Version 57.2 by Xiaoling on 2022/06/06 08:41

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9 **Table of Contents:**
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18
19 (((
20 (((
21 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 )))
23
24 (((
25 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 )))
27
28 (((
29 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 )))
31
32 (((
33 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34
35 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
36 )))
37 )))
38
39 [[image:1653267211009-519.png||height="419" width="724"]]
40
41
42 == 1.2 Specifications ==
43
44
45 **Hardware System:**
46
47 * STM32L072CZT6 MCU
48 * SX1276/78 Wireless Chip 
49 * Power Consumption (exclude RS485 device):
50 ** Idle: 32mA@12v
51 ** 20dB Transmit: 65mA@12v
52
53 **Interface for Model:**
54
55 * RS485
56 * Power Input 7~~ 24V DC. 
57
58 **LoRa Spec:**
59
60 * Frequency Range:
61 ** Band 1 (HF): 862 ~~ 1020 Mhz
62 ** Band 2 (LF): 410 ~~ 528 Mhz
63 * 168 dB maximum link budget.
64 * +20 dBm - 100 mW constant RF output vs.
65 * +14 dBm high efficiency PA.
66 * Programmable bit rate up to 300 kbps.
67 * High sensitivity: down to -148 dBm.
68 * Bullet-proof front end: IIP3 = -12.5 dBm.
69 * Excellent blocking immunity.
70 * Low RX current of 10.3 mA, 200 nA register retention.
71 * Fully integrated synthesizer with a resolution of 61 Hz.
72 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
73 * Built-in bit synchronizer for clock recovery.
74 * Preamble detection.
75 * 127 dB Dynamic Range RSSI.
76 * Automatic RF Sense and CAD with ultra-fast AFC.
77 * Packet engine up to 256 bytes with CRC
78
79
80
81 == 1.3 Features ==
82
83 * LoRaWAN Class A & Class C protocol (default Class C)
84 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
85 * AT Commands to change parameters
86 * Remote configure parameters via LoRa Downlink
87 * Firmware upgradable via program port
88 * Support multiply RS485 devices by flexible rules
89 * Support Modbus protocol
90 * Support Interrupt uplink (Since hardware version v1.2)
91
92 == 1.4 Applications ==
93
94 * Smart Buildings & Home Automation
95 * Logistics and Supply Chain Management
96 * Smart Metering
97 * Smart Agriculture
98 * Smart Cities
99 * Smart Factory
100
101 == 1.5 Firmware Change log ==
102
103 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
104
105
106 == 1.6 Hardware Change log ==
107
108 (((
109 (((
110 v1.2: Add External Interrupt Pin.
111
112 v1.0: Release
113
114
115 )))
116 )))
117
118 = 2. Power ON Device =
119
120 (((
121 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
122
123 * Power Source VIN to RS485-LN VIN+
124 * Power Source GND to RS485-LN VIN-
125
126 (((
127 Once there is power, the RS485-LN will be on.
128 )))
129
130 [[image:1653268091319-405.png]]
131
132
133 )))
134
135 = 3. Operation Mode =
136
137 == 3.1 How it works? ==
138
139 (((
140 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
141
142
143 )))
144
145 == 3.2 Example to join LoRaWAN network ==
146
147 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
148
149 [[image:1653268155545-638.png||height="334" width="724"]]
150
151
152 (((
153 (((
154 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
155 )))
156
157 (((
158 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
159 )))
160
161 [[image:1653268227651-549.png||height="592" width="720"]]
162
163 (((
164 The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
165 )))
166
167 (((
168 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
169 )))
170
171 (((
172 Each RS485-LN is shipped with a sticker with unique device EUI:
173 )))
174 )))
175
176 [[image:1652953462722-299.png]]
177
178 (((
179 (((
180 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
181 )))
182
183 (((
184 Add APP EUI in the application.
185 )))
186 )))
187
188 [[image:image-20220519174512-1.png]]
189
190 [[image:image-20220519174512-2.png||height="323" width="720"]]
191
192 [[image:image-20220519174512-3.png||height="556" width="724"]]
193
194 [[image:image-20220519174512-4.png]]
