Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21 = 1.Introduction =
22
23 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
24
25 (((
26 (((
27 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
28 )))
29
30 (((
31 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
32 )))
33
34 (((
35 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
36 )))
37
38 (((
39 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
40
41 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
42 )))
43 )))
44
45 [[image:1653267211009-519.png||height="419" width="724"]]
46
47
48 == 1.2 Specifications ==
49
50
51 **Hardware System:**
52
53 * STM32L072CZT6 MCU
54 * SX1276/78 Wireless Chip 
55 * Power Consumption (exclude RS485 device):
56 ** Idle: 32mA@12v
57 ** 20dB Transmit: 65mA@12v
58
59 **Interface for Model:**
60
61 * RS485
62 * Power Input 7~~ 24V DC. 
63
64 **LoRa Spec:**
65
66 * Frequency Range:
67 ** Band 1 (HF): 862 ~~ 1020 Mhz
68 ** Band 2 (LF): 410 ~~ 528 Mhz
69 * 168 dB maximum link budget.
70 * +20 dBm - 100 mW constant RF output vs.
71 * +14 dBm high efficiency PA.
72 * Programmable bit rate up to 300 kbps.
73 * High sensitivity: down to -148 dBm.
74 * Bullet-proof front end: IIP3 = -12.5 dBm.
75 * Excellent blocking immunity.
76 * Low RX current of 10.3 mA, 200 nA register retention.
77 * Fully integrated synthesizer with a resolution of 61 Hz.
78 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
79 * Built-in bit synchronizer for clock recovery.
80 * Preamble detection.
81 * 127 dB Dynamic Range RSSI.
82 * Automatic RF Sense and CAD with ultra-fast AFC.
83 * Packet engine up to 256 bytes with CRC
84
85
86 == 1.3 Features ==
87
88 * LoRaWAN Class A & Class C protocol (default Class C)
89 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
90 * AT Commands to change parameters
91 * Remote configure parameters via LoRa Downlink
92 * Firmware upgradable via program port
93 * Support multiply RS485 devices by flexible rules
94 * Support Modbus protocol
95 * Support Interrupt uplink (Since hardware version v1.2)
96
97
98 == 1.4 Applications ==
99
100 * Smart Buildings & Home Automation
101 * Logistics and Supply Chain Management
102 * Smart Metering
103 * Smart Agriculture
104 * Smart Cities
105 * Smart Factory
106
107
108 == 1.5 Firmware Change log ==
109
110 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
111
112
113 == 1.6 Hardware Change log ==
114
115 (((
116 (((
117 v1.2: Add External Interrupt Pin.
118
119 v1.0: Release
120
121
122 )))
123 )))
124
125 = 2. Power ON Device =
126
127 (((
128 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
129
130 * Power Source VIN to RS485-LN VIN+
131 * Power Source GND to RS485-LN VIN-
132
133 (((
134 Once there is power, the RS485-LN will be on.
135 )))
136
137 [[image:1653268091319-405.png]]
138
139
140 )))
141
142 = 3. Operation Mode =
143
144 == 3.1 How it works? ==
145
146 (((
147 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
148
149
150 )))
151
152 == 3.2 Example to join LoRaWAN network ==
153
154 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
155
156 [[image:1653268155545-638.png||height="334" width="724"]]
157
158
159 (((
160 (((
161 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
162 )))
163
164 (((
165 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
166 )))
167
168 [[image:1653268227651-549.png||height="592" width="720"]]
169
170 (((
171 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
172 )))
173
174 (((
175 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
176 )))
177
178 (((
179 Each RS485-LN is shipped with a sticker with unique device EUI:
180 )))
181 )))
182
183 [[image:1652953462722-299.png]]
184
185 (((
186 (((
187 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
188 )))
189
190 (((
191 Add APP EUI in the application.
192 )))
193 )))
194
195 [[image:image-20220519174512-1.png]]
196
197 [[image:image-20220519174512-2.png||height="323" width="720"]]
198
199 [[image:image-20220519174512-3.png||height="556" width="724"]]
200
201 [[image:image-20220519174512-4.png]]
