Version 41.4 by Xiaoling on 2022/06/02 16:36

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9 **Table of Contents:**
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18
19 (((
20 (((
21 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 )))
23
24 (((
25 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 )))
27
28 (((
29 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 )))
31
32 (((
33 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34
35 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
36 )))
37 )))
38
39 [[image:1653267211009-519.png||height="419" width="724"]]
40
41
42 == 1.2 Specifications ==
43
44
45 **Hardware System:**
46
47 * STM32L072CZT6 MCU
48 * SX1276/78 Wireless Chip 
49 * Power Consumption (exclude RS485 device):
50 ** Idle: 32mA@12v
51 ** 20dB Transmit: 65mA@12v
52
53 **Interface for Model:**
54
55 * RS485
56 * Power Input 7~~ 24V DC. 
57
58 **LoRa Spec:**
59
60 * Frequency Range:
61 ** Band 1 (HF): 862 ~~ 1020 Mhz
62 ** Band 2 (LF): 410 ~~ 528 Mhz
63 * 168 dB maximum link budget.
64 * +20 dBm - 100 mW constant RF output vs.
65 * +14 dBm high efficiency PA.
66 * Programmable bit rate up to 300 kbps.
67 * High sensitivity: down to -148 dBm.
68 * Bullet-proof front end: IIP3 = -12.5 dBm.
69 * Excellent blocking immunity.
70 * Low RX current of 10.3 mA, 200 nA register retention.
71 * Fully integrated synthesizer with a resolution of 61 Hz.
72 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
73 * Built-in bit synchronizer for clock recovery.
74 * Preamble detection.
75 * 127 dB Dynamic Range RSSI.
76 * Automatic RF Sense and CAD with ultra-fast AFC.
77 * Packet engine up to 256 bytes with CRC.
78
79
80 == 1.3 Features ==
81
82 * LoRaWAN Class A & Class C protocol (default Class C)
83 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
84 * AT Commands to change parameters
85 * Remote configure parameters via LoRa Downlink
86 * Firmware upgradable via program port
87 * Support multiply RS485 devices by flexible rules
88 * Support Modbus protocol
89 * Support Interrupt uplink (Since hardware version v1.2)
90
91
92 == 1.4 Applications ==
93
94 * Smart Buildings & Home Automation
95 * Logistics and Supply Chain Management
96 * Smart Metering
97 * Smart Agriculture
98 * Smart Cities
99 * Smart Factory
100
101
102 == 1.5 Firmware Change log ==
103
104 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
105
106
107 == 1.6 Hardware Change log ==
108
109 (((
110 (((
111 v1.2: Add External Interrupt Pin.
112
113 v1.0: Release
114
115
116 )))
117 )))
118
119 = 2. Power ON Device =
120
121 (((
122 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
123
124 * Power Source VIN to RS485-LN VIN+
125 * Power Source GND to RS485-LN VIN-
126
127 (((
128 Once there is power, the RS485-LN will be on.
129 )))
130
131 [[image:1653268091319-405.png]]
132
133
134 )))
135
136 = 3. Operation Mode =
137
138 == 3.1 How it works? ==
139
140 (((
141 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
142
143
144 )))
145
146 == 3.2 Example to join LoRaWAN network ==
147
148 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
149
150 [[image:1653268155545-638.png||height="334" width="724"]]
151
152
153 (((
154 (((
155 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
156 )))
157
158 (((
159 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
160 )))
161
162 [[image:1653268227651-549.png||height="592" width="720"]]
163
164 (((
165 The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
166 )))
167
168 (((
169 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
170 )))
171
172 (((
173 Each RS485-LN is shipped with a sticker with unique device EUI:
174 )))
175 )))
176
177 [[image:1652953462722-299.png]]
178
179 (((
180 (((
181 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
182 )))
183
184 (((
185 Add APP EUI in the application.
186 )))
187 )))
188
189 [[image:image-20220519174512-1.png]]
190
191 [[image:image-20220519174512-2.png||height="323" width="720"]]
192
193 [[image:image-20220519174512-3.png||height="556" width="724"]]
194
195 [[image:image-20220519174512-4.png]]
196
197 You can also choose to create the device manually.
198
199 [[image:1652953542269-423.png||height="710" width="723"]]
200
201 Add APP KEY and DEV EUI
202
203 [[image:1652953553383-907.png||height="514" width="724"]]
204
205
206 (((
207 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
208 )))
209
210 [[image:1652953568895-172.png||height="232" width="724"]]
211
212
213 == 3.3 Configure Commands to read data ==
214
215 (((
216 (((
217 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
218 )))
219
220 (((
221 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
222
223
224 )))
225 )))
226
227 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
228
229 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
230
231 (% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
232 |(% style="width:128px" %)(((
233 **AT Commands**
234 )))|(% style="width:305px" %)(((
235 **Description**
236 )))|(% style="width:346px" %)(((
237 **Example**
238 )))