195
196 You can also choose to create the device manually.
197
198 [[image:1652953542269-423.png||height="710" width="723"]]
199
200 Add APP KEY and DEV EUI
201
202 [[image:1652953553383-907.png||height="514" width="724"]]
203
204
205 (((
206 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
207 )))
208
209 [[image:1652953568895-172.png||height="232" width="724"]]
210
211
212 == 3.3 Configure Commands to read data ==
213
214 (((
215 (((
216 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
217 )))
218
219 (((
220 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
221
222
223 )))
224 )))
225
226 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
227
228 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
229
230 (% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
231 |(% style="width:128px" %)(((
232 **AT Commands**
233 )))|(% style="width:305px" %)(((
234 **Description**
235 )))|(% style="width:346px" %)(((
236 **Example**
237 )))
238 |(% style="width:128px" %)(((
239 AT+BAUDR
240 )))|(% style="width:305px" %)(((
241 Set the baud rate (for RS485 connection). Default Value is: 9600.
242 )))|(% style="width:346px" %)(((
243 (((
244 AT+BAUDR=9600
245 )))
246
247 (((
248 Options: (1200,2400,4800,14400,19200,115200)
249 )))
250 )))
251 |(% style="width:128px" %)(((
252 AT+PARITY
253 )))|(% style="width:305px" %)(((
254 Set UART parity (for RS485 connection)
255 )))|(% style="width:346px" %)(((
256 (((
257 AT+PARITY=0
258 )))
259
260 (((
261 Option: 0: no parity, 1: odd parity, 2: even parity
262 )))
263 )))
264 |(% style="width:128px" %)(((
265 AT+STOPBIT
266 )))|(% style="width:305px" %)(((
267 (((
268 Set serial stopbit (for RS485 connection)
269 )))
270
271 (((
272
273 )))
274 )))|(% style="width:346px" %)(((
275 (((
276 AT+STOPBIT=0 for 1bit
277 )))
278
279 (((
280 AT+STOPBIT=1 for 1.5 bit
281 )))
282
283 (((
284 AT+STOPBIT=2 for 2 bits
285 )))
286 )))
287
288 === 3.3.2 Configure sensors ===
289
290 (((
291 (((
292 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
293 )))
294 )))
295
296 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
297 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
298 |AT+CFGDEV|(% style="width:418px" %)(((
299 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
300
301 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
302
303 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
304 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
305
306 === 3.3.3 Configure read commands for each sampling ===
307
308 (((
309 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
310
311 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
312
313 This section describes how to achieve above goals.
314
315 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
316
317
318 **Each RS485 commands include two parts:**
319
320 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
321
322 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
323
324 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
325
326
327 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
328
329
330 Below are examples for the how above AT Commands works.
331
332
333 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
334
335 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
336 |(% style="width:496px" %)(((
337 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
338
339 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
340
341 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
342 )))
343
344 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
345
346 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
347
348
349 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
350
351 (% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
352 |(% style="width:722px" %)(((
353 **AT+DATACUTx=a,b,c**
354
355 * **a: length for the return of AT+COMMAND**
356 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
357 * **c: define the position for valid value.  **
358 )))
359
360 **Examples:**
361
362 * Grab bytes:
363
364 [[image:image-20220602153621-1.png]]
365
366
367 * Grab a section.
368
369 [[image:image-20220602153621-2.png]]
370
371
372 * Grab different sections.
373
374 [[image:image-20220602153621-3.png]]
375
376
377 )))
378
379 === 3.3.4 Compose the uplink payload ===
380
381 (((
382 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
383
384
385 )))
386
387 (((
388 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
389
390
391 )))
392
393 (((
394 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
395 )))
396
397 (((
398 Final Payload is
399 )))
400
401 (((
402 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
403 )))
404
405 (((
406 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
407 )))
408
409 [[image:1653269759169-150.png||height="513" width="716"]]
410
411
412 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
413
414
415 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
416
417 Final Payload is
418
419 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
420
421 1. PAYVER: Defined by AT+PAYVER
422 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
423 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
424 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
425
426 [[image:image-20220602155039-4.png]]
427
428
429 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
430
431 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
432
433 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
434
435 DATA3=the rest of Valid value of RETURN10= **30**
436
437
438 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
439
440 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
441
442 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
443
444 * For US915 band, max 11 bytes for each uplink.