202
203 You can also choose to create the device manually.
204
205 [[image:1652953542269-423.png||height="710" width="723"]]
206
207 Add APP KEY and DEV EUI
208
209 [[image:1652953553383-907.png||height="514" width="724"]]
210
211
212 (((
213 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
214 )))
215
216 [[image:1652953568895-172.png||height="232" width="724"]]
217
218
219 == 3.3 Configure Commands to read data ==
220
221 (((
222 (((
223 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
224 )))
225
226 (((
227 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
228
229
230 )))
231 )))
232
233 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
234
235 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
236
237 (% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
238 |(% style="width:128px" %)(((
239 **AT Commands**
240 )))|(% style="width:305px" %)(((
241 **Description**
242 )))|(% style="width:346px" %)(((
243 **Example**
244 )))
245 |(% style="width:128px" %)(((
246 AT+BAUDR
247 )))|(% style="width:305px" %)(((
248 Set the baud rate (for RS485 connection). Default Value is: 9600.
249 )))|(% style="width:346px" %)(((
250 (((
251 AT+BAUDR=9600
252 )))
253
254 (((
255 Options: (1200,2400,4800,14400,19200,115200)
256 )))
257 )))
258 |(% style="width:128px" %)(((
259 AT+PARITY
260 )))|(% style="width:305px" %)(((
261 Set UART parity (for RS485 connection)
262 )))|(% style="width:346px" %)(((
263 (((
264 AT+PARITY=0
265 )))
266
267 (((
268 Option: 0: no parity, 1: odd parity, 2: even parity
269 )))
270 )))
271 |(% style="width:128px" %)(((
272 AT+STOPBIT
273 )))|(% style="width:305px" %)(((
274 (((
275 Set serial stopbit (for RS485 connection)
276 )))
277
278 (((
279
280 )))
281 )))|(% style="width:346px" %)(((
282 (((
283 AT+STOPBIT=0 for 1bit
284 )))
285
286 (((
287 AT+STOPBIT=1 for 1.5 bit
288 )))
289
290 (((
291 AT+STOPBIT=2 for 2 bits
292 )))
293 )))
294
295 === 3.3.2 Configure sensors ===
296
297 (((
298 (((
299 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
300 )))
301 )))
302
303 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
304 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
305 |AT+CFGDEV|(% style="width:418px" %)(((
306 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
307
308 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
309
310 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
311 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
312
313 === 3.3.3 Configure read commands for each sampling ===
314
315 (((
316 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
317
318 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
319
320 This section describes how to achieve above goals.
321
322 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
323
324
325 **Each RS485 commands include two parts:**
326
327 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
328
329 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
330
331 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
332
333
334 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
335
336
337 Below are examples for the how above AT Commands works.
338
339
340 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
341
342 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
343 |(% style="width:496px" %)(((
344 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
345
346 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
347
348 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
349 )))
350
351 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
352
353 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
354
355
356 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
357
358 (% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
359 |(% style="width:722px" %)(((
360 **AT+DATACUTx=a,b,c**
361
362 * **a: length for the return of AT+COMMAND**
363 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
364 * **c: define the position for valid value.  **
365 )))
366
367 **Examples:**
368
369 * Grab bytes:
370
371 [[image:image-20220602153621-1.png]]
372
373
374 * Grab a section.
375
376 [[image:image-20220602153621-2.png]]
377
378
379 * Grab different sections.
380
381 [[image:image-20220602153621-3.png]]
382
383
384 )))
385
386 === 3.3.4 Compose the uplink payload ===
387
388 (((
389 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
390
391
392 )))
393
394 (((
395 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
396
397
398 )))
399
400 (((
401 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
402 )))
403
404 (((
405 Final Payload is
406 )))
407
408 (((
409 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
410 )))
411
412 (((
413 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
414 )))
415
416 [[image:1653269759169-150.png||height="513" width="716"]]
417
418
419 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
420
421
422 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
423
424 Final Payload is
425
426 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
427
428 1. PAYVER: Defined by AT+PAYVER
429 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
430 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
431 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
432
433 [[image:image-20220602155039-4.png]]
434
435
436 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
437
438 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
439
440 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
441
442 DATA3=the rest of Valid value of RETURN10= **30**
443
444
445 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
446
447 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
448
449 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
450
451 * For US915 band, max 11 bytes for each uplink.