239 |(% style="width:128px" %)(((
240 AT+BAUDR
241 )))|(% style="width:305px" %)(((
242 Set the baud rate (for RS485 connection). Default Value is: 9600.
243 )))|(% style="width:346px" %)(((
244 (((
245 AT+BAUDR=9600
246 )))
247
248 (((
249 Options: (1200,2400,4800,14400,19200,115200)
250 )))
251 )))
252 |(% style="width:128px" %)(((
253 AT+PARITY
254 )))|(% style="width:305px" %)(((
255 Set UART parity (for RS485 connection)
256 )))|(% style="width:346px" %)(((
257 (((
258 AT+PARITY=0
259 )))
260
261 (((
262 Option: 0: no parity, 1: odd parity, 2: even parity
263 )))
264 )))
265 |(% style="width:128px" %)(((
266 AT+STOPBIT
267 )))|(% style="width:305px" %)(((
268 (((
269 Set serial stopbit (for RS485 connection)
270 )))
271
272 (((
273
274 )))
275 )))|(% style="width:346px" %)(((
276 (((
277 AT+STOPBIT=0 for 1bit
278 )))
279
280 (((
281 AT+STOPBIT=1 for 1.5 bit
282 )))
283
284 (((
285 AT+STOPBIT=2 for 2 bits
286 )))
287 )))
288
289 === 3.3.2 Configure sensors ===
290
291 (((
292 (((
293 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
294 )))
295 )))
296
297 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
298 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
299 |AT+CFGDEV|(% style="width:418px" %)(((
300 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
301
302 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
303
304 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
305 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
306
307 === 3.3.3 Configure read commands for each sampling ===
308
309 (((
310 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
311
312 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
313
314 This section describes how to achieve above goals.
315
316 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
317
318
319 **Each RS485 commands include two parts:**
320
321 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
322
323 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
324
325 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
326
327
328 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
329
330
331 Below are examples for the how above AT Commands works.
332
333
334 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
335
336 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
337 |(% style="width:496px" %)(((
338 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
339
340 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
341
342 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
343 )))
344
345 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
346
347 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
348
349
350 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
351
352 (% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
353 |(% style="width:722px" %)(((
354 **AT+DATACUTx=a,b,c**
355
356 * **a: length for the return of AT+COMMAND**
357 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
358 * **c: define the position for valid value.  **
359 )))
360
361 **Examples:**
362
363 * Grab bytes:
364
365 [[image:image-20220602153621-1.png]]
366
367
368 * Grab a section.
369
370 [[image:image-20220602153621-2.png]]
371
372
373 * Grab different sections.
374
375 [[image:image-20220602153621-3.png]]
376
377
378 )))
379
380 === 3.3.4 Compose the uplink payload ===
381
382 (((
383 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
384
385
386 )))
387
388 (((
389 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
390
391
392 )))
393
394 (((
395 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
396 )))
397
398 (((
399 Final Payload is
400 )))
401
402 (((
403 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
404 )))
405
406 (((
407 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
408 )))
409
410 [[image:1653269759169-150.png||height="513" width="716"]]
411
412
413 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
414
415
416 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
417
418 Final Payload is
419
420 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
421
422 1. PAYVER: Defined by AT+PAYVER
423 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
424 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
425 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
426
427 [[image:image-20220602155039-4.png]]
428
429
430 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
431
432 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
433
434 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
435
436 DATA3=the rest of Valid value of RETURN10= **30**
437
438
439 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
440
441 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
442
443 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
444
445 * For US915 band, max 11 bytes for each uplink.
446
447 ~* For all other bands: max 51 bytes for each uplink.
448
449
450 Below are the uplink payloads:
451
452 [[image:1654157178836-407.png]]
453
454
455 === 3.3.5 Uplink on demand ===
456
457 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
458
459 Downlink control command:
460
461 **0x08 command**: Poll an uplink with current command set in RS485-LN.
462
463 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
464
465
466
467 === 3.3.6 Uplink on Interrupt ===
468
469 RS485-LN support external Interrupt uplink since hardware v1.2 release.
470
471 [[image:1654157342174-798.png]]
472
473 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
474
475
476 == 3.4 Uplink Payload ==
477
478 (% border="1" style="background-color:#4bacc6; color:white; width:734px" %)
479 |**Size(bytes)**|(% style="width:120px" %)**2**|(% style="width:116px" %)**1**|(% style="width:386px" %)**Length depends on the return from the commands**
480 |Value|(% style="width:120px" %)(((
481 Battery(mV)
482
483 &
484
485 Interrupt _Flag
486 )))|(% style="width:116px" %)(((
487 PAYLOAD_VER
488
489
490 )))|(% style="width:386px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
491
492 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
493
494
495 == 3.5 Configure RS485-BL via AT or Downlink ==
496
497 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
498
499 There are two kinds of Commands:
500
501 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
502
503 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
504
505 === 3.5.1 Common Commands ===
506
507 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
508
509
510 === 3.5.2 Sensor related commands ===
511
512 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
513
514 [[image:image-20220602163333-5.png||height="263" width="1160"]]
515
516 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
517
518
519 3.5.3 Sensor related commands
520
521 ==== ====
522
523 ==== ====