445
446 ~* For all other bands: max 51 bytes for each uplink.
447
448
449 Below are the uplink payloads:
450
451 [[image:1654157178836-407.png]]
452
453
454 === 3.3.5 Uplink on demand ===
455
456 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
457
458 Downlink control command:
459
460 **0x08 command**: Poll an uplink with current command set in RS485-LN.
461
462 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
463
464
465
466 === 3.3.6 Uplink on Interrupt ===
467
468 RS485-LN support external Interrupt uplink since hardware v1.2 release.
469
470 [[image:1654157342174-798.png]]
471
472 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
473
474
475 == 3.4 Uplink Payload ==
476
477 (% border="1" style="background-color:#4bacc6; color:white; width:734px" %)
478 |**Size(bytes)**|(% style="width:120px" %)**2**|(% style="width:116px" %)**1**|(% style="width:386px" %)**Length depends on the return from the commands**
479 |Value|(% style="width:120px" %)(((
480 Battery(mV)
481
482 &
483
484 Interrupt _Flag
485 )))|(% style="width:116px" %)(((
486 PAYLOAD_VER
487
488
489 )))|(% style="width:386px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
490
491 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
492
493
494 == 3.5 Configure RS485-BL via AT or Downlink ==
495
496 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
497
498 There are two kinds of Commands:
499
500 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
501
502 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
503
504 === 3.5.1 Common Commands ===
505
506 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
507
508
509 === 3.5.2 Sensor related commands ===
510
511 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
512
513 [[image:image-20220602163333-5.png||height="263" width="1160"]]
514
515 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
516
517
518 === 3.5.3 Sensor related commands ===
519
520 ==== ====
521
522 ==== **RS485 Debug Command** ====
523
524 This command is used to configure the RS485 devices; they won’t be used during sampling.
525
526 * **AT Command**
527
528 (% class="box infomessage" %)
529 (((
530 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
531 )))
532
533 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
534
535 * **Downlink Payload**
536
537 Format: A8 MM NN XX XX XX XX YY
538
539 Where:
540
541 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
542 * NN: The length of RS485 command
543 * XX XX XX XX: RS485 command total NN bytes
544 * YY: How many bytes will be uplink from the return of this RS485 command,
545 ** if YY=0, RS485-LN will execute the downlink command without uplink;
546 ** if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
547 ** if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
548
549 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
550
551 To connect a Modbus Alarm with below commands.
552
553 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
554
555 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
556
557 So if user want to use downlink command to control to RS485 Alarm, he can use:
558
559 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
560
561 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
562
563 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
564
565
566 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
567
568 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
569
570
571 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
572
573 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
574
575 [[image:1654159460680-153.png]]
576
577
578
579 ==== **Set Payload version** ====
580
581 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
582
583 * **AT Command:**
584
585 (% class="box infomessage" %)
586 (((
587 **AT+PAYVER: Set PAYVER field = 1**
588 )))
589
590 * **Downlink Payload:**
591
592 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
593
594 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
595
596
597
598 ==== **Set RS485 Sampling Commands** ====
599
600 AT+COMMANDx or AT+DATACUTx
601
602 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
603
604
605 * **AT Command:**
606
607 (% class="box infomessage" %)
608 (((
609 **AT+COMMANDx: Configure RS485 read command to sensor.**
610 )))
611
612 (% class="box infomessage" %)
613 (((
614 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
615 )))
616
617
618 * **Downlink Payload:**
619
620 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
621
622 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
623
624 Format: AF MM NN LL XX XX XX XX YY
625
626 Where:
627
628 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
629 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
630 * LL:  The length of AT+COMMAND or AT+DATACUT command
631 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
632 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
633
634 **Example:**
635
636 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
637
638 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
639
640 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
641
642
643
644 ==== **Fast command to handle MODBUS device** ====
645
646 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
647
648 This command is valid since v1.3 firmware version
649
650 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
651
652
653 **Example:**
654
655 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
656 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
657 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
658
659 [[image:image-20220602165351-6.png]]
660
661 [[image:image-20220602165351-7.png]]
662
663
664
665 ==== **RS485 command timeout** ====
666
667 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
668
669 Default value: 0, range:  0 ~~ 65 seconds
670
671 * **AT Command:**
672
673 (% class="box infomessage" %)
674 (((
675 **AT+CMDDLaa=hex(bb cc)*1000**
676 )))