452
453 ~* For all other bands: max 51 bytes for each uplink.
454
455
456 Below are the uplink payloads:
457
458 [[image:1654157178836-407.png]]
459
460
461 === 3.3.5 Uplink on demand ===
462
463 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
464
465 Downlink control command:
466
467 **0x08 command**: Poll an uplink with current command set in RS485-LN.
468
469 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
470
471
472
473 === 3.3.6 Uplink on Interrupt ===
474
475 RS485-LN support external Interrupt uplink since hardware v1.2 release.
476
477 [[image:1654157342174-798.png]]
478
479 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
480
481
482 == 3.4 Uplink Payload ==
483
484 (% border="1" style="background-color:#4bacc6; color:white; width:734px" %)
485 |**Size(bytes)**|(% style="width:120px" %)**2**|(% style="width:116px" %)**1**|(% style="width:386px" %)**Length depends on the return from the commands**
486 |Value|(% style="width:120px" %)(((
487 Battery(mV)
488
489 &
490
491 Interrupt _Flag
492 )))|(% style="width:116px" %)(((
493 PAYLOAD_VER
494
495
496 )))|(% style="width:386px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
497
498 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
499
500
501 == 3.5 Configure RS485-BL via AT or Downlink ==
502
503 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
504
505 There are two kinds of Commands:
506
507 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
508
509 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
510
511 === 3.5.1 Common Commands ===
512
513 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
514
515
516 === 3.5.2 Sensor related commands ===
517
518 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
519
520 [[image:image-20220602163333-5.png||height="263" width="1160"]]
521
522 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
523
524
525 === 3.5.3 Sensor related commands ===
526
527
528
529 ==== **RS485 Debug Command** ====
530
531 This command is used to configure the RS485 devices; they won’t be used during sampling.
532
533 * **AT Command**
534
535 (% class="box infomessage" %)
536 (((
537 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
538 )))
539
540 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
541
542 * **Downlink Payload**
543
544 Format: A8 MM NN XX XX XX XX YY
545
546 Where:
547
548 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
549 * NN: The length of RS485 command
550 * XX XX XX XX: RS485 command total NN bytes
551 * YY: How many bytes will be uplink from the return of this RS485 command,
552 ** if YY=0, RS485-LN will execute the downlink command without uplink;
553 ** if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
554 ** if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
555
556 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
557
558 To connect a Modbus Alarm with below commands.
559
560 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
561
562 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
563
564 So if user want to use downlink command to control to RS485 Alarm, he can use:
565
566 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
567
568 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
569
570 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
571
572
573 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
574
575 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
576
577
578 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
579
580 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
581
582 [[image:1654159460680-153.png]]
583
584
585
586 ==== **Set Payload version** ====
587
588 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
589
590 * **AT Command:**
591
592 (% class="box infomessage" %)
593 (((
594 **AT+PAYVER: Set PAYVER field = 1**
595 )))
596
597 * **Downlink Payload:**
598
599 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
600
601 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
602
603
604
605 ==== **Set RS485 Sampling Commands** ====
606
607 AT+COMMANDx or AT+DATACUTx
608
609 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
610
611
612 * **AT Command:**
613
614 (% class="box infomessage" %)
615 (((
616 **AT+COMMANDx: Configure RS485 read command to sensor.**
617 )))
618
619 (% class="box infomessage" %)
620 (((
621 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
622 )))
623
624
625 * **Downlink Payload:**
626
627 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
628
629 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
630
631 Format: AF MM NN LL XX XX XX XX YY
632
633 Where:
634
635 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
636 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
637 * LL:  The length of AT+COMMAND or AT+DATACUT command
638 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
639 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
640
641 **Example:**
642
643 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
644
645 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
646
647 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
648
649
650
651 ==== **Fast command to handle MODBUS device** ====
652
653 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
654
655 This command is valid since v1.3 firmware version
656
657 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
658
659
660 **Example:**
661
662 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
663 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
664 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
665
666 [[image:image-20220602165351-6.png]]
667
668 [[image:image-20220602165351-7.png]]
669
670
671
672 ==== **RS485 command timeout** ====
673
674 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
675
676 Default value: 0, range:  0 ~~ 65 seconds
677
678 * **AT Command:**
679
680 (% class="box infomessage" %)
681 (((
682 **AT+CMDDLaa=hex(bb cc)*1000**
683 )))
