005
1006
1007 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1008
1009 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1010
1011 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1012
1013
1014 = 7. Trouble Shooting =
1015
1016 == 7.1 Downlink doesn’t work, how to solve it? ==
1017
1018 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1019
1020
1021 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1022
1023 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1024
1025
1026 = 8. Order Info =
1027
1028 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1029
1030 (% style="color:blue" %)**XXX:**
1031
1032 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1033 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1034 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1035 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1036 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1037 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1038 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1039 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1040 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1041 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1042
1043
1044
1045 = 9.Packing Info =
1046
1047
1048 **Package Includes**:
1049
1050 * RS485-LN x 1
1051 * Stick Antenna for LoRa RF part x 1
1052 * Program cable x 1
1053
1054 **Dimension and weight**:
1055
1056 * Device Size: 13.5 x 7 x 3 cm
1057 * Device Weight: 105g
1058 * Package Size / pcs : 14.5 x 8 x 5 cm
1059 * Weight / pcs : 170g
1060
1061 = 10. FCC Caution for RS485LN-US915 =
1062
1063 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1064
1065 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1066
1067
1068 **IMPORTANT NOTE:**
1069
1070 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1071
1072 —Reorient or relocate the receiving antenna.
1073
1074 —Increase the separation between the equipment and receiver.
1075
1076 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1077
1078 —Consult the dealer or an experienced radio/TV technician for help.
1079
1080
1081 **FCC Radiation Exposure Statement:**
1082
1083 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1084
1085
1086 = 11. Support =
1087
1088 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1089 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0