677
678 **Example:**
679
680 **AT+CMDDL1=1000** to send the open time to 1000ms
681
682
683 * **Downlink Payload:**
684
685 **0x AA aa bb cc**
686
687 Same as: AT+CMDDLaa=hex(bb cc)*1000
688
689 **Example:**
690
691 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
692
693
694
695 ==== **Uplink payload mode** ====
696
697 Define to use one uplink or multiple uplinks for the sampling.
698
699 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
700
701 * **AT Command:**
702
703 (% class="box infomessage" %)
704 (((
705 **AT+DATAUP=0**
706 )))
707
708 (% class="box infomessage" %)
709 (((
710 **AT+DATAUP=1**
711 )))
712
713
714 * **Downlink Payload:**
715
716 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
717
718 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
719
720
721
722 ==== **Manually trigger an Uplink** ====
723
724 Ask device to send an uplink immediately.
725
726 * **AT Command:**
727
728 No AT Command for this, user can press the [[ACT button>>path:#Button]] for 1 second for the same.
729
730
731 * **Downlink Payload:**
732
733 **0x08 FF**, RS485-LN will immediately send an uplink.
734
735
736 ==== ====
737
738 ==== **Clear RS485 Command** ====
739
740 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
741
742 * **AT Command:**
743
744 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
745
746 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
747
748 Example screen shot after clear all RS485 commands. 
749
750
751 The uplink screen shot is:
752
753 [[image:1654160691922-496.png]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
754
755
756 * **Downlink Payload:**
757
758 **0x09 aa bb** same as AT+CMDEAR=aa,bb
759
760
761
762 ==== **Set Serial Communication Parameters** ====
763
764 Set the Rs485 serial communication parameters:
765
766 * **AT Command:**
767
768 Set Baud Rate:
769
770 (% class="box infomessage" %)
771 (((
772 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
773 )))
774
775 Set UART Parity
776
777 (% class="box infomessage" %)
778 (((
779 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
780 )))
781
782 Set STOPBIT
783
784 (% class="box infomessage" %)
785 (((
786 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
787 )))
788
789
790 * **Downlink Payload:**
791
792 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
793
794 **Example:**
795
796 * A7 01 00 60   same as AT+BAUDR=9600
797 * A7 01 04 80  same as AT+BAUDR=115200
798
799 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
800
801 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
802
803
804 == 3.6 Listening mode for RS485 network ==
805
806 This feature support since firmware v1.4
807
808 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
809
810 [[image:image-20220602171200-8.png||height="567" width="1007"]]
811
812 To enable the listening mode, use can run the command AT+RXMODE.
813
814
815 (% border="1" style="background-color:#ffffcc; width:500px" %)
816 |=(% style="width: 161px;" %)**Command example:**|=(% style="width: 337px;" %)**Function**
817 |(% style="width:161px" %)AT+RXMODE=1,10 |(% style="width:337px" %)Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
818 |(% style="width:161px" %)AT+RXMODE=2,500|(% style="width:337px" %)Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
819 |(% style="width:161px" %)AT+RXMODE=0,0|(% style="width:337px" %)Disable listening mode. This is the default settings.