684
685 **Example:**
686
687 **AT+CMDDL1=1000** to send the open time to 1000ms
688
689
690 * **Downlink Payload:**
691
692 **0x AA aa bb cc**
693
694 Same as: AT+CMDDLaa=hex(bb cc)*1000
695
696 **Example:**
697
698 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
699
700
701
702 ==== **Uplink payload mode** ====
703
704 Define to use one uplink or multiple uplinks for the sampling.
705
706 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
707
708 * **AT Command:**
709
710 (% class="box infomessage" %)
711 (((
712 **AT+DATAUP=0**
713 )))
714
715 (% class="box infomessage" %)
716 (((
717 **AT+DATAUP=1**
718 )))
719
720
721 * **Downlink Payload:**
722
723 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
724
725 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
726
727
728
729 ==== **Manually trigger an Uplink** ====
730
731 Ask device to send an uplink immediately.
732
733 * **AT Command:**
734
735 No AT Command for this, user can press the [[ACT button>>path:#Button]] for 1 second for the same.
736
737
738 * **Downlink Payload:**
739
740 **0x08 FF**, RS485-LN will immediately send an uplink.
741
742
743
744 ==== **Clear RS485 Command** ====
745
746 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
747
748 * **AT Command:**
749
750 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
751
752 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
753
754 Example screen shot after clear all RS485 commands. 
755
756
757 The uplink screen shot is:
758
759 [[image:1654160691922-496.png]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
760
761
762 * **Downlink Payload:**
763
764 **0x09 aa bb** same as AT+CMDEAR=aa,bb
765
766
767
768 ==== **Set Serial Communication Parameters** ====
769
770 Set the Rs485 serial communication parameters:
771
772 * **AT Command:**
773
774 Set Baud Rate:
775
776 (% class="box infomessage" %)
777 (((
778 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
779 )))
780
781 Set UART Parity
782
783 (% class="box infomessage" %)
784 (((
785 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
786 )))
787
788 Set STOPBIT
789
790 (% class="box infomessage" %)
791 (((
792 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
793 )))
794
795
796 * **Downlink Payload:**
797
798 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
799
800 **Example:**
801
802 * A7 01 00 60   same as AT+BAUDR=9600
803 * A7 01 04 80  same as AT+BAUDR=115200
804
805 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
806
807 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
808
809
810 == 3.6 Listening mode for RS485 network ==
811
812 This feature support since firmware v1.4
813
814 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
815
816 [[image:image-20220602171200-8.png||height="567" width="1007"]]
817
818 To enable the listening mode, use can run the command AT+RXMODE.
819
820
821 (% border="1" style="background-color:#ffffcc; width:500px" %)
822 |=(% style="width: 161px;" %)**Command example:**|=(% style="width: 337px;" %)**Function**
823 |(% style="width:161px" %)AT+RXMODE=1,10 |(% style="width:337px" %)Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
824 |(% style="width:161px" %)AT+RXMODE=2,500|(% style="width:337px" %)Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
825 |(% style="width:161px" %)AT+RXMODE=0,0|(% style="width:337px" %)Disable listening mode. This is the default settings.