820 |(% style="width:161px" %) |(% style="width:337px" %)A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 ~| cc)
821
822 **Downlink Command:**
823
824 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
825
826
827 **Example**:
828
829 The RS485-LN is set to AT+RXMODE=2,1000
830
831 There is a two Modbus commands in the RS485 network as below:
832
833 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
834
835 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
836
837 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
838
839 [[image:image-20220602171200-9.png]]
840
841
842 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
843
844
845 == 3.7 Buttons ==
846
847
848 (% border="1" style="background-color:#f7faff; width:500px" %)
849 |=**Button**|=(% style="width: 1420px;" %)**Feature**
850 |**ACT**|(% style="width:1420px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
851 |**RST**|(% style="width:1420px" %)Reboot RS485
852 |**PRO**|(% style="width:1420px" %)Use for upload image, see [[How to Update Image>>path:#upgrade_image]]
853
854 == 3.8 LEDs ==
855
856 (% border="1" style="background-color:#f7faff; width:500px" %)
857 |=**LEDs**|=**Feature**
858 |**PWR**|Always on if there is power
859 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN** (%%)for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds**(%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
860
861 = 4. Case Study =
862
863 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
864
865
866 = 5. Use AT Command =
867
868 == 5.1 Access AT Command ==
869
870 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
871
872 [[image:1654162355560-817.png]]
873
874
875 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
876
877 [[image:1654162368066-342.png]]
878
879
880 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="3.5ConfigureRS485-BLviaATorDownlink"]]
881
882
883 == 5.2 Common AT Command Sequence ==
884
885 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
886
887 If device has not joined network yet:
888
889 (% class="box infomessage" %)
890 (((
891 **AT+FDR**
892 )))
893
894 (% class="box infomessage" %)
895 (((
896 **AT+NJM=0**
897 )))
898
899 (% class="box infomessage" %)
900 (((
901 **ATZ**
902 )))
903
904
905 If device already joined network:
906
907 (% class="box infomessage" %)
908 (((
909 **AT+NJM=0**
910 )))
911
912 (% class="box infomessage" %)
913 (((
914 **ATZ**
915 )))
916
917
918 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
919
920
921 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
922
923 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
924
925 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
926
927 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
928
929 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
930
931 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
932
933 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
934
935 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
936
937 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
938
939 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
940
941
942 (% style="color:red" %)**Note:**
943
944 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
945 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
946 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
947 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
948
949 [[image:1654162478620-421.png]]
950
951
952 = 6. FAQ =
953
954 == 6.1 How to upgrade the image? ==
955
956 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
957
958 * Support new features
959 * For bug fix
960 * Change LoRaWAN bands.
961
962 Below shows the hardware connection for how to upload an image to RS485-LN:
963
964 [[image:1654162535040-878.png]]
965
966 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
967
968 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
969
970 **Step3: **Open flashloader; choose the correct COM port to update.
971
972 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
973
974
975 [[image:image-20220602175818-12.png]]
976
977
978 [[image:image-20220602175848-13.png]]
979
980
981 [[image:image-20220602175912-14.png]]
982
983
984 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
985
986 [[image:image-20220602175638-10.png]]
987
988
989 == 6.2 How to change the LoRa Frequency Bands/Region? ==
990
991 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
992
993
994 == 6.3 How many RS485-Slave can RS485-BL connects? ==
995
996 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
997
998
999 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1000
1001 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1002
1003 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1004
1005
1006 = 7. Trouble Shooting =
1007
1008 == 7.1 Downlink doesn’t work, how to solve it? ==
1009
1010 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1011
1012
1013 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1014
1015 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1016
1017
1018 = 8. Order Info =
1019
1020 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1021
1022 (% style="color:blue" %)**XXX:**
1023
1024 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1025 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1026 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1027 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1028 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1029 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1030 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1031 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1032 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1033 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1034
1035 = 9.Packing Info =
1036
1037
1038 **Package Includes**:
1039
1040 * RS485-LN x 1
1041 * Stick Antenna for LoRa RF part x 1
1042 * Program cable x 1
1043
1044 **Dimension and weight**:
1045
1046 * Device Size: 13.5 x 7 x 3 cm
1047 * Device Weight: 105g
1048 * Package Size / pcs : 14.5 x 8 x 5 cm
1049 * Weight / pcs : 170g
1050
1051 = 10. FCC Caution for RS485LN-US915 =
1052
1053 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1054
1055 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1056
1057
1058 **IMPORTANT NOTE:**
1059
1060 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1061
1062 —Reorient or relocate the receiving antenna.
1063
1064 —Increase the separation between the equipment and receiver.
1065
1066 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1067
1068 —Consult the dealer or an experienced radio/TV technician for help.
1069
1070
1071 **FCC Radiation Exposure Statement:**
1072
1073 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1074
1075
1076 = 11. Support =
1077
1078 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1079 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0