826 |(% style="width:161px" %) |(% style="width:337px" %)A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 ~| cc)
827
828 **Downlink Command:**
829
830 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
831
832
833 **Example**:
834
835 The RS485-LN is set to AT+RXMODE=2,1000
836
837 There is a two Modbus commands in the RS485 network as below:
838
839 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
840
841 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
842
843 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
844
845 [[image:image-20220602171200-9.png]]
846
847
848 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
849
850
851 == 3.7 Buttons ==
852
853
854 (% border="1" style="background-color:#f7faff; width:500px" %)
855 |=**Button**|=(% style="width: 1420px;" %)**Feature**
856 |**ACT**|(% style="width:1420px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
857 |**RST**|(% style="width:1420px" %)Reboot RS485
858 |**PRO**|(% style="width:1420px" %)Use for upload image, see [[How to Update Image>>path:#upgrade_image]]
859
860
861 == 3.8 LEDs ==
862
863 (% border="1" style="background-color:#f7faff; width:500px" %)
864 |=**LEDs**|=**Feature**
865 |**PWR**|Always on if there is power
866 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN** (%%)for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds**(%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
867
868
869 = 4. Case Study =
870
871 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
872
873
874 = 5. Use AT Command =
875
876 == 5.1 Access AT Command ==
877
878 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
879
880 [[image:1654162355560-817.png]]
881
882
883 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
884
885 [[image:1654162368066-342.png]]
886
887
888 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="3.5ConfigureRS485-BLviaATorDownlink"]]
889
890
891 == 5.2 Common AT Command Sequence ==
892
893 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
894
895 If device has not joined network yet:
896
897 (% class="box infomessage" %)
898 (((
899 **AT+FDR**
900 )))
901
902 (% class="box infomessage" %)
903 (((
904 **AT+NJM=0**
905 )))
906
907 (% class="box infomessage" %)
908 (((
909 **ATZ**
910 )))
911
912
913 If device already joined network:
914
915 (% class="box infomessage" %)
916 (((
917 **AT+NJM=0**
918 )))
919
920 (% class="box infomessage" %)
921 (((
922 **ATZ**
923 )))
924
925
926 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
927
928
929 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
930
931 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
932
933 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
934
935 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
936
937 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
938
939 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
940
941 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
942
943 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
944
945 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
946
947 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
948
949
950 (% style="color:red" %)**Note:**
951
952 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
953 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
954 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
955 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
956
957 [[image:1654162478620-421.png]]
958
959
960 = 6. FAQ =
961
962 == 6.1 How to upgrade the image? ==
963
964 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
965
966 * Support new features
967 * For bug fix
968 * Change LoRaWAN bands.
969
970 Below shows the hardware connection for how to upload an image to RS485-LN:
971
972 [[image:1654162535040-878.png]]
973
974 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
975
976 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
977
978 **Step3: **Open flashloader; choose the correct COM port to update.
979
980 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
981
982
983 [[image:image-20220602175818-12.png]]
984
985
986 [[image:image-20220602175848-13.png]]
987
988
989 [[image:image-20220602175912-14.png]]
990
991
992 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
993
994 [[image:image-20220602175638-10.png]]
995
996
997 == 6.2 How to change the LoRa Frequency Bands/Region? ==
998
999 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1000
1001
1002 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1003
1004 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1005
1006
1007 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1008
1009 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1010
1011 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1012
1013
1014 = 7. Trouble Shooting =
1015
1016 == 7.1 Downlink doesn’t work, how to solve it? ==
1017
1018 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1019
1020
1021 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1022
1023 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1024
1025
1026 = 8. Order Info =
1027
1028 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1029
1030 (% style="color:blue" %)**XXX:**
1031
1032 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1033 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1034 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1035 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1036 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1037 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1038 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1039 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1040 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1041 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1042
1043
1044 = 9.Packing Info =
1045
1046
1047 **Package Includes**:
1048
1049 * RS485-LN x 1
1050 * Stick Antenna for LoRa RF part x 1
1051 * Program cable x 1
1052
1053 **Dimension and weight**:
1054
1055 * Device Size: 13.5 x 7 x 3 cm
1056 * Device Weight: 105g
1057 * Package Size / pcs : 14.5 x 8 x 5 cm
1058 * Weight / pcs : 170g
1059
1060
1061 = 10. FCC Caution for RS485LN-US915 =
1062
1063 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1064
1065 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1066
1067
1068 **IMPORTANT NOTE:**
1069
1070 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1071
1072 —Reorient or relocate the receiving antenna.
1073
1074 —Increase the separation between the equipment and receiver.
1075
1076 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1077
1078 —Consult the dealer or an experienced radio/TV technician for help.
1079
1080
1081 **FCC Radiation Exposure Statement:**
1082
1083 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1084
1085
1086 = 11. Support =
1087
1088 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1089